
Appendix B

More probability distributions and
related mathematical constructs

This chapter covers probability distributions and related mathematical constructs that are
referenced elsewhere in the book but aren’t covered in detail. One of the best places for
more detailed information about these and many other important probability distributions
is Wikipedia.

B.1 The gamma and beta functions

The gamma function Γ(x), defined for x > 0, can be thought of as a generalization of the
factorial x!. It is defined as

Γ(x) =

∫ ∞

0

ux−1e−u du

and is available as a function in most statistical software packages such as R. The behavior
of the gamma function is simpler than its form may suggest: Γ(1) = 1, and if x > 1,
Γ(x) = (x− 1)Γ(x− 1). This means that if x is a positive integer, then Γ(x) = (x− 1)!.

The beta function B(α1, α2) is defined as a combination of gamma functions:

B(α1, α2)
def
=

Γ(α1)Γ(α2)

Γ(α1 + α2)

The beta function comes up as a normalizing constant for beta distributions (Section 4.4.2).
It’s often useful to recognize the following identity:

B(α1, α2) =

∫ 1

0

xα1−1(1− x)α2−1 dx
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B.2 The Poisson distribution

The Poisson distribution is a generalization of the binomial distribution in which the
number of trials n grows arbitrarily large while the mean number of successes πn is held
constant. It is traditional to write the mean number of successes as λ; the Poisson probability
density function is

P (y;λ) = eλ
λy

y!
(y = 0, 1, . . . ) (B.1)

The Gamma distribution is conjugate for the Poisson parameter λ, hence it is common
to use a Gamma prior on λ in Bayesian inference.

B.3 The hypergeometric distribution

One way of thinking of the binomial distribution is as n repeated draws from a bag with M
marbles, πM of which are black and the rest of which are white; each outcome is recorded and
the drawn marble is replaced in the bag, and at the end the total number of black marbles is
the outcome k. This picture is often called sampling with replacement. The hyperge-
ometric distribution is similar to this conception of the binomial distribution except that
the marbles are not replaced after drawn—this is sampling without replacement. The
hypergeometric distribution has three parameters: the number of marbles M , the number of
black marbles m, and the number of draws n; the probability mass function on the number
of “successes”X (black marbles drawn) is

P (X = r) =

(
m
r

)(
M−m
n−r

)
(
M
m

)

In this book, the hypergeometric distribution comes up in discussion of Fisher’s exact test
(Section 5.4.3).

B.4 The chi-square distribution

Suppose that we have a standard normal random variable Z—that is, Z ∼ N(0, 1). The
distribution that the quantity Z2 follows is called the chi-square distribution with one

degree of freedom. This distribution is typically denoted as χ2
1.

If we have k independent random variables U1, . . . , Uk such that each Ui ∼ χ2
1, then the

distribution of U = U1 + · · · + Uk is the chi-squared with k degrees of freedom. This is
denoted as U ∼ χ2

k. The expectation of U is k and its variance is 2k.
Figure B.1 illustrates the probability density functions for χ2 distributions with various

degrees of freedom. The χ2
1 distribution grows asyptotically as x approaches 0, and χ2

2

decreases monotonically, but all other χ2
k distributions have a mode for some positive x < k.
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Figure B.1: The χ2 distribution with various degrees of freedom

As k grows large, more and more of the probability mass becomes located relatively close to
x = k.

The key place where χ2 variables arise is as the distribution of variance of a normal
distribution. If we sample n points from N (µ, σ2) (once again: that’s a normal distribution
with mean µ and variance σ2), then the quantity

1

σ2

n∑

i=1

(xi − µ̂)2

is distributed as χ2
n−1.

If U is distributed as χ2
k, then the distribution of the quantity 1/U is called the inverse

chi-square distribution with k degrees of freedom. The inverse chi-square distribution is
used in Bayesian inference as a conjugate prior (Section 4.4.3) for the variance of the normal
distribution.

B.5 The t-distribution

Suppose once again that we have a standard normal random variable Z ∼ N(0, 1), and also
that we have a chi-squared random variable U with k degrees of freedom. The distribution
of the quantity

Z√
U/k

(B.2)

is called the t-distribution with k degrees of freedom. It has expectation 0, and as
long as k > 2 its variance is k

k−2
(it has infinite variance if k ≤ 2).
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Figure B.2: The χ2 distribution, nor-
malized by degrees of freedom
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Figure B.3: The t distribution

Figure B.3 shows the probability density functions for t distributions with varying degrees
of freedom, together with the standard normal distribution for reference. The t distribution
is heavier-tailed than the normal distribution, but even with 10 degrees of freedom the t
distribution is already very close to the standard normal. As the degrees of freedom grow,
the t distribution converges to the standard normal; intuitively, this is because χ2

k becomes
more and more centered around k, so the quantity U/k in Equation B.2 converges to 1.

B.6 The F distribution

The F distribution, named after Ronald A. Fisher, one of the founders of the frequentist
school of statistical analysis, is the distribution of the normalized ratio of two independent
normalized χ2 random variables. More formally, if U ∼ χ2

k1
and V ∼ χ2

k2
, we have

Fk1,k2 ∼
U/k1
V/k2

(B.3)

Here are a few things to note about the F distribution:

• The F distribution comes up mainly in frequentist hypothesis testing for linear models
(Section 6.5).

