
Chapter 8

Hierarchical Models

In the (generalized) linear models we’ve looked at so far, we’ve assumed that the observa-
tions are independent of each other given the predictor variables. However, there are many
situations in which that type of independence does not hold. One major type of situation
violating these independence assumptions is cluster-level attributes: when observa-
tions belong to different clusters and each cluster has its own properties (different response
mean, different sensitivity to each predictor). We’ll now cover hierarchical (also called
multi-level and, in some cases mixed-effects) models, which are designed to handle
this type of mutual dependence among datapoints. Common instances in which hierarchical
models can be used include:

• Observations related to linguistic behavior are clustered at the level of the speaker, and
speaker-specific attributes might include different baseline reading rates, differential
sensitive to construction difficulty, or preference for one construction over another;

• Different sentences or even words may have idiosyncratic differences in their ease of
understanding or production, and while we may not be able to model these differences,
we may be able model the fact that there is incidental variation at the sentence or
word level;

• Education-related observations (e.g., vocabulary size) of students have multiple levels
of clustering: multiple measurements may be taken from a given student, multiple
students may be observed from a class taught by a given teacher, multiple teachers
may teach at the same school, multiple schools may be in the same city, and so forth.

This chapter introduces hierarchical models, building on the mathematical tools you have
acquired throughout the book. This chapter makes considerably heavier use of Bayesian-
style thinking and techniques than the previous chapter; this would be a good time to review
marginalization (Section 3.2), Bayesian prediction and parameter estimation (Section 4.4),
approximate posterior inference (Section 4.5), and confidence intervals (Chapter 5).
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Figure 8.1: Non-hierarchical and hierarchical models

8.1 Introduction

The core idea behind the hierarchical model is illustrated in Figure 8.1. Figure 8.1a depicts
the type of probabilistic model that we have spent most of our time with thus far: a model
family has parameters θ, which determine a probability distribution over outcomes, and
a set of observations y arises as a collection of independent draws from this distribution.
Figure 8.1b illustrates the simplest type of hierarchical model: observations fall into a number
of clusters, and the distribution over outcomes is determined jointly by (i) parameters θ
shared across clusters, and (ii) parameters b which are shared among observations within
a cluster, but may be different across clusters. Crucially, there is a second probability
distribution, parameterized by Σb, over the cluster-specific parameters b themselves. In
Figure 8.1b, there are m clusters, and for each cluster i there have been ni observations
yi1, . . . , yini

made. All else being equal, we can expect that observations within a single
cluster will tend to look more like each other than like observations in other clusters.

Let us consider a simple case in which the distribution from which the observations yij
are drawn is characterized by just a few parameters—for example, they may be normally
distributed, in which case the parameters are the mean and the variance. One natural type
of clustering would be for each cluster to have its own mean µi but for all the clusters to
have the same variance σ2

y . In the terminology of Figure 8.1b, we would classify the µi as
cluster-specific parameters (in the b nodes) and the variance σ2

y as a shared parameter (in
the θ node). In order to complete this probabilistic model, we would need to specify the
distribution over the cluster-specific µi. We might make this distribution normal as well,
which requires two parameters of its own: a global mean µ and variance σ2

b (these would live
in the Σb node). We can write this specification compactly as follows:

µi ∼ N (µ, σ2
b )

yij ∼ N (µi, σ
2
y) (8.1)

Equivalently, we could consider the cluster-specific parameters to be deviations from the
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overall mean µ. In this approach, we would consider µ as a shared θ parameter, and the
mean of the deviations would be 0. We can compactly specify this version of the model as:

bi ∼ N (0, σ2
b )

µi = µ+ bi

yij ∼ N (µi, σ
2
y) (8.2)

The specifications in Equations 8.1 and 8.2 describe exactly the same family of proba-
bilistic models. The advantage of the former specification is that it is more compact. The
advantage of the latter specification is that the cluster-specific parameters are more directly
interpretable as deviations “above” or “below” the overall average µ. In addition, the latter
specification leads to a nice connection with our discussion of linear models in Section 6.2.
We can describe the same model as follows:

yij = µ+ bi︸︷︷︸
∼N (0,σ2

b
)

+ ǫij︸︷︷︸
∼N (0,σ2

y)

(8.3)

That is, an individual observation yij is the sum of the overall mean µ, a normally-distributed
cluster-level deviation bi, and a normally-distributed observation-level deviation ǫij.

Let us now consider a concrete example with slightly greater complexity. Suppose that
a phonetician is interested in studying the distribution of the pronunciation of the vowel
[A], recruits six native speakers of American English, and records each speaker once a week
for fifteen weeks. In each case, the phonetician computes and records the F1 and F2 for-
mants of the pronounced syllable. Now, no two recordings will be exactly alike, but different
individuals will tend to pronounce the syllable in different ways—that is, there is both within-
individual and between-individual variation in F1 formant from recording to recording. Let
us assume that inter-speaker (cluster-level) variation and inter-trial (observation-level) vari-
ation are both multivariate-normal. If we denote the 〈F1,F2〉 value for the jth recording of
speaker i as yij, then we could write our model as follows:

bi ∼ N (0,Σb)

µi = µ+ bi

yij ∼ N (µi,Σy) (8.4)

where 0 is the vector 〈0, 0〉.
The only difference between the models in Equations 8.2 and 8.4 is that whereas the for-

mer is univariate, the latter is multivariate: bi is distributed around zero according to some
covariance matrix Σb, and the yij are distributed around µi according to another covariance
matrix Σy. Both the univariate and multivariate models (Equations 8.2 and 8.4) have pre-
cisely the structure of Figure 8.1b, with µ and Σy being the shared parameters θ. For the
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Figure 8.2: Empirically ob-
served male adult speaker
means for first and second
formants of [A]

−20 −10 0 10 20

−
60

−
40

−
20

0
20

40
60

F1 deviation from speaker mean

F
2 

de
vi

at
io

n 
fr

om
 s

pe
ak

er
 m

ea
n

Figure 8.3: Empirically
observed deviations from
speaker means

1

1 1

1

1

1
11

1

1

1

1
1

1

1

2

2

2

2

2

2 2

2 2
2

2

2

2

2

2
3

3

3

3 3
3

3

33
3

3

3

3
3

3
4

4
4

4

44

4

4
4

4 4

4

4

4

4

5

5

5

5 5

55

5
5

5
5 55

5

5

6

6

6

6

6

6

6

6

6

6
6

6 6

6

6

560 580 600 620 640 660

11
00

11
50

12
00

12
50

13
00

13
50

F1 formant

F
2 

fo
rm

an
t

Figure 8.4: Simulated for-
mant data for six speakers.
Speaker-specific means µ +
bi are given as filled circles.

moment, to estimate the model parameters we use the simple expedient of using the sample
mean and covariance of speaker-averages of adult-male data due to Peterson and Barney
(1952) (shown in Figure 8.2) to estimate µ, and Σb, and the covariance of deviations from
speaker means (shown in Figure 8.3) to estimate Σy. Figure 8.4 gives sample data generated
from this model. The individual speakers correspond to clusters of trial-level observations.
Note how there is considerable intra-cluster variation but the variation between clusters is
at least as large.

8.2 Parameter estimation in hierarchical models

The previous section outlines what is essentially the complete probabilistic theory of hier-
archical models. However, the problems of statistical inference within hierarchical models
require more discussion. Before we dive into these issues, however, it is worthwhile to in-
troduce a more succinct graphical representation of hierarchical models than that used in
Figure 8.1b. Figure 8.5a is a representation of non-hierarchical models, as in Figure 8.1a,
where the individual observations yi have been collapsed into a single node y. The box
labeled “n” surrounding the y node indicates that n independent events are generated at
this node; the labeled box is called a plate. Likewise, Figure 8.5b is a representation of
the class of simple hierarchical models shown in Figure 8.1b, with both individual obser-
vations yij and class-specific parameters bi compressed into single nodes. The outer plate
indicates that m independent events are generated at the b node; the inner plate (embedded
in the outer plate) indicates that for the i-th of these m events, ni sub-events are generated.
Each sub-event has a “cluster identity” label—the node labeled i, which allows us to track
which cluster each observation falls into—and the nodes b, θ, and i jointly determine the
distribution over the outcome at the y node for this sub-event.

