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About the exercises

Here is the scheme with which I have categorized exercises:
♣ An easy exercise
† An exercise of medium difficulty
‡ A hard exercise
∗ A short pen-and-paper exercise
∗∗ A medium-length pen-and-paper exercise
∗∗∗ A long pen-and-paper exercise
♥ An exercise that is especially recommended
Ï An exercise that will require some computer programming (well,

there may be clever ways around having to program in some
cases)

NOTE: I am far from doing a complete characterization, so don’t read too much into the
absence of a symbol of a given category.

ix
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> roundN <- function(x,decimals=2,fore=5) sprintf(paste("%",fore,".",decimals,"f",sep="
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Chapter 2

Univariate Probability

This chapter briefly introduces the fundamentals of univariate probability theory, density
estimation, and evaluation of estimated probability densities.

2.1 What are probabilities, and what do they have to

do with language?

We’ll begin by addressing a question which is both philosophical and practical, and may be
on the minds of many readers: What are probabilities, and what do they have to do with
language? We’ll start with the classic but non-linguistic example of coin-flipping, and then
look at an analogous example from the study of language.

Coin flipping

You and your friend meet at the park for a game of tennis. In order to determine who will
serve first, you jointly decide to flip a coin. Your friend produces a quarter and tells you that
it is a fair coin. What exactly does your friend mean by this?

A translation of your friend’s statement into the language of probability theory would
be that the tossing of the coin is an experiment—a repeatable procedure whose outcome
may be uncertain—in which the probability of the coin landing with heads face up is equal
to the probability of it landing with tails face up, at 1

2
. In mathematical notation we would

express this translation as P (Heads) = P (Tails) = 1
2
. This mathematical translation is a

partial answer to the question of what probabilities are. The translation is not, however,
a complete answer to the question of what your friend means, until we give a semantics to
statements of probability theory that allows them to be interpreted as pertaining to facts
about the world. This is the philosophical problem posed by probability theory.

Two major classes of answer have been given to this philosophical problem, corresponding
to two major schools of thought in the application of probability theory to real problems in
the world. One school of thought, the frequentist school, considers the probability of an event
to denote its limiting, or asymptotic, frequency over an arbitrarily large number of repeated
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trials. For a frequentist, to say that P (Heads) = 1
2
means that if you were to toss the coin

many, many times, the proportion of Heads outcomes would be guaranteed to eventually
approach 50%.

The second, Bayesian school of thought considers the probability of an event E to be a
principled measure of the strength of one’s belief that E will result. For a Bayesian, to say
that P (Heads) for a fair coin is 0.5 (and thus equal to P (Tails)) is to say that you believe that
Heads and Tails are equally likely outcomes if you flip the coin. A popular and slightly more
precise variant of Bayesian philosophy frames the interpretation of probabilities in terms of
rational betting behavior, defining the probability π that someone ascribes to an event as
the maximum amount of money they would be willing to pay for a bet that pays one unit
of money. For a fair coin, a rational better would be willing to pay no more than fifty cents
for a bet that pays $1 if the coin comes out heads.1

The debate between these interpretations of probability rages, and we’re not going to try
and resolve it here, but it is useful to know about it, in particular because the frequentist
and Bayesian schools of thought have developed approaches to inference that reflect these
philosophical foundations and, in some cases, are considerably different in approach. For-
tunately, for the cases in which it makes sense to talk about both reasonable belief and
asymptotic frequency, it’s been proven that the two schools of thought lead to the same rules
of probability. If you’re further interested in this, I encourage you to read Cox (1946), a
beautiful, short paper.

An example of probabilities in language: word ordering

There were two parts to formalizing the notion of probability in the coin-flipping example:
(1) delimiting the world of possible outcomes, and (2) assigning probabilities to each possible
outcome. Each of these steps involves a simplification. Step 1 ignores such details as the
angle between the “vertical” axis of the coin’s face and magnetic north which results from
the flip, and omits such possibilities as that the coin will land on its edge, that it will be
snatched up by an owl, and so forth. Step 2 omits contingent information such as the relative
orientation of the coin upon its being flipped, how hard it is flipped, the air currents, and
so forth. With these simplifications, however, comes a great deal of analytical traction and
power. Cases such as these, in which we can delimit a world of possible outcomes and express
probabilities over those outcomes on the basis of incomplete knowledge, are ubiquitous in
science, and are also ubiquitous in language. As a simple example analogous to coin flipping,
let us consider the choice of how to order the words in an English binomial (Malkiel, 1959;
Cooper and Ross, 1975; Benor and Levy, 2006, inter alia), such as principal and interest,
where both orders are observed in naturally occurring usage. For a linguist to claim that
this binomial has no ordering preference can be translated into the language of probability
theory as stating that we are equally likely to observe (in some set of contexts of English

