
Appendix C

The language of directed acyclic
graphical models

Beginning with Chapter 8, this book makes considerable use of the formalism of directed
acyclic graphical models, or Bayesian networks (Bayes nets). In a few pages
we cannot to do justice to the diversity of work within this formalism, but this appendix
introduces the formalism and a few critical accompanying concepts.

In the general case, graphical models are a set of formalisms for compactly expressing
different types of conditional independence relationships between an ensemble of random
variables. A graphical model on an ensemble X1, . . . , Xn is literally a graph with one node
for each random variable Xi, and in which each node may or may not be connected to each
other node. The class of directed graphical models is those graphical models in which all
the inter-node connections have a direction, indicated visually by an arrowhead. The class
of directed acyclic graphical models, or DAGs (or Bayes nets), is those directed graphical
models with no cycles—that is, one can never start at a node Xi and, by traverse edges in
the direction of the arrows, get back to Xi. DAGs are the only type of graphical model that
you’ll see in this book. Figure C.1 shows examples of several different types of graphical
models.

C.1 Directed graphical models and their interpretation

The structure of a given DAG encodes what conditional independencies hold among the
variables in the ensemble X1, . . . , Xn. First a bit of nomenclature. The parents of a node
Xi are the nodes that are pointing directly to it—in Figure C.1d, for example, the parents
of X5 are X3 and X4. The ancestors of a node are all the nodes that can be reached
from the node by traveling “upstream” on edges in the direction opposite to the arrows—in
Figure C.1d, for example, all other nodes are ancestors of X5, but X4 has no ancestors.

The set of connections between nodes in a DAG has a formal semantic interpretation
whose simplest statement is as follows:

Any nodeXi is conditionally independent of its non-descendents given its parents.
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Figure C.1: Different classes of graphical models

In Figure C.1d, for instance, we have that:

X6 ⊥ {X1, X2, X3, X7} | {X4, X5}

An important proviso is that—recalling from Chapter 2—conditional independencies can
disappear with the accrual of new knowledge. In particular, two nodes are not conditionally
independent of one another given a common descendent. So in Figure C.1d, for example, X4

has many conditional independencies given only its parents:

X4 ⊥ {X3, X5, X7} | {X1, X2}

but two of them go away when its child X6 is also given:

X4��⊥X3 | {X1, X2, X6}
X4��⊥X5 | {X1, X2, X6}

X4 ⊥ X7 | {X1, X2, X6}

A more complete statement of conditional independence in DAGs is given in Section C.2.
This statement of conditional independence simplifies the factorization of the joint prob-

ability distribution into smaller components. For example, we could simply use the chain
rule (Section 2.4) to write the joint probability distribution for Figure C.1d as follows:

P (X1...7) = P (X7|X1...6)P (X6|X1...5)P (X5|X1...4)P (X4|X1...3)P (X3|X1, X2)P (X2|X1)P (X1)

Roger Levy – Probabilistic Models in the Study of Language draft, November 6, 2012 248



but we can use the following conditional independencies, which can be read off the connec-
tivity in the graph, to simplify this:

P (X7|X1...6) = P (X7|X5) (C.1)

P (X6|X1...5) = P (X5|X4, X5)

P (X5|X1...4) = P (X5|X3)

P (X4|X1...3) = P (X4|X1, X2)

P (X3|X1, X2) = P (X3)

P (X2|X1) = P (X1)

giving us the following expression for the joint probability distribution

P (X1...7) = P (X7|X5)P (X6|X5, X4)P (X5|X3)P (X4|X1, X2)P (X3)P (X2)P (X1)

which is much simpler. These minimal conditional probability distributions seen in (C.1) are
the components whose form needs to be specified in order to give a complete probabilistic
model of a given domain.