In light of this picture, let us consider the problem of parameter estimation for a case
such as the formant measurements of the previous section. We know our observations y,
and we also know the cluster identity variable i—that is, which individual produced each
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Figure 8.5: A more succinct representation of the models in Figure 8.1

observation. We do not know the shared model parameters θ the parameters Σb governing
cross-speaker variability, or the speaker-specific variations bi themselves. Upon reflection,
however, it should become clear that the primary goal of the study is to learn θ and Σb, not
bi. Yet the bi stand in the way of estimating Σb. It might seem like a good idea to first
construct point estimates of bi and then use these estimates directly to estimate Σb, but this
approach throws away valuable information (our uncertainty about the true values of the bi,
which we should take into account). How can we make inferences about our parameters of
interest in a principled way?

The answer is actually quite simple: whatever technique of parameter estimation we
choose, we should marginalize over the cluster-specific bi. This leads us to two basic ap-
proaches to parameter estimation for hierarchical models:

1. Construct point estimates of model parameters (Σ̂b and/or θ̂) using the principle of
maximum likelihood. There are actually two different maximum-likelihood approaches
that have widespread currency. The first is to simultaneously choose Σ̂b and θ̂ to
maximize the likelihood, marginal over b:

Lik(Σb,θ;y) =

∫

b

P (y|θ, b, i)P (b|Σb) db (8.5)

We will follow common practice in simply calling this approach“Maximum Likelihood”
(ML) estimation. The second approach, called Restricted Maximum Likelihood

(REML), is perhaps most easily understood as placing an (improper) uniform distribu-
tion over the shared model parameters θ and marginalizing over them (Harville, 1974),
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so that we select only Σ̂b according to the likelihood

Lik(Σb;y) =

∫

b,θ

P (y|θ, b, i)P (b|Σb) db dθ (8.6)

On the REML approach, the parameters θ are of secondary interest, but one would
estimate them as

argmax
θ

P (y|θ, Σ̂bREML, i) =

∫

b

P (y|θ, b, i)P (b|Σ̂bREML) db

For practical purposes, maximum-likelihood and restricted maximum-likelihood esti-
mation often give results that are quite similar to one another when there are relatively
few free parameters in θ compared with the number in b (Dempster et al., 1981). We
will return to the ML/REML distinction in Section 8.3.2.

2. Use Bayesian inference: introduce prior distributions over θ and Σb, and compute the
(approximate) posterior distribution over θ and Σb. Since the introduction of priors
means that θ and Σb are themselves drawn from some distribution, this is actually
a shift to a slightly more complex hierarchical model, shown in Figure 8.5d. Σθ and
ΣΣb

, chosen by the researcher, parameterize the priors over θ and Σb respectively. Via
Bayes’ rule, the posterior distributions of interest can be written as follows:

P (Σb,θ|y) ∝
∫

b

P (y|θ, b)P (b|Σb, i)P (θ|Σθ)P (Σb|ΣΣb
) db (8.7)

Note that the posterior distribution looks very similar to the unnormalized likelihood
of Equation (8.5) above. The only difference is, as always, the presence of the prior
probability P (θ|Σθ)P (Σb|ΣΣb

) in the posterior distribution. It’s worth recalling at
this point that if the prior distribution is chosen to be uniform, then the maximum-
likelihood estimate is also the Bayesian maximum a-posteriori (MAP) estimate.

We’ll now illustrate each of these approaches with reference to actual formant data from
recordings of adult male American speakers’ pronunciations of [A] by Peterson and Barney
(1952). The F1 data are plotted in Figure 8.6.

8.2.1 Point estimation based on maximum likelihood

We illustrate the point estimation approach by treating the F1 and F2 formats separately.1

For each of the formants, we assume the model of Equation (8.2): that the speaker-specific
deviations from the grand mean are normally distributed, and that trial-specific deviations
are also normally distributed. We reiterate that there are three parameters to be estimated

1The R package lme4 is the state of the art in likelihood-based point estimation for a wide variety of
hierarchical models, and we use it here.
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in each model: the overall mean µ, the inter-speaker variance Σb, and the intra-speaker,
inter-trial variance Σy. The maximum-likelihood estimates for these parameters can be seen
in the output of each model fit:

F1 F2
µ 630.6 1191.9
σb 43.1 100.8
σy 16.9 40.1

In this case, there is considerably more inter-speaker variation than intra-speaker variation.
Eyeballing Figure 8.6 and comparing it with the parameter estimates above, we can see that
the overall mean µ is right at the grand mean of all the observations (this has to occur because
the dataset is balanced in terms of cluster size), and that nearly all of the observations lie
within two cluster-level standard deviations (i.e. σb) of the grand mean.

Conditional estimates of cluster-specific parameters

In the point-estimation approach, we have focused on the parameters of interest—θ and Σb—
while maintaining our ignorance about b by marginalizing over it. Nevertheless, in many
cases we may be interested in recovering information about b from our model. For example,
although the ultimate point of the phonetic study above was to estimate inter-speaker and
intra-speaker variation in the pronunciation of [A], we might also be peripherally interested in
making inferences about the average pronunciation behavior of the specific individuals who
participated in our study. Formally, the point estimates of θ and Σb determine a conditional
probability distribution over b. The mode of this distribution is called the best linear

unbiased predictor (BLUP) b̂:

b̂
def
= argmax

b
P (b|θ̂, Σ̂b,y)

The F1 BLUPs for speakers in the current example are plotted as magenta circles in Fig-
ure 8.7.

Shrinkage

Another way of estimating speaker-specific averages would simply be to take mean recorded
F1 frequency for each speaker. But these two approaches lead to different inferences. Fig-
ure 8.7 shows the deviation of each speaker’s mean recorded F1 frequency from the grand
mean as black squares; recall that the conditional estimate b̂ are magenta circles. Notice
that the conditional modes are systematically closer to zero than the means of the raw trials;
this effect is more dramatic for speakers with larger deviations. This happens because the
finite variance of b in the hierarchical model penalizes large deviations from the grand mean
µ. This effect is called shrinkage and is ubiquitous in hierarchical models.
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Figure 8.7: Conditional estimates of speaker-
specific mean F1 frequencies, and shrinkage

8.2.2 Bayesian posterior inference in hierarchical models

We can compare the point estimates (with standard errors) that we obtained in Section 8.2.1
with posterior estimates obtained using Bayesian inference. We specify the hierarchical model
as follows:

µ ∼ N (0, 105)

log σb ∼ U(−100, 100)

log σy ∼ U(−100, 100)

bi ∼ N (0, σ2
b)

µi = µ+ bi

yij ∼ N (µi, σ
2
y) (8.8)

This is exactly the same model as in Equation 8.2, with the addition of three extra lines
at the top specifying prior distributions over the overall mean µ, inter-speaker variability
σb, and intra-speaker variability σy. There are two important points regarding this model
specification. The first is that we are using a normal distribution with very large variance as a
prior on the grand mean µ. The normal distribution is conjugate (Section 4.4.3) to the mean
of a normal distribution, which has computational advantages; the large variance means that
the prior is relatively uninformative, placing little constraint on our inferences about likely
values of µ. The second point is how we are defining the priors on the variance parameters
σb and σy. Although the inverse chi-squared distribution (Section B.4) is conjugate to the
variance parameter of a normal distribution, this distribution does not lend itself well to an
uninformative specification. As described earlier in Section 4.5, placing a uniform distribution
over the log of the standard deviation allows our prior to be uninformative in a “scale-free”
sense.2

Using the sampling techniques described in Section 4.5, we can obtain approximate
highest-posterior density confidence intervals and conditional modes (the latter being ap-

2Good discussion of practical choices for priors on variance parameters can be found in Gelman et al.
(2004, Appendix C).
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Figure 8.8: Output of MCMC sampling on hierarchical model parameters

proximated by a very narrow HPD interval), and plot estimates of the posterior (Figure 8.8).
For F1 formants, these 95% HPD intervals and posterior modes are:

lower bound upper bound posterior mode
µ 615.7 648.7 629.4
σb 36 57.4 43.3
σy 13.8 21.9 16.4

The posterior simulations are in broad agreement with the point estimates and standard
errors obtained in Section 8.2.1. We leave obtaining similar results for F2 as Exercise 8.4.