1This definition in turn raises the question of what “rational betting behavior” is. The standard response
to this question defines rational betting as betting behavior that will never enter into a combination of bets
that is guaranteed to lose money, and will never fail to enter into a combination of bets that is guaranteed
to make money. The arguments involved are called “Dutch Book arguments” (Jeffrey, 2004).
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usage) the phrases principal and interest and interest and principal ; if we abbreviate these
two orderings as p and i (we might denote the union of the two orderings as {interest,
principal}) then mathematically our linguist is saying that P (p) = P (i) = 1

2
.

2.2 Sample Spaces

The underlying foundation of any probability distribution is the sample space—a set of
possible outcomes, conventionally denoted Ω. For example, the sample space for orderings
of the unordered binomial pair {principal, interest} is

Ω = {p, i} (2.1)

If we were to observe two tokens of the binomial, then the sample space would be

Ω = {pp, pi, ip, ii} (2.2)

In general, sample spaces can be finite (e.g., the set of all syntactic categories), countably
infinite (e.g., the set of integers, the set of all phrase-structure trees), or uncountably infinite
(e.g., the set of real numbers).

2.3 Events and probability spaces

An event is simply a subset of a sample space. In the interpretation of probability distri-
butions as beliefs, events are often interpreted as propositions.

What is the sample space corresponding to the roll of a single six-sided die? What
is the event that the die roll comes up even?

It follows that the negation of an event E (that is, E not happening) is simply Ω− E.
A probability space P on Ω is a function from events in Ω to real numbers such that

the following three axioms hold:

1. P (E) ≥ 0 for all E ⊂ Ω (non-negativity).

2. If E1 and E2 are disjoint, then P (E1 ∪ E2) = P (E1) + P (E2) (disjoint union).

3. P (Ω) = 1 (properness).

These axioms allow us to express the probabilities of some events in terms of others.
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2.4 Conditional Probability, Bayes’ rule, and Indepen-

dence

The conditional probability of event B given that A has occurred/is known is defined
as follows:

P (B|A) ≡ P (A ∩ B)

P (A)

We’ll use another type of word-ordering example to illustrate this concept. In Old English,
the object in a transitive sentence could appear either preverbally or postverbally. It is also
well-documented in many languages that the “weight” of a noun phrase (as measured, for
example, by number of words or syllables) can affect its preferred position in a clause, and
that pronouns are “light” (Hawkins, 1994; Wasow, 2002). Suppose that among transitive
sentences in a corpus of historical English, the frequency distribution of object position and
pronominality is as follows:

(1)
Pronoun Not Pronoun

Object Preverbal 0.224 0.655
Object Postverbal 0.014 0.107

For the moment, we will interpret these frequencies directly as probabilities. (We’ll see more
on this in Chapter 4.) What is the conditional probability of pronominality given that an
object is postverbal?

In our case, event A is Postverbal, and B is Pronoun. The quantity P (A ∩ B) is
already listed explicity in the lower-right cell of table I: 0.014. We now need the quantity
P (A). For this we need to calculate the Marginal Total of row 2 of Table I: 0.014 +
0.107 = 0.121. We can then calculate:

P (Pronoun|Postverbal) = P (Postverbal ∩Pronoun)

P (Postverbal)

=
0.014

0.014 + 0.107
= 0.116

The chain rule

If we have events E1, E2, . . . , En, then we can recursively apply the definition of conditional
independence to the probability of all these events occurring—P (E1 ∩ E2 ∩ · · · ∩ En)—to
obtain

P (E1 ∩ E2 ∩ · · · ∩ En) = P (En|E1 ∩ E2 ∩ · · · ∩ En−1) . . . P (E2|E1)P (E1) (2.3)

Equation 2.3 is known as the chain rule, and using it to decompose a complex probability
distribution is known as chain rule decomposition.
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2.4.1 Bayes’ rule

Bayes’ rule (also called Bayes’ theorem) is simply the expression of a conditional prob-
ability in terms of the converse conditional probability and the two relevant unconditional
probabilities:

P (A|B) =
P (B|A)P (A)

P (B)
(2.4)

Bayes’ rule can also be extended to more complex conjunctions of events/propositions:

P (A|B, I) =
P (B|A, I)P (A|I)

P (B|I) (2.5)

Although Bayes’ rule is a simple mathematical truth, it acquires profound conceptual
and practical power when viewed as a way of updating beliefs (encoded as probability dis-
tributions) in the face of new information. Specifically, suppose belief in A is of interest.
One’s initial, or prior, beliefs in A are quantified by P (A|I). Bayes’ rule then expresses how
beliefs should change when B is learned. In particular, the posterior belief P (A|B, I) in
A equals the prior belief times the ratio between (i) the likelihood P (B|A, I) of B under
A and I and (ii) the likelihood of B under I alone. This use of Bayes’ rule is often called
Bayesian inference, and it serves as the cornerstone of (fittingly) Bayesian statistics.

We will see many examples of Bayesian inference throughout this book, but let us work
through a simple example to illustrate its basic workings. We will return to the domain of
Old English word order, but now focus on the relationship between an object NP’s word
order and its animacy (assuming every object is either animate or inanimate) rather than
its pronominality. Suppose we have the following probabilities:

P (Object Animate) = 0.4 (2.6)

P (Object Postverbal|Object Animate) = 0.7

P (Object Postverbal|Object Inanimate) = 0.8

and that we want to compute how likely an object is to be animate given that it is expressed
postverbally—that is, P (Object Animate|Object Postverbal) (e.g., a comprehender may
know at some point in a sentence that the object will appear postverbally, but hasn’t yet
heard the object spoken). Although we aren’t given a probability table as in Example I, we
actually have all the information necessary to compute this probability using Bayes’ rule.
We go through the calculations step by step below, simplifying the notation by using Anim
and Inanim respectively to denote animacy and inanimacy of the object, and PreV and
PostV respectively to denote preverbal and postverbal positioning of the object.

P (Anim|PostV) =
P (PostV|Anim)P (Anim)

P (PostV)
(2.7)
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We have been given the value of the two terms in the numerator, but let us leave the
numerator alone for the moment and focus on the denominator, which we weren’t given in
the problem specification. At first, it may not be obvious how to compute the denominator.
However, we can Axiom 2 of probability theory (disjoint union) to express P (PostV) as the
sum of the probabilities P (PostV ∩Anim) and P (PostV ∩ Inanim):

P (PostV) = P (PostV ∩Anim) + P (PostV ∩ Inanim)

Although these probabilities were not specified directly either, we can use the definition of
conditional probability to turn them into forms that were specified:

P (PostV ∩Anim) = P (PostV|Anim)P (Anim) (2.8)

P (PostV ∩ Inanim) = P (PostV|Inanim)P (Inanim)

Now we can plug this result back into Equation (2.7):

P (Anim|PostV) =
P (PostV|Anim)P (Anim)

P (PostV|Anim)P (Anim) + P (PostV|Inanim)P (Inanim)
(2.9)

At this point, it is worth reflecting on the expanded form Bayes’ rule for this problem that we
see in Equation (2.9). First, note that we have rewritten the initial form of Bayes’ rule into
a formula all of whose terms we have immediate access to in the probability specifications
given in (2.6). (We were not given P (Inanim), but the axioms of probability theory—
disjoint union together with properness—allow us to easily determine that its value is 0.6.)
Hence we can immediately calculate the correct answer to our problem:

P (Anim|PostV) =
0.7× 0.4

0.7× 0.4 + 0.8× 0.6
= 0.3684 (2.10)

Second, note that in the right-hand side of Equation (2.9), the numerator appears as one
of the two terms being summed in the denominator. This is quite often the case in appli-
cations of Bayes’ rule. It was the fact that Anim and Inanim constitute an exhaustive
partition of our sample space that allowed us to break down P (PostV) in the way we did
in Equation (2.8). More generally, it is quite common for the most complex step of applying
Bayes’ rule to be breaking the sample space into an exhaustive partition A1, A2, . . . , An, and
re-expressing Equation (2.11) through a summation over the members of this exhaustive
partition:

P (A|B) =
P (B|A)P (A)∑n

j=1 P (B|Aj)P (Aj)
(2.11)

A closely related third point is that computation of the denominator is usually the most
complex and difficult part of applying Bayes’ rule. Fortunately, there are often tricks that
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one can apply either to avoid this computation or to drastically simplify it; you will see
several examples of these tricks later in the book.