[say something about proper indexing of variables?]
When conducting statistical inference in DAGs, it is often the case that we observe the

more “downstream” variables and need to infer some of the more “upstream” variables. The
catch is that the conditional probability distributions in the DAG are specified in terms
of downstream variables given upstream variables. Conducting inference upstream, then,
requires Bayesian inference (the reason that DAGs are often called “Bayes nets”). As an
example, in Figure C.1d suppose that we observe (or choose via prior knowledge) all variables
except X4. To draw inferences about X4, we’d use Bayes rule, targeting the downstream
variable X6 for Bayesian inversion:

P (X4|X1, X2, X3, X5, X6, X7) =
P (X6|X1...5, X7)P (X4|X1...3, X5, X7)

P (X6|X1...3, X5, X7)

We can now apply the conditional independencies in the graph to simplify all the numerator
of the right-hand side:

=
P (X6|X4, X5)P (X4|X1, X2)

P (X6|X1...3, X5, X7)

If we wanted to compute the denominator of Equation C.2, we’d need to do it by marginal-
izing over all possible values x4 that can be taken by X4:

=
P (X6|X4, X5)P (X4|X1, X2)∑

x4
P (X6|X1...5, X7)P (X4|X1...3, X5, X7)
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Applying the conditional independencies of the graph to the explicit marginalization reveals
that X3 and X7 can be ignored:

=
P (X6|X4, X5)P (X4|X1, X2)∑
x4
P (X6|X4, X5)P (X4|X1, X2)

If we now drop the explicit marginalization, we obtain the simplest characterization of
Bayesian inference on X4 available for this graph:

P (X4|X1, X2, X3, X5, X6, X7) =
P (X6|X4, X5)P (X4|X1, X2)

P (X6|X1, X2, X5)
(C.2)

C.2 Conditional independence in DAGS: d-separation†

We have already briefly described the intuitive picture for when conditional independence
holds in a DAG: given its parents, a node is conditionally independent of all of its non-
descendents. However, we also saw that such conditional independencies can be broken when
more information is conditioned on. In this section, we give the comprehensive criterion by
which conditional independence can be assessed in any DAG. This criterion is known as
D-separation (Pearl, 1988, Section 3.3).

Consider two disjoint subsets A and B of nodes in a DAG. A path between A and B is
simply a sequence of edges that, when taken together, connects some node in A with some
node in B (note that this definition doesn’t require that the arrows along the path all point
in the same direction). Any node on a given path is said to have converging arrows

if two edges on the path connect to it and point to it. A node on the path is said to have
non-converging arrows if two edges on the path connect to it, but at least one does
not point to it. (Note that the starting and ending nodes on the path are each connected to
by only one edge on the path, so are not said to have either converging or non-converging
arrows.)

Now consider a third subset C of nodes in the DAG, disjoint from both A and B. C
is said to d-separate A and B if for every path between A and B, one of the following two
properties holds:

1. there is some node on the path with converging arrows which is not in C; or

2. there is some node on the path whose arrows do not converge and which is in C.

If C d-separates A and B, then A and B must be conditionally independent given C. If C
does not d-separate A and B, then A and B are not in general conditionally independent.

Figure C.2 illustrates the canonical cases of d-separation and of failure of d-separation. In
Figures C.2a, we have d-separation: C is on the path between A and B, and it does not have
converging arrows. Therefore if C is known, then A and B become conditionally independent:
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Figure C.2: Examples of d-separation and of failure of d-separation. C blocks the path
between A and B in Figures C.2a, C.2b, and C.2d, but not in Figure C.2c.

A ⊥ B | C.1 This configuration is sometimes called “common cause” d-separation: if A and
B are the outcomes of two tosses of a possibly unfair coin, then knowing the coin’s weighting
(C) renders the tosses independent.

The same holds of Figure C.2b: C is on the path between A and B, and doesn’t have
converging arrows, so A ⊥ B | C. This configuration is often known as “indirect cause”: if
I know my mother’s genome (C), then the respective contents of my genome (B) and my
mother’s mother’s genome (A) become conditionally independent.