8.2.3 Multivariate responses

One shortcoming of the analysis of the previous two sections is that F1 and F2 formants
were analyzed separately. Correlations between F1 and F2 frequency are captured at neither
the inter-speaker nor the intra-speaker level. However, there is a hint of such a correlation
in the Figure 8.3. This raises the question of whether such a correlation is reliable at either
level. We can address this question directly within a hierarchical model by using bivariate
representations of y and b. We’ll illustrate this type of analysis in a Bayesian framework.
The model specification looks similar to the univariate case given in Equation 8.8, but we are
using different prior distributions because our normal distributions of interest are multivariate
(even though they are still written as N ):
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bi ∼ N (0,Σb)

µi = µ+ bi

yij ∼ N (µi,Σy)

µ ∼ N
(
0,

[
105 0
0 105

])

Σb ∼ IW
([

105 0
0 105

]
, 2
)

Σy ∼ IW
([

105 0
0 105

]
, 2
)

The symbol IW stands for the inverse Wishart distribution, which is a widely-used prior
distribution for covariance matrices; the large diagonal entries in the matrix parameterizing
it signal uninformativity, and the zero off-diagonal entries signal that there is no particular
prior expectation towards correlation between F1 and F2 deviations. The inverse Wishart
distribution is described more completely in Section B.7.

There are eight distinct parameters in our model over which we would like to make
inferences: two µ parameters, three Σb parameters, and three Σy parameters (recall from
Section 3.5 that Σb and Σy have the form [ σ11 σ12

σ21 σ22 ] but that σ12 = σ21). Using BUGS once
more we obtain the following 95% HPD confidence intervals from the posterior distribution:

lower bound higher bound posterior mode
µ 〈612.4, 1148.8〉 〈641.8, 1226.3〉 〈628.4, 1190.7〉

Σb

[
34.4 −0.43
−0.43 75.8

] [
54.8 0.3
0.3 133.4

] [
42.5 −0.03
−0.03 98.8

]

Σy

[
13.6 −0.06
−0.06 31.5

] [
22.4 0.53
0.53 52.5

] [
17.1 0.29
0.29 39.7

]

Of particular interest are the inferences about correlations between F1 and F2 formants,
which are the most compelling reason to do multivariate analysis in the first place. In the
above analysis, the posterior mode suggests a negative F1-F2 correlation at the inter-speaker
level, but positive correlation at the intra-speaker level. However, the confidence intervals
on these correlations show that this suggestion is far from conclusive.

It is instructive to compare this analysis to a more straightforward analysis of F1-F2
correlation in which inter-speaker correlation is estimated by calculating speaker means and
computing a correlation coefficient on these means, and intra-speaker correlation is estimated
obtained by simply subtracting out the speaker-specific mean from each observation and then
calculating a correlation coefficient on the resulting residuals. For inter-speaker variation,
it gives an empirical correlation coefficient of r = −0.01, with a 95% confidence interval
of [−0.35, 0.34]; for intra-speaker variation, it gives an empirical correlation coefficient of
r = 0.24, with a 95% confidence interval of [−0.002, 0.46].3 Although this approach also
leads to the conclusion that there is no reliable F1-F2 correlation at either the inter-speaker

3This confidence interval is derived by using the transform z = 1
2 log

1+r
1−r

; the resulting z is approximately
normally distributed (Cohen et al., 2003, p. 45), and so a confidence interval based on the normal distribution
can be calculated as described in Section 5.3.
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or intra-speaker level, these confidence intervals indicate considerably more certainty in the
true correlation than the Bayesian HPD intervals suggest, and the p-value for correlation at
the intra-speaker level is very close to significant at 0.052. A key point here is that this latter
approach based on empirical speaker means doesn’t take into account the uncertainty about
true speaker means, and thus leads to conclusions about inter-speaker variation of greater
certainty than may be warranted. The Bayesian HPD interval takes this uncertainty into
account, and is thus more agnostic about the true correlation.

8.3 Hierarchical linear models

Now we’ll move on from hierarchical models of the form in Equation 8.3 to conditional
models. Thus we’ll be estimating distributions of the form

P (Y |X, i) (8.9)

where X are the covariates (there can be many of them) and i are the cluster identities.
Figure 8.9 illustrates this type of model. The only change from Figure 8.5b is the addition of
the covariatesX as a separate node in the graph. Once again, the primary targets of inference
are typically θ and Σ, and we’d want to marginalize over b in making our inferences about
them.

We’ll start with a study of hierarchical linear models. Assume that we have covariates
X1, . . . , XM on which we want to condition Y . We can express the j-th outcome in the i-th
cluster as

yij = α + bi0 + (β1 + bi1)X1 + · · ·+ (βM + biM)XM + ǫ (8.10)

where ǫ is, as before, normally distributed. This equation means that every cluster i has a
cluster-specific intercept α+ bi0 and a slope parameter βk+ bik that determines the contribu-
tion of covariate Xk to the mean outcome. In the notation of Figure 8.9, the parameters α
and {βk}, along with the variability σy governing ǫ, are θ parameters, shared across clusters,
whereas the bik parameters are specific to cluster i. Figure 8.10 shows a slightly more nuanced
picture illustrating how the predicted mean mediates the influence of covariates and cluster
identity on the outcome; here, only α and {βk} are β parameters. Equation 8.10 describes
the most general case, where all predictors have both shared parameters and cluster-specific
parameters. However, the models can be constrained such that some predictors have only
shared parameters and some others have only cluster-specific parameters.

8.3.1 Fitting and drawing inferences from a hierarchical linear
model: practice

We’ll illustrate the utility of hierarchical linear models with a simple instance in which the
covariates are categorical. Stanford (2008) investigated variability in the low lexical tone
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contour of Sui, a minority language in Southwest China. The Sui practice clan exogamy:
a wife and husband must originate from different clans, and the wife immigrates to the
husband’s village. Both Northern and Southern Sui clan dialects have six tones, but they
have different low-tone (Tone 1) pitch contours. Figure 8.11 illustrates the mean contours for
five of the six Sui tones, along with sample tone contours taken from individual recordings of
one southern Sui and one northern Sui speaker (who lived in their home village). According
to Stanford (2008), the difference in this tone contour is audible but subtle, and the Sui do
not mention it as a hallmark of the tone differences between northern and southern clan
dialects. Stanford investigated two questions:

1. whether this tone contour can be reliably measured; and

2. whether immigrant Sui speakers adopt the lexical tone contour of their husband’s clan,
or keep their original tone contour.