Finally, it is worthwhile to compare the probabilities of the object being animate before
(Equation (2.6)) versus after (Equation (2.10)) obtaining the knowledge that the object
follows the verb. Inspection of these two probabilities reveals that the object is postverbal
reduces the probability by a small amount, from 0.4 to about 0.37. Inspection of the two
conditional probabilities in the problem specification also reveals that inanimate objects
are some more likely to be realized postverbally (probability 0.7) than animate objects are
(probability 0.8). In fact, the shift induced in probability of object animacy from learning
that the object is postverbal directly follows from the differential preference for postverbal
realization of inanimate versus animate objects. If the object were inanimate, it would
predict more strongly than if the object were animate that the object should be postverbal.
Hence, learning that the object is in fact postverbal goes some way toward disconfirming the
possibility that the object may turn out to be animate, while strengthening the possibility
that it may turn out to be inanimate.

2.4.2 (Conditional) Independence

Events A and B are said to be Conditionally Independent given information C if

P (A ∩B|C) = P (A|C)P (B|C) (2.12)

This form of conditional independence is often denoted symbolically as A ⊥ B | C.
A more philosophical way of interpreting conditional independence is that if we are in

the state of knowledge denoted by C, then conditional independence of A and B means that
knowing A tells us nothing more about the probability of B, and vice versa. The simple
statement that A and B are conditionally independent is often used; this should be
interpreted that A and B are conditionally independent given an implicit state C of “not
knowing anything at all” (C = ∅).

It’s crucial to keep in mind that if A and B are conditionally dependent given C, that does
not guarantee they will not be conditionally independent given some other set of knowledge
D. As an example, suppose that your friend gives you a pouch with three coins of identical
shape. One coin is two-headed, one coin is two-tailed, and one coin is a regular fair coin; this
information constitutes your state of knowledge C. You are to randomly select a coin from
the pouch and, without inspecting it, flip it twice; the outcomes of the flips correspond to
events A and B. Given this state of affairs, A and B are clearly not conditionally independent
given C. For example, P (B|A = Heads, C) > P (B|C): knowing that A = Heads rules out
the third coin and therefore makes it more likely that the second coin flip B will also come
out heads. Suppose, however, that you inspect the coin before flipping it twice; call the
new state of knowledge obtained after inspecting the coin D. We do have A ⊥ B | D: the
conditional dependence between A and B given C derived from the uncertainty as to which
of the three coins you selected, and once that uncertainty is removed, the dependency is
broken and independence is obtained.
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Likewise, it is also possible (though less common in real-world circumstances) for con-
ditional independence between events to be lost when new knowledge is gained—see Exer-
cise 2.2.

2.5 Discrete random variables and probability mass

functions

A discrete random variable X is literally a function from the sample space Ω of a
probability space to a finite, or countably infinite, set of real numbers (R).2 Together with
the function P mapping elements ω ∈ Ω to probabilities, a random variable determines a
probability mass function P (X(ω)), or P (X) for short, which maps real numbers to
probabilities. For any value x in the range of the random variable X, suppose that A is
the part of the sample space all of whose members X maps to x. The probability that X
will take on the value x is therefore simply the value that the original probability function
assigns to A:

P (X = x) = P (A)

Technically speaking, the two P ’s in this equation are different—the first applies to values
in the range of the random variable X, whereas the second applies to subsets of the sample
space.

The relationship between the sample space Ω, a probability space P on Ω, and a discrete
random variable X on Ω can be a bit subtle, so we’ll illustrate it by returning to our example
of collecting two tokens of {principal, interest}. Once again, the sample space is Ω =
{pp, pi, ip, ii}. Consider the functionX that maps every possible pair of observations—that
is, every point in the sample space—to the total number of p outcomes obtained. Suppose
further that there is no ordering preference for the binomial, so that for each point ω in the
sample space we have P ({ω}) = 1

2
× 1

2
= 1

4
. The total number of p outcomes is a random

variable X, and we can make a table of the relationship between ω ∈ Ω, X(ω), and P (X):

ω X(ω) P (X)
pp 2 1

4

pi 1 1
2ip 1

ii 0 1
4

Notice that the random variable X serves to partition the sample space into equivalence
classes: for each possible real number y mapped to by X, all elements of Ω mapped to y
are in that equivalence class. Intuitively, a random variable can be thought of as focusing

2A set S is countably infinite if a one-to-one mapping exists between the integers 0, 1, 2, . . . and S.
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attention on only the distinctions within the sample space that are of interest to us for a
particular application. In the example above, the sample space consisted of ordered pairs
of {principal,interest} binomials, but the random variable X restricts our attention to the
observed frequency of each of the two binomial forms, throwing out the information about
which binomial is observed first and which is observed second.