In Figures C.2c and C.2d, on the other hand, C is on the path between A and B but it has
converging arrows. Therefore C does not d-separate A and B, so A��⊥B | C (Figure C.2c. This
configuration is often known as “common effect”: a signal (C) indicating whether the tosses
of two fair coins (A and B) came up on the same side renders the two tosses conditionally
dependent. However, not having seen this signal leaves the two tosses independent. In the
language of graphical models, d-separation, and conditional independence, we have A ⊥ B | ∅
(Figure C.2d).

C.3 Plate notation

Since graphical models for structured datasets can get quite complex when the full set of
variables, including observations, latent classes, and model parameters, is written out ex-
plicitly, it is common to use “plate” notation to succinctly express repetitive structure in
the model. The semantics of “plate” notation are simply that any part of a graphical model
on a plate with subscript n should be interpreted as being repeated n times, with all the
dependencies between nodes external to the plate and nodes internal to the plate preserved
and no dependencies between elements on different replicates of the plate. Figure C.3 gives

1Technically, since d-separation is a property holding among sets of nodes, we should write
{A} ⊥ {B} | {C}; but for simplicity we drop the braces as a slight abuse of notation when a set con-
sists of exactly one node.
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Figure C.3: Equivalent directed graphical models in plate and no-plate notation

two examples of equivalent models in plate notation and “unfolded” into a plate-free format.
Note in particular that in Figure C.3b in the “unfolded” version the variables XXXi and
Y Y Yi′ are not connected for i 6= i′ [TODO!]. Further examples of equivalent non-plate and
non-plate models can be found early in Chapter 8.

C.4 Further reading

Directed graphical models are an area of considerable research activity. For further reading,
some key sources are Pearl (1988, 2000); Jordan (1998); Russell and Norvig (2003, Chapter
14); Bishop (2006, Chapter 8).

Exercise C.1: Conditional independencies in Bayes nets
In each case, state the conditions (what sets of nodes must and/or must not be known)

under which the specified node sets will be conditionally independent from one another. If
the node sets are always independent or can never be independent, say so.

Example:

W is the word intended to be spoken a hard word?
A was the speaker’s attention distracted?
D was a disfluency uttered?

W A

D

• {W} and {A} are conditionally independent if and only if D is unknown.

• {W} and {D} are never conditionally independent.

Examples to solve:
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1. A variant of the disfluency model we saw earlier:

M intended meaning to be conveyed
W is the word intended to be spoken a hard word?
A was the speaker’s attention distracted?
D was a disfluency uttered?

M

W A

D

(a) {W} and {A}
(b) {M} and {D}
(c) {M} and {A}
(d) {D} and {A}

2. The relationship between a child’s linguistic environment, his/her true linguistic abil-
ities/proficiency, and measures of his/her proficiency in separate spoken and written
tests

E a child’s linguistic environment
P the child’s linguistic proficiency (number of words known, etc.)
S the child’s performance on a spoken language proficiency test
W the child’s performance on a written language proficiency test

E

P

S W
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(a) {S} and {W}
(b) {E} and {P}
(c) {E} and {S}
(d) {E,P} and {S}
(e) {E,P} and {S,W}

3. Speakers’ familiarities (quantified, say, on a scale of 1 to 10) with different words

Si the i-th speaker’s general vocabulary size
Wj the j-th word’s general difficulty/rarity
ΣS the variability in vocabulary sizes across speakers
ΣW the variability in difficulties/rarities across words
Yij the i-th speaker’s familiarity with the j-th word

ΣS

S1 S2

ΣW

W1 W2

Y11 Y12 Y21 Y22

• {ΣS} and {ΣW}
• {Y11} and {Y22}
• {Y11} and {Y12}
• {Y11} and {S2}
• {W1} and {S1}, supposing that you know Y21

• {W1} and {S1}, supposing that you know Y22
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