We begin with question 1. Stanford observed that in tone 1, from the temporal midway
point of each tone to the end, the mean tone contour is fairly straight, but it tends to rise for
Southern speakers whereas it stays flat for Northern speakers (Figure 8.11a). Therefore one
difference between northern and southern tone 1 contour may be characterizable by the slope
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Figure 8.11: Sui tone contours

(in the sense of linear regression) of the tone contour in this part of the syllable. Figure 8.12
plots the distribution of tone contour slopes for each individual trial for Northern-origin and
Southern-origin speakers. There is an apparent trend for Northern speakers to have lower
slopes. However, there is also an apparent trend for different speakers of each origin to have
idiosyncratically different slopes. We could deal with this nesting structure through analysis
of variance with speaker as a random factor (Section 6.6), but the data are unbalanced, which
is not ideal for analysis of variance. Lack of balance presents no fundamental difficulty for a
hierarchical linear model, however.

In our first model of this dataset we include (i) effects on all observations of speaker
origin, northward migration, and southward migration; (ii) speaker-specific idiosyncracies in
average tone contour; and, of course, (iii) trial-level variability in tone contour. This linear
model is thus specified as follows:

yij = α + β1SO + β2MN + β3MS + bi︸︷︷︸
∼N (0,σ2

b
)

+ ǫij︸︷︷︸
∼N (0,σ2

y)

(8.11)

where SO is speaker origin (valued 1 for southern origin and 0 for northern origin), MN
is migration north and MS migration south (each 1 if the speaker has migrated in that
direction, 0 otherwise), and b is a normally-distributed speaker-level slope deviation dis-
tributed as N (0, σb). The data to which the model is fitted are shown in Figure 8.12. A
maximum-likelihood fit of the parameters for this model is given in Table 8.1. For the shared
model parameters (what are often called the “fixed effects” in the “mixed-effects” parlance),
considering for the moment only the parameter estimates (and ignoring the standard errors
and t statistics) we see that in the maximum-likelihood fit southern origin and northward
migration are associated with more sharply upward-sloping tone contour, as visualized in
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Figure 8.12: Distribution of slopes for speakers originating northern and southern clans.
Southward and northward migrants are plotted in green squares and magenta circles respec-
tively.

Figure 8.11, and southward migration is associated with slightly more downward-sloping
tone contour. As far as the parameter σb governing inter-speaker variability is concerned,
note that its MLE is slightly larger than that of trial-level variability σy and that both these
standard deviations are less than half the size of the effect of speaker origin, suggesting that
while inter-speaker variability is considerable, the difference between northern-origin and
southern-origin speakers is large even compared to this.

8.3.2 Hypothesis testing in hierarchical linear models

Of course, it would also be desirable to measure our certainty in the presence of the ef-
fects we just described from reading off the maximum-likelihood estimates in Table 8.1.
We begin with the question of how can we assess the contribution of inter-speaker vari-
ability in this model. In a frequentist paradigm this can be done via model comparison
between models fitted with and without inter-speaker variability, using the likelihood ratio
test (Section 5.4.4). REML-fitted likelihoods are generally considered preferable to ML-
fitted likelihoods for this purpose (e.g., Morrell, 1998), but in general the p-values obtained
by the likelihood-ratio test for models differing in the number of parameters governing inter-
cluster variability (“random-effects” structure, or Σb) are conservative (Stram and Lee,
1994; Pinheiro and Bates, 2000; Baayen et al., 2008), meaning that the true p-value will
generally be smaller (i.e. more significant) than the p-value obtained by consulting the χ2

distribution. Conservativity is good in the sense that an obtained significant p-value can be
trusted, but dangerous in the sense that a large (i.e. insignificant) p-value is not necessarily
grounds to exclude inter-cluster variability from the model. Whether it is a better idea to err
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β̂ML SE(β̂ML) tML β̂REML SE(β̂REML) tREML

σb 3.35 3.81
σy 3.07 3.07
Intercept -0.72 0.47 -1.53 -0.72 0.5 -1.44
SO 7.21 0.83 8.67 7.21 0.88 8.17
MN 2.38 1.44 1.65 2.38 1.53 1.56
MS -0.82 0.94 -0.87 -0.82 1 -0.82

Table 8.1: Shared parameter estimates (β̂), standard errors (SE(β̂)), and t statistics (defined

as β̂

SE(β̂)
) for the Sui tone model defined in Equation (8.11). Note that standard errors are

not appropriate for estimates of σb or σy, as these are not normally distributed.

on the side of including or excluding parameters for inter-cluster variability when in doubt
will depend on the precise goals of one’s modeling, and we will have more to say about it in
Section XXX.

To illustrate this type of hypothesis test on cluster-level parameters, we construct a “null
hypothesis” version of our original Sui tone model from Equation (8.11) differing only in the
absence of idiosyncratic speaker-level variability b:

yij = α + β1SO + β2MN + β3MS + ǫij︸︷︷︸
∼N (0,σ2

y)

(8.12)

and we can call this new model M0 and the original model M1. The log-likelihood of the
REML fit ofM0 turns out to be -2403.8 whereas the log-likelihood forM1 is -2306.2. Consult-
ing twice the difference of these log-likelihoods against the χ2

1 distribution, we find that the
improvement of M1 over M0 is extremely unlikely under M0 (p ≪ 0.001). Broadly consistent
with the visual picture in Figure 8.12 and with the results in Table 8.1, there is extremely
strong evidence that speakers vary idiosyncratically in their average tone 1 contours, above
and beyond the other sources of cross-speaker variability in the model (origin and migration).

We now move to the question of hypothesis testing involving shared model parameters
(“fixed effects” structure, or θ). Perhaps surprisingly, how to test for significance of an ef-
fect of a shared model parameter is a matter of some current controversy. In principle, one
could use the likelihood ratio test to compare a more complex model with a simpler model.
However, it has been argued that the likelihood ratio test will lead to anti-conservative

p-values (i.e. the true p-value is less significant than the p-value obtained by consulting the χ2

distribution) for comparison of models with the same cluster-level parameters but different
shared parameters (Pinheiro and Bates, 2000, pp. 87–92).4 This leaves two approaches cur-
rently in vogue. On the first approach, a single model is fitted with the method of maximum

4As a caveat, it is not clear to this author that the anti-conservativity involved is appreciable unless the
number of total parameters in the model is quite large relative to the number of observations, which quite
often is not the case for linguistic datasets.

Roger Levy – Probabilistic Models in the Study of Language draft, November 6, 2012 189



likelihood, and for the shared parameter of interest, the parameter estimate and its standard
error are used to obtain a p-value based on the t statistic, just as in standard linear regres-
sion (Section 6.4; for testing multiple parameters simultaneously, an F -test is used). This
approach itself carries a degree of controversy involving how many degrees of freedom the
relevant t distribution should be assumed to have. As a rule of thumb, however, if there are
many more observations than model parameters, the t distribution is generally taken to be
approximated by the standard normal distribution (see also Section B.5). This is illustrated
in Table 8.1, which gives the MLEs, standard errors, and resulting t statistics for our four
parameters of interest. Recall that the standard normal distribution has just over 95% of its
probability mass in the interval [-2,2] (e.g., Section 5.3), so that finding |t| > 2 is roughly a
p < 0.05 result. Thus we conclude from the ML fit.