2.5.1 Bernoulli trials and the Bernoulli distribution

Perhaps the simplest interesting kind of event space is one that contains two outcomes, which
we will arbitrarily label “success” and “failure” and respectively associate the integers 1 and
0. A Bernoulli trial is an experiment (in the sense of Section 2.1) with these two possible
outcomes. This leads us to our first parametric family of probability distributions,
the Bernoulli distribution. A parametric family of probability distributions is an infi-
nite collection of probability distributions that vary only in the value of a fixed number of
parameters characterizing the family. The Bernoulli distribution is perhaps the simplest
of these families, being characterized by a single parameter, which we will denote by π. π
is the probability of achieving success on a single Bernoulli trial, and can take any value
between 0 and 1 (inclusive); π is sometimes called the “success parameter”. The Bernoulli
distribution thus has a probability mass function of the form

P (X = x) =





π if x = 1

1− π if x = 0

0 otherwise

A random variable that follows a Bernoulli distribution is often called a Bernoulli random

variable. For example, the flipping of a fair coin (with heads mapped to 1 and tails to 0)
or the ordering outcome of an English binomial with no ordering preference can be modeled
as a Bernoulli random variable with parameter π = 0.5.

2.5.2 Multinomial trials

We can also generalize the Bernoulli trial to the case where there are r ≥ 2 possible outcomes;
for convenience we can label the outcomes c1, . . . , cr. This is a multinomial trial, and
just as the Bernoulli distribution has 1 parameter, the distribution for multinomial trials has
r − 1 parameters π1, . . . , πr−1 determining the probability that a trial will fall into each of
the classes:
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P (X = x) =





π1 if x = c1

π2 if x = c2
...

...

πr−1 if x = cr−1

1−∑r−1
i=1 πi if x = cr

0 otherwise

(2.13)

We can make Equation (2.13) more symmetric by defining πr
def
= 1−∑r−1

i=1 πi, which allows
us to replace the second-to-last line of 2.13 with

P (X = x) = πr if x = cr

but you should keep in mind that πr is not an independent parameter, since it is fully
determined by the other parameters.

Example. You decide to pull Alice in Wonderland off your bookshelf, open to a random
page, put your finger down randomly on that page, and record the letter that your finger
is resting on (ignoring the outcome and trying again if your finger rests on punctuation or
a space). This procedure can be modeled as a multinomial trial with 26 possible outcomes,
and to a first approximation the parameters of the associated distribution can simply be the
relative frequencies of the different letters (ignoring the differing widths and heights of the
letters). In Alice in Wonderland, 12.6% of the letters are e, 9.9% are t, 8.2% are a, and so
forth; so we could write the parameters of our model as πe = 0.126, πt = 0.099, πa = 0.082,
and so forth.

The probability distribution for multinomial trials discussed here is a special case of the
more general multinomial distribution introduced in Section 3.4.1.

2.6 Cumulative distribution functions

A random variable X determines a probability mass function P (X) on the real numbers.
This probability mass function in turn determines a cumulative distribution function

F , defined as

F (x)
def
= P (X ≤ x)

We give a very simple illustration with the Bernoulli distribution. A Bernoulli random
variable with parameter π has the following (very simple!) cumulative distribution function:
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Figure 2.1: The cumulative distribution function for a Bernoulli random variable with pa-
rameter π

F (x) =





0 x < 0

π 0 ≤ x < 1

1 x ≥ 1

which is illustrated in Figure 2.1.

A probability mass function uniquely determines a cumulative distribution function, and
vice versa.

Note that the cumulative distribution function is monotonically increasing in the range of
the random variable. This means that the cumulative distribution function has an inverse,
the quantile function, which maps a probability 0 ≤ p ≤ 1 into the lowest possible
number x such that P (X ≤ x) ≥ p.