• As k1 and k2 grow, all the probability mass in the F distribution converges to x = 1.
Because the variance of a sample is distributed as a χ2 random variable, the ratio of
variances in linear models (as in Figure 6.9) can be compared to the F distribution.

• Consider the case where k1 = 1. Since U is then the square of a standard normal
random variable, a random variable with distribution F1,k2 has the same distribution
as the square of a random variable with distribution tk2 (compare Equation (B.2)).
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(a) Density functions
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Figure B.4: Density and cumulative distribution functions for the F distribution

It is useful to play a bit with the F distribution to see what it looks like. Figure B.4 gives
sample density and cumulative distribution functions for several choices of the degrees of
freedom. In general, the cumulative distribution is more interesting and pertinent than the
probability density function (unless you have an anomalously low F statistic).

B.7 The Wishart distribution

Recall that the χ2 distribution is used to place probability distributions over the inverse
variance of a normal distribution (or of a sample from a normally-distributed population).
The Wishart distribution is a multi-dimensional generalization of the χ2 distribution;
it generates inverse covariance matrices. Suppose that we have k independent observations
from an n ≤ k-dimensional multivariate normal distribution that itself has mean zero and
covariance matrix Σ. Each observation zi can be written as 〈zi1, . . . , zin〉. If we write the
matrix

Z =




z11 z12 . . . z1n
z21 z22 . . . z2n
...

...
. . .

...
z2n z2n . . . zkn




then the matrix X = ZTZ follows a Wishart distribution with k degrees of freedom and
scale matrix Σ.

If X is Wishart-distributed, then its inverse X−1 is said to be inverse Wishart-

distributed. The inverse Wishart distribution is used in Bayesian inference as the con-
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Figure B.5: Covariance-matrix samples from the two-dimensional inverse Wishart distri-
bution with Σ = ( 1 0

0 1 ) and k = 2 (top row) or k = 5 (bottom row), represented by their
characteristic ellipses. The unit circle appears in gray in the center of the figure for refer-
ence.

jugate prior (Section 4.4.3) for the covariance matrix of a multivariate normal distribution.
Figure B.5 illustrates the inverse Wishart distribution for different degrees of freedom. Note
that the variability in the covariance structure are more extreme when there are fewer degrees
of freedom.

B.8 The Dirichlet distribution

The Dirichlet distribution is a generalization of the beta distribution (Section 4.4.2).
Beta distributions are probability distributions over the success parameter π of a binomial
distribution; the binomial distribution has two possible outcome classes. Dirichlet distribu-
tions are probability distributions over the parameters π1, . . . , πk of a k-class multinomial
distribution (Section 3.4.1; recall that πk is not a true model parameter as it is fully deter-
mined by π1, . . . , πk−1). The Dirichlet distribution is characterized by parameters α1, . . . , αk,
and D(π1, . . . , πk) is defined as

D(π1, . . . , πk)
def
=

1

Z
πα1−1
1 πα2−1

2 . . . παk−1
k

where the normalizing constant Z is

Z =
Γ(α1)Γ(α2) . . .Γ(αk)

Γ(α1 + α2 + · · ·+ αk)

By comparing with the beta function and beta distribution as defined in Sections 4.4.2
and B.1, it will be apparent that the beta distribution is a Dirichlet distribution in which
k = 2. Just as there is a beta-binomial distribution giving the probability of obtaining
y successes out of N draws from a binomial distribution drawn from a beta distribution,
there is a Dirichlet-multinomial distribution that gives the probability of obtaining
y1, . . . , yk outcomes in each of the k response classes respectively when taking N draws from
a multinomial drawn from a Dirichlet distribution with parameters α1, . . . , αk. If we define
α =

∑k
i=1 αi, then the predictive distribution is (Leonard, 1977):

P (y1, . . . , yk) =

∫

π

P (y1, . . . , yk|π)P (π|α1...k) dπ =

∏k
i=1

(
αi+yi−1

αi

)
(
α+N−1

α

)
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The special case of this predictive distribution is when we draw a multinomial distribution
from the Dirichlet, and then draw one sample X from that multinomial distribution. The
probability that that sample X has outcome class i is given by the value

P (X = i|α1...k) =
αi

α

This is often convenient for using Gibbs sampling to draw samples from the posterior dis-
tribution in Bayesian models which use Dirichlet priors over multinomial distributions. An
example of this usage is given in Section ??.

The Dirichlet distribution has the following useful property. For any k-class Dirich-
let distribution with parameters α1, . . . , αk, suppose we partition the k outcome classes
into a smaller, new set of k′ < k classes, with the j-th new class consisting of outcome
classes cj1, . . . , cjMj

. The resulting distribution over the new set of k′ outcome classes is also

Dirichlet-distributed, with parameters αj =
∑Mj

i=1 αij . [see also Dirichlet process in Section
XXX; and give example here?]

B.9 The beta-binomial distribution

We saw the beta-binomial distribution before in Section 4.4.3. If there is a binomial distri-
bution with unknown success parameter π and we put a beta prior with parameters α1, α2

over π, then the marginal distribution on a sample of size n from the binomial distribution
is beta-binomial, with form

P (m|α1, α2,m) =

(
n

m

)
=

(
k

r

)
B(α1 +m,α2 +m− n)

B(α1, α2)
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