The second approach currently in vogue is to use Bayesian inference and bypass the classi-
cal hypothesis testing paradigm altogether. Instead, one can estimate a Bayesian confidence
region (Section 5.1) on the shared parameters θ, by sampling from the posterior distribution
over θ using Markov Chain Monte Carlo (MCMC) sampling as discussed in Section 4.5,
earlier in this chapter, and in Appendix ??. Here we illustrate this approach by sampling
from the posterior in Figure 8.10 over P (β|y, Σ̂b, σ̂y), performed by the lme4 package and
giving us the following 95% HPD confidence intervals and posterior modes:

lower bound upper bound posterior mode
α -1.56 0.17 -1.32
SO 5.72 8.58 7.45
MN -0.06 5.05 2.46
MS -2.36 1.06 -0.89

On the Bayesian interpretation, we can be over 95% certain that the true parameter estimate
for the effect of being from the south (with respect to the reference level of clan origin, the
north) is positive. It has recently become popular in the psycholinguistics literature to call
the largest value q such that 1 − q

2
of the posterior probability mass on a parameter θ lies

on one side of zero a ”MCMC-based p-value” for θ (Baayen, 2008). Although this value q is
certainly a useful heuristic for assessing the strength of the evidence supporting a meaningful
role for θ in the model, it is also worth keeping in mind that this value q is NOT a p-value
in the traditional Neyman-Pearson paradigm sense of the term.

Simultaneous assessment of significance of multiple parameters

We now turn to another question: whether migration into a new clan has a reliable effect
on tone 1 slope. If it did, then the theoretically sensible prediction would be that migration
of a southern-origin woman to the north should tend to lower the slope, and migration of
a northern woman to the south should tend to raise the slope. To test this possibility, we
can consult model M1, whose parameters associated with variables MN and MS encode
this effect. Looking at Table 8.1, we see that both coefficients associated with migration
are consistent with the theoretical prediction. There is considerable uncertainty about each
parameter (as indicated by the t-value), but what we would really like to do is to assess the
overall explanatory benefit accrued by introducing them together. The conceptually simplest
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way to do this is to use the F statistic from model comparison between M1 and a simpler
model M ′

0 in which effects of MN and MS are absent. Computing an F -test between these
two models we obtain an F statistic of 1.743. In order to evaluate statistical significance,
we need to choose which F distribution should serve as the reference distribution, but as
noted earlier, there is some controversy as to how many degrees of freedom to use in the
denominator for such an F statistic. However, we can play the devil’s advocate momentarily
and ask how much evidence would exist for an effect of migration in the most optimistic
interpretation. The maximum degrees of freedom for the F statistic denominator is the
number of observations minus the number of parameters in the full model, or 887. The
cumulative distribution function for F2,887 at 1.743 is 0.824, hence the best-case p-value is
0.176, and the overall effect is thus marginal at best.

8.3.3 Heteroscedasticity across clusters

One noteworthy thing about Figure 8.12 is that some speakers clearly have more inter-
trial variability than others (compare, for example, speakers 15 and 11). This presence of
inter-cluster differences in residual variability is called heteroscedasticity. (The lack
of heteroscedasticity—when residual intra-cluster variability is the same for all clusters—is
called homoscedasticity.) Although the differences are not particularly severe in this
case, we can still investigate whether they affect our inferences by incorporating them into
our model. Conceptually speaking, this is a minor change to the structure of the model as
depicted in Figure 8.9: the residual variance σy moves from being a shared θ parameter to
being a cluster-specific b parameter. We present a Bayesian analysis (once again because
methods for point-estimation are not readily available), with the following model:

α, β{1,2,3} ∼ N (0, 105)

µi = α + β1SO + β2MN + β3MS + bi

bi ∼ N (0, σb)

yij ∼ N (µi, σy,i)

log σb ∼ U(−100, 100)

log σy,i ∼ U(−100, 100)

Approximate 95% HPD confidence intervals and posterior modes obtained from sampling
look as follows:

lower bound upper bound posterior mode
α -1.68 -0.12 -1.04
SO 5.82 8.65 6.78
MN -2.81 0.95 -1.41
MS -1.09 4.92 2.88

Comparing these results with the point-estimate results obtained in the previous section, we
see that failing to account for heteroscedasticity doesn’t qualitatively change the conclusions

Roger Levy – Probabilistic Models in the Study of Language draft, November 6, 2012 191



of the model: there is still a strong association of clan origin with tone 1 slope, and there
are no reliable effects of migration. Once again, similar inferences from multiple model
specifications should strengthen your confidence in the conclusions obtained.

8.3.4 Multiple clusters per observation

One of the most exciting new developments in hierarchical modeling has been improvement in
the computational treatment of cases where there are multiple classes of cluster to which each
observation belongs. Consider the typical psycholinguistics experiment in speech perception
or language comprehension, where each observation is derived from a particular participant
reading or listening to a particular experimental stimulus which appears in a certain form. For
example, the self-paced reading experiment of Rohde et al. (2011), described in Section 6.6.6
involved 58 subjects each reading 20 sentences (items), where each sentence could appear
in any of four possible forms. The sample sentence is repeated below:

(1) John {detests/babysits} the children of the musician who {is/are} generally arrogant
and rude.

where there are two experimentally manipulated predictors: the type of verb used (implicit
causality (IC) or non-IC), and the level of relative-clause attachment (high or low). This
corresponds to a more complex hierarchical model structure, shown in Figure 8.13. In this
figure, there are two cluster identity nodes i and j; the subject-specific effects for the i-th
subject are denoted by bS,i, and the item-specific effects for the j-th item are denoted by
bI,j. This type of model is conceptually no different than the simpler hierarchical models
we have dealt with so far. We illustrate by replicating the analysis of variance performed
in Section 6.6.6 using a hierarchical linear model. Because the interaction between RC
attachment level and verb type is of major interest to us, it is critical to us that we use an
appropriate contrast coding (Section ??), using predictors V to represent verb type, with
values 0.5 and −0.5 for IC and non-IC verb types, and A to represent attachment level,
with values 0.5 and −0.5 for high and low attachment. We will allow different subject- and
item-specific effects for each of the four possible conditions C. The hierarchical model can
be compactly written as follows:

bS,i ∼ N (0,ΣbS)

bI,j ∼ N (0,ΣbI )

µij = α + βV V + βA A+ βV A V A+ bS,iC + bI,jC

yijk ∼ N (µij, σy) (8.13)

We’ll start by using point estimation of the model parameters using (unrestricted) max-
imum likelihood. There is a considerable amount of detail in the resulting model so we
present the complete printed representation of the fitted model from R:

Linear mixed model fit by maximum likelihood

Formula: rt ~ V * A + ((C - 1) | subj) + ((C - 1) | item)
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Figure 8.13: A conditional hierarchical model for probability distributions of the form
P (Y |X, i, j), with observations cross-classified into two classes of clusters. The two graph-
ical models are equivalent; in Figure 8.13a plates are non-overlapping and cluster identity
variables are explicitly represented, whereas in Figure 8.13b cluster plates are overlapping,
the observation plate is nested in both, and cluster identity variables are implicit

Data: d

AIC BIC logLik deviance REMLdev

12527 12648 -6239 12477 12446

Random effects:

Groups Name Variance Std.Dev. Corr

subj CIC high 11971.19 109.413

CIC low 18983.98 137.782 0.909

CnonIC high 23272.40 152.553 0.883 0.998

CnonIC low 16473.41 128.349 0.988 0.963 0.946

item CIC high 657.90 25.650

CIC low 563.35 23.735 1.000

CnonIC high 6062.73 77.864 0.271 0.271

CnonIC low 3873.88 62.241 0.991 0.991 0.399

Residual 38502.59 196.221

Number of obs: 919, groups: subj, 55; item, 20
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ΣbS =




109.41 0.91 0.88 0.99
0.91 137.78 1 0.96
0.88 1 152.55 0.95
0.99 0.96 0.95 128.35


 ΣbI =




25.65 1 0.27 0.99
1 23.73 0.27 0.99

0.27 0.27 77.86 0.4
0.99 0.99 0.4 62.24




Parameter Associated Predictor β̂ML SE[β̂]ML tML

α Intercept 470.48 20.6 22.84
βV Verb type (Implicit Causality=0.5, not=−0.5) -33.71 16.78 -2.01
βA Relative clause (RC) attachment (high=0.5, not=−0.5) -0.42 15.69 -0.03
βV A Verb type/RC attachment interaction -85.31 35 -2.44

Table 8.2: Cross-classified cluster (experimental participant and item) hierarchical linear
model for Rohde et al. (2011) self-paced reading study. For ease of interpretation, ΣbS and
ΣbI are presented with standard deviations on the diagonal entries and correlation coefficients
on the non-diagonal entries.

Fixed effects:

Estimate Std. Error t value

(Intercept) 470.4823 20.6029 22.836

V -33.7094 16.7787 -2.009

A -0.4173 15.6899 -0.027

V:A -85.3055 34.9994 -2.437

The negative estimates for βV and βA indicate that the IC-verb and high-attachment condi-
tions respectively are associated with faster reading time at this region, though the effect of
attachment level is very small. V A is positive in the IC/high and non-IC/low conditions, so
the negative estimate for βV A indicates that reading times at this region are faster in these
two conditions.

We now turn to assessment of statistical significance. Once again resorting to our rule of
thumb that with many more observations than estimated parameters (13 versus 919 in our
case), the t statistic is distributed approximately as the standard normal, we see that the
hierarchical analysis leads us to the same conclusions as the ANOVA of Section 6.6.6: there
is a reliable interaction between verb type and RC attachment level in reading times at the
first spillover region (generally in Example I). Importantly, this result is now obtained from
a single hypothesis test rather than from separate by-subjects and by-items tests as has been
the tradition in psycholinguistics for the past three decades.5

5Single hypothesis tests can also be done with separate by-subjects and by-items ANOVAs using the
min-F test introduced by Clark (1973), this test is quite conservative and in practice is very rarely used.
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Interpreting model parameter estimates

The ability to do a single hypothesis test when observations belong to multiple cross-cutting
clusters is an advantage of the hierarchical analysis approach. However, where the hierarchi-
cal approach really shines is in obtaining a single model that can be inspected, interpreted,
and used. From the subject-level variance parameters, we can see that there is much more
intersubjective variation in reading speed for each condition (the subject-intercept standard
deviations range from 111 to 154) than there is inter-item variability (standard deviations
between 26 and 81). The residual trial-level variability is larger than both the subject-
and item-level variability put together. Beyond this, however, there is something else worth
noticing. The correlations between subject-level parameters for each condition are extremely
high. That is, when a subject reads slowly in one condition, he or she reads slowly in all
conditions. The correlations between item-level parameters are also high, except that there
is much lower correlation between the implicit-causality, high-attachment condition and the
rest of the conditions. This result could be illuminating if item-level parameter estimates
were extracted and compared with the experimental materials themselves.

Turning to the shared parameters (“fixed effects”), we see that there is an overall 34-
millisecond speed advantage for the implicit-causality verbs at this point, but no real overall
effect of attachment level. Above and beyond these main effects, there is a large (85-ms)
advantage for high-attaching RCs after IC verbs over low-attaching RCs after non-IC verbs.
These estimates comport fairly well with those derived from the per-condition means ob-
tained in Section 6.6.6, but the estimates obtained here put inter-subject and inter-item
variation on equal footing, and are obtained automatically as part of the model-fitting pro-
cess.

Fully Bayesian analysis

We can try a similar analysis using fully Bayesian techniques rather than the point estimate.
We’ll present a slightly simpler model in which the speaker- and item-specific variations do
not depend on condition; this simpler type of model is often called a model with random
subject- and item-specific intercepts in the literature. A Bayesian version of the more complex
model of the previous section is left to the reader (see Exercise 8.8). Here is the model
specification:
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α, β{1,2,3} ∼ N (0, 105)

log σbS ∼ U(−100, 100)

log σbI ∼ U(−100, 100)

log σby ∼ U(−100, 100)

bS,i ∼ N (0, σbS)

bI,j ∼ N (0, σbI )

µij = α + β1 V + β2 A+ β3 V A+ bS,i + bI,j

yijk ∼ N (µij, σy)

Note the close resemblance to the previous model specification in Equation 8.13; the two
differences are the addition of the top four lines representing priors over the shared parameters
α and β{1,2,3}, and the simplified bS,i and bI,j since we only have subject- and item-specific
intercepts now.

Sampling from the posterior gives us the following 95% HPD confidence intervals and
posterior modes for the effects of V , A, and the interaction V A:

lower bound upper bound posterior mode
V -56.87 -1.43 -41.75
A -26.34 23.79 -5.69
V A -136.52 -20.65 -96.3

Once again, there is broad agreement between the point estimates obtained earlier in this
section and the Bayesian HPD confidence intervals. Most notably, there is (a) strong evidence
of an overall trend toward faster reading in this region for the IC verbs; and (b) even stronger
evidence for an interaction between IC verb type and attachment level. One should believe
an apparent trend in the data more strongly if the same trend is confirmed across multiple
statistical analyses, as is the case here.

8.4 Hierarchical generalized linear models

We now shift from linear models to the broader case of generalized linear models, focusing
on logit models since they (along with linear models) are the most widely used GLM in the
study of language. We move from generalized linear models (GLMs) to hierarchical GLMs
by adding a stochastic component to the linear predictor (c.f. Equation 6.1):

η = α + (β1 + bi1)X1 + · · ·+ (βn + bin)Xn (8.14)

and assume that the cluster-specific parameters b themselves follow some distribution pa-
rameterized by Σb.

We then follow the rest of the strategy laid out in Section 6.1 for constructing a GLM:
choosing a link function η = l(µ), and then choosing a function for noise around µ.
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8.4.1 Hierarchical logit models

In a hierarchical logit model, we simply embed the stochastic linear predictor in the binomial
error function (recall that in this case, the predicted mean µ corresponds to the binomial
parameter π):

P (y;µ) =

(
n

yn

)
µyn(1− µ)(1−y)n (Binomial error distribution) (8.15)

log
µ

1− µ
= η (Logit link) (8.16)

µ =
eη

1 + eη
(Inverse logit function) (8.17)

8.4.2 Fitting and interpreting hierarchical logit models

As with hierarchical linear models, the likelihood function for a multi-level logit model must
marginalize over the cluster-level parameters b (Equation 8.5). We can take either the
maximum-likelihood approach or a Bayesian approach. Unlike the case with hierarchical
linear models, however, the likelihood of the data P (y|θ,Σb) (marginalizing over cluster-
level parameters b) cannot be evaluated exactly and thus the MLE must be approximated
(Bates, 2007, Section 9). The tool of choice for approximate maximum-likelihood estimation
is once again the lme4 package in R.6

8.4.3 An example

We return to the dataset of Bresnan et al. (2007), illustrated by the alternation

(2) Susan gave toys to the children. (PP realization of recipient)

(3) Susan gave the children toys. (NP realization of recipient)

To illustrate the approach, we construct a model with the length, animacy, discourse ac-
cessibility, pronominality, and definiteness of both the recipient and theme arguments as
predictors, and with verb as a random effect. We use log-transformed length predictors (see
Section 6.7.4 for discussion).

Defining the model

We arbitrarily denote length, animacy, discourse status, pronominality, and definiteness of
the theme with the variables LT , AT , ST , PT , DT respectively, and those properties of the

6The recommended approximations to maximum likelihood are Laplacian approximation (see, e.g.,
Robert and Casella (2004, Section 3.4)) and adaptive Gaussian quadrature; the former is available in lme4

and the recommended default, but the latter isn’t (yet).
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β̂ SE(β̂) z
σb 2.33
Intercept 2.32 0.66 3.51
log Recipient Length 1.31 0.15 8.64
log Theme Length -1.17 0.11 -10.97
Recipient Animacy 2.14 0.25 8.43
Theme Animacy -0.92 0.5 -1.85
Recipient Discourse Status 1.33 0.21 6.44
Theme Discourse Status -1.76 0.27 -6.49
Recipient Pronominality -1.54 0.23 -6.71
Theme Pronominality 2.2 0.26 8.37
Recipient Definiteness 0.8 0.2 3.97
Theme Definiteness -1.09 0.2 -5.49

Figure 8.14: Point estimate for a hierarchical logit model of the dative alternation

recipient as LR, AR, SR, PR, DR.
7 We can now write our hierarchical model as follows:

bi ∼ N(0, σb)

ηi = α + βLT
LT + βAT

AT + βST
ST + βPT

PT + βDT
DT

+ βLR
LR + βAR

AR + βSR
SR + βPR

PR + βDR
DR + bi

πi =
eηi

1 + eηi
yij ∼ Binom(1, πi) (8.18)

(Note that we could equally specify the last line as a Bernoulli distribution: yij ∼ Bern(π).)
We arbitrarily consider prepositional-object (PO) realization of the recipient as the “success-
ful” outcome (with which positive contributions to the linear predictor η will be associated).
Approximate maximum-likelihood estimation gives us the following parameter estimates:

The fixed-effect coefficients, standard errors, and Wald z-values can be interpreted as normal
in a logistic regression (Section 6.7.1). It is important to note that there is considerable
variance in verb-specific preferences for PO versus DO realizations. The scale of the random
effect is that of the linear predictor, and if we consult the logistic curve we can see that a
standard deviation of 2.33 means that it would be quite typical for the magnitude of this
random effect to be the difference between a PO response probability of 0.1 and 0.5.

We now turn our attention to the shared model parameters. The following properties are
associated with PO outcomes:

7To simplify model interpretation, I have reduced the tripartite distinction of Bresnan et al. of discourse
status as given, accessible, and new into a binary distinction of given versus new, with accessible being
lumped together with new.
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• Longer recipients

• Inanimate recipients

• Discourse-new recipients

• Non-pronominal recipients

• Indefinite recipients

• Shorter themes

• Animate themes

• Discourse-old themes

• Pronominal themes

• Definite themes
There is a clear trend here: those properties of the theme that favor PO outcomes are the
reverse of those properties that favor DO outcomes. This raises the linguistically interesting
possibility that there is a unified set of principles that applies to word ordering preferences in
the English postverbal domain and which is sensitive to high-level properties of constituents
such as length, discourse status, and so forth, but not to specific combinations of these
properties with the grammatical functions of the constituents. This possibility is followed
up on in Exercise 8.10.

Inferences on cluster-specific parameters

Because of this considerable variance of the effect of verb, it is worth considering the infer-
ences that we can make regarding verb-specific contributions to the linear predictor. One
way of doing this would be to look at the conditional modes of the distribution on verb-
specific effects b, that is to say the BLUPs (Section 8.2.1). There is a disadvantage to this
approach, however: there is no easy way to assess our degree of confidence in the conditional
modes. Another option is to use a fully Bayesian approach and plot posterior modes (of
P (b|y,Σσb

,Σθ), which is different from the BLUPs) along with confidence intervals. This
is the approach taken in Figure 8.15, using uniform priors on all the shared parameters as
well as on log σb. On the labels axis, each verb is followed by its support: the number of
instances in which it appears in the dative dataset. For most verbs, we do not have enough
information to tell whether it truly has a preference (within the model specification) toward
one realization or the other. However, we do have reliable inferences some verbs: for the
most part, those with large support and/or with posterior modes far from 0.8 We can see
that tell, teach, charge, and show are strongly biased toward the double-object construction,
whereas loan, bring, sell, and take are biased toward the prepositional-object construction.

These results are theoretically interesting because the dative alternation has been at the
crux of a multifaceted debate that includes:

• whether the alternation is meaning-invariant;

• if it is not meaning-invariant, whether the alternants are best handled via constructional
or lexicalist models;

8This is not the whole story, however: comparing deny with promise, the former has both larger support
and a more extreme posterior mode, but it is the latter that has an HPD confidence interval that is closer
to not including 0.
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Figure 8.15: Verb-specific preferences in analysis of the dative dataset. 95% HPD confidence
intervals are plotted on each preference. Verbs for which the 95% HPD interval is entirely
on one side of the origin have their bars plotted in magenta.

• whether verb-specific preferences observable in terms of raw frequency truly have their
locus at the verb, or can be explained away by other properties of the individual clauses
at issue.

Because verb-specific preferences in this model play such a strong role despite the fact that
many other factors are controlled for, we are on better footing to reject the alternative raised
by the third bullet above that verb-specific preferences can be entirely explained away by
other properties of the individual clauses. Of course, it is always possible that there are
other explanatory factors correlated with verb identity that will completely explain away
verb-specific preferences; but this is the nature of any type of scientific explanation. (This
is also a situation where controlled, designed experiments can play an important role by
eliminating the correlations between predictors.)

8.4.4 Model comparison & hypothesis testing

The framework for hypothesis testing in hierarchical generalized linear models is similar
overall to that for hierarchical linear models as described in Section 8.3.2. For model com-
parisons involving the same shared-parameter structure but nested cluster-specific parameter
structures, likelihood-ratio tests are conservative. For the assessment of the significance of
a single shared parameter estimate β̂i against the null hypothesis that βi = 0, the Wald
z-statistic (Section 6.8.1), which is approximately standard-normal distributed under the
null hypothesis, can be used. In Figure 8.14, for example, the z-statistic for log of recipient
length is 1.31

0.15
= 8.64, which is extremely unlikely under the null hypothesis.

To simultaneously assess the significance of the contribution of more than one shared
parameter to a model, a likelihood-ratio test is most appropriate. Once again, however, in
hierarchical models this test may be anti-conservative, as described in Section 8.3.2, so cau-
tion should be used in interpreting apparently significant results. As an example of how this
test can be useful, however, let us consider an alternative model of the dative alternation in
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which the tripartite discourse status of recipients and themes into given, accessible, and new
(Collins, 1995). This difference introduces two new parameters into the model. Twice the
difference in the log-likelihoods of the original and the updated model is 3.93; the cumulative
distribution function for χ2

2 at this point is 0.86, giving us a best-case p-value of 0.14, so we
can safely state that we don’t have sufficient evidence to adopt the tripartite distinction over
the bipartite given/new distinction used earlier.

8.4.5 Assessing the overall performance of a hierarchical logit model

We conclude the chapter with a brief discussion of assessing overall performance of hierarchi-
cal logit models. As with any probabilistic model, the data likelihood is an essential measure
of model quality, and different candidate models can be compared by assessing the likelihood
they assign to a dataset. Cross-validated or held-out likelihood can be used to alleviate con-
cerns about overfitting (Section 2.11.5). It is also useful to visualize the model’s performance
by plotting predictions against empirical data. When assessing the fit of a model whose re-
sponse is continuous, a plot of the residuals is always useful. This is not a sensible strategy
for assessing the fit of a model whose response is categorical. Something that is often done
instead is to plot predicted probability against observed proportion for some binning of the
data. This is shown in Figure 8.16 for 20 evenly-spaced bins on the x-axis, with the point
representing each bin of size proportionate to the number of observations summarized in
that point. There is a substantial amount of information in this plot: the model is quite
certain about the expected outcome for most observations, and the worst-outlying bins are
between predicted probability of 0.7 and 0.8, but contain relatively little data. Producing
this visualization could be followed up by examining those examples to see if they contain
any important patterns not captured in the model. Probability-proportion plots can also be
constructed using cross-validation (Exercise 8.13).

8.5 Further Reading

Hierarchical models are an area of tremendous activity in statistics and artificial intelligence.
There is good theoretical coverage (and some examples) of hierarchical generalized linear
models in Agresti (2002, Chapter 12). Pinheiro and Bates (2000) is an important book on
theory and practice for linear and non-linear hierarchical models from the frequentist per-
spective. There is also a bit of R-specific coverage in Venables and Ripley (2002, Section
10.4) which is useful to read as a set of applied examples, but the code they present uses
penalized quasi-likelihood estimation and this is outdated by lme4. A more recent and com-
prehensive text for hierarchical regression models is Gelman and Hill (2007), which focuses
the Bayesian perspective but is practically oriented, and includes coverage of both lme4 and
BUGS. At the time of writing, this is probably the single best place to turn to when learning
the practicalities of working with hierarchical models for the analysis of complex datasets.
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Figure 8.16: The fit between predicted probabilities and observed proportions for each 5%
of predicted probability for our model

8.6 Exercises

Exercise 8.1: Defining a hierarchical model

The F1 formant levels of children’s vowels from Peterson & Barney’s dataset tend not
to be normally distributed, but are often right-skewed (Figure 8.17). Define a hierarchical
probabilistic model of F1 formant values for the vowel [a] in which the speaker-specific
variation component bi are log-normally distributed—that is, if log bi = xi, then the xi are
normally distributed with some mean and standard deviation. Write the hierarchical model
in the style of Equation 8.2. Choose parameters for your model by hand that generate data
that looks qualitatively like that of Figure 8.17.

Exercise 8.2: Restricted maximum likelihood and testing “fixed effects”
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Figure 8.17: Density plots of children’s F1 formant recordings from Peterson & Barney

In Section 8.3.2 I stated that one should not use ordinary (unrestricted) maximum likeli-
hood, not REML, in frequentist test on models differing in what is often called “fixed-effects”
structure (i.e., models differing only in the shared parameters θ). Can you think of any
reasons why REML comparisons would not be a good idea for this purpose?

Exercise 8.3: Shrinkage

Consider the simple point estimate hierarchical model of [A] first-formant (F1) data from
Peterson and Barney (1952) obtained in Section 8.2.1. In this model, calculate the joint log-

likelihood of b̂ and y—that is, of speaker-specific averages and trial-specific observations—
using as b̂ (i) the average recorded F1 frequency for each speaker, and (ii) the conditional
modes, or BLUPs, obtained from the hierarchical model. Is the joint log-likelihood higher in
(i) or (ii)?

Exercise 8.4

Replicate the posterior inference procedure in Section 8.2.2 for F2 formant frequencies
from Peterson and Barney (1952).

Exercise 8.5: Priors on σy

In Section 8.2.2, we used a prior that was locally uniform on the log of the variance
parameter σy. Another alternative would be to use a prior that was locally uniform on σy

itself. Check to see how much of a difference, if any, this alternative would have on posterior
inference over µ and Σb. (You probably will want to do several simulations for each type of
model to get a sense of how much variation there is over samples in each case.

Exercise 8.6: Hierarchical Bayesian linear models

Use R and BUGS together to replicate the analysis of Section 8.3.2, but with homoscedas-
tic intra-cluster variation. Do the Bayesian confidence intervals on effects of northward
migration, southward migration, and clan origin look similar to those obtained using point
estimation?

Exercise 8.7: Hypothesis testing for random effects
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Using the method of maximum likelihood via lmer(), together with the likelihood-ratio
test, conduct a hypothesis test for the implicit-causality data of Section 8.3.4 on whether
subject- and item-specific effects of experimental condition (as opposed to just subject-
and item-specific intercepts) significantly improve the likelihood of a hierarchical model.
That is, build a model where the only cluster-specific parameters are by-subject and by-
item intercepts, and compare its log-likelihood to the full model in which all experimental
conditions interact. What are your conclusions?

Exercise 8.8: Hierarchical Bayesian linear models with crossed effects
Replicate the fully Bayesian analysis presented in Section 8.3.4, but with condition-

specific inter-subject and inter-item variation. Write down the complete model specification,
implement it with JAGS, and compare the resulting inferences about model parameters
with those from the point-estimate analysis and from the simpler Bayesian model. Be sure
to consider both inferences about shared parameters and about the parameters governing
cross-cluster variation!

Exercise 8.9: Transforms of quantitative predictors in mixed-effect models
Re-run the dative.glmm regression from Section 8.4.3, but use raw constituent lengths

rather than log-transformed lengths. Compute cross-validated likelihoods (Section 2.11.5) to
compare the performance of this model and of the original model? Which approach yields
higher log-likelihood?

Exercise 8.10: Simplifying a model based on linguistic principles and model
comparison

Define a simpler version of the model in Section 8.4.3 in which the effects of each of con-
stituent length, animacy, discourse status, pronominality, and definiteness must be equal and
opposite for recipients versus themes. Fit the model using approximate maximum-likelihood
estimation, and compare it to the original model using the likelihood ratio test. Can you
safely conclude that the effects of these factors truly are equal and opposite? (Hint: the eas-
iest way to construct the simpler model is to define new quantitative predictors that express
the summed influence of the property from both recipient and theme; see Exercise 6.11. Also
keep in mind that the likelihood-ratio test can be anti-conservative for shared (“fixed-effect”)
parameters in hierarchical models.)

Exercise 8.11: Mixed-effects logit models and magnitudes of parameter estimates
Unlike with mixed-effects linear models, accounting for a cluster-level variable in a mixed-

effects logit model can systematically change the magnitude of the parameter estimates for
fixed effects. (Warning: this may be a pretty hard problem.)

1. Re-run the dative.glmm regression from Section 8.4.3 as a standard logistic regression
model, completely omitting the random effect of verb, but replacing it with a fixed
effect of the verb’s Semantic Class). Do the magnitudes of most of the fixed-effect
coefficients (intercept excluded) increase or decrease? Can you think of any reason why
this would happen?
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2. Test your intuitions by constructing a simple population with two clusters (call the
factor Cluster with levels C1,C2) and a single two-level fixed effect (call the factor
Treatment with levels A,B). Assume the underlying model involves the following linear
predictor:

η = −1 + 2X + bZ

where X is a dummy indicator variable that is active when treatment level is B, Z is
the cluster variable, and b is 1 for cluster 1 and -1 for cluster 2. Generate a dataset
consisting of the following cell counts:

C1 C2
A 250 250
B 250 250

using a logit model, and fit (1) a standard logistic regression with only Treatment as
a fixed effect, and (2) a mixed-effects logistic regression. How does the estimation of
the fixed effect change between models (1) and (2)?

3. Repeat your controlled experiment from (b) above, except this time use linear models
(classic and mixed-effects) where the noise has standard deviation 1. Does the same
change in the estimated effect of Treatment occur as in the logit model?

Exercise 8.12: Different priors on verb-specific effects

1. Use kernel density estimation to estimate the posterior density of the BLUPs for verbs
in the dative alternation from the hierarchical logit model of Section 8.4.3. Plot this
estimated density, and overlay on it a normal density with mean 0 and standard devia-
tion σ̂b. Do the BLUPs look like they follow this normal distribution? Choose another
distribution for b in this model and implement it in BUGS. (Be forewarned that this is
conceptually relatively simple but computationally rather intensive; loading the model
and sampling from the posterior are likely to take several minutes or hours even on a
new processor.) Plot the posterior inferences on b as in Figure 8.15 and compare them
to the results of the original model. Are the results considerably different?

Exercise 8.13: Cross-validated likelihood and probability-proportion plot
Reconstruct Figure 8.16 using ten-fold cross-validation to obtain predicted probabilities.

Does the resulting fit look better? Worse? Also compare the cross-validated likelihood to
the original model’s likelihood. Does the model seem substantially overfit?
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