2.7 Continuous random variables and probability den-

sity functions

Limiting a random variable to take on at most a countably infinite set of values is often too
strong a constraint: in many cases, we want to allow outcomes to range along a continuum of
real values, which is uncountably infinite. This type of outcome requires different treatment,
with continuous random variables. Instead of a discrete random variable’s probability
mass function, a continuous random variable has a probability density function p(x)
that assigns non-negative density to every real number. For example, the amount of time
that an infant lives before it hears a parasitic gap in its native language would be naturally
modeled as a continuous random variable (with p(x) > 0 only for x > 0). If we plot the
probability density function (pdf) as a curve over the real number line, then the properness
requirement of probability theory ensures that the total area under the curve is equal to 1
(see example in Section 2.7.1):
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Figure 2.2: The probability density function and cumulative distribution function of the
uniform distribution with parameters a and b

∫ ∞

−∞
p(x) dx = 1

2.7.1 The uniform distribution

The simplest parametrized family of continuous probability distributions is the uniform

distribution, defined by parameters a and b bounding a continuous region [a, b] within
which the density function p(x) is constant, and outside of which p(x) = 0. Since the area
under the pdf curve must total 1, we must have the probability density function

P (x|a, b) =
{

1
b−a

a ≤ x ≤ b

0 otherwise
(2.14)

p(x) = 1
b−a

when x ∈ [a, b]. We sometimes denote that a random variable X is distributed
uniformly on the interval [a, b] with the following notation:

X ∼ U(a, b)

Figure 2.2 shows plots of the pdf and cdf of the uniform distribution.
Example: although the uniform distribution is the simplest example of a continuous

probability distribution, it is not the continuous distribution that has the most obvious or
widespread applications in linguistics. One area in which uniform distributions would be most
applicable, however, is historical applications, particularly as pertains to inferring event times
such as the dates of recovered documents or of divergence between related languages. The
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written language of Ancient Aramaic, for example, is known to have been in use from roughly
1000 B.C.E. to 500 B.C.E. (Beyer, 1986). With only this information, a crude estimate of the
distribution over Ancient Aramaic document dates might be a uniform distribution on the
interval [-1000,-500] (though this estimate would fail to incorporate additional information
likely available from the documents themselves). Suppose a scholar consults two documents
of Ancient Aramaic from unrelated sources, and finds that the date of the first document is
850 B.C.E. What is the probability that the other document dates to within fifty years of
the first? Anything in the range [-900,-800] qualifies, so the probability we want is:

P (X ∈ [−900,−800]) =

∫ −800

−900

1

−500− (−1000)
dx

=
−800− (−900)

−500− (−1000)
=

1

5

2.7.2 Change of variables for continuous probability densities

Typically, the range of a continuous random variables is some kind of metric space used
to quantify events in the real world. In many cases, there may be more than one possible
metric of interest. In phonetics, for example, pitch is sometimes expressed directly in units of
frequency, namely Hertz (cycles per second), but sometimes measured in log-Hertz instead.
The justifications for log-Hertz measurement include that in music relative changes in pitch
are constant in frequency ratio, so that adding a constant value c to a log-Hertz measurement
yields the same change in musical pitch regardless of starting frequency; and that in many
cases vowels tend to be constant in the ratios among their first three formats (e.g., Lloyd
(1890); Peterson (1961); Miller (1989); Hillenbrand et al. (1995)). 3 If one wants to convert
a probability density from one unit of measurement to another, one needs to make a change
of variables.

In general, if some random variable X has the probability density p and the random
variable Y is defined such that X = g(Y ), then the probability density of Y is

p(Y = y) = p(X = g(y))
dg

dy
(g(y))

or, more succinctly, For example, suppose that one has a random variable X with a uniform
distribution over the Hertz frequency range [100,1000]. To convert this to a distribution over
log-frequencies, let us call the new random variable Y defined that Y = log10X, so that the
log-Hertz range of Y is [2,3]. This means that X = g(y) = 10Y and so dg

dy
= 10Y log 10

(see Section A.5). Figures ?? and ?? illustrate this probability density in the two units of
measurement.

This example illustrates an important point: that the pdf of a continuous random variable
does not need to be bounded above by 1; changing variables from Hertz to log-Hertz led to

3A formant is a peak of energy in the acoustic frequency spectrum of a vowel production.
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a density as high as 2.5. Since the range in which the density exceeds 1 is small (in the
log-Hertz scale), this is not a problem as the total probability mass still integrates to 1. Note
that technically, since probability mass is unitless but continuous probability densities are
over variables that have units, probability densities have units—in the case of the uniform
distribution in the example above, the unit is “per cycle per second”. And in fact, for any
continuous probability function there will always be some change of variables based on a
new unit of measurement that will lead to density exceeding 1 somewhere on the range of
the new random variable! This is in contrast to the probability mass function of a discrete
random variable, which is unitless must be bounded above by 1.

2.7.3 Cumulative distribution functions for continuous random
variables

With a continuous random variable, the probability of any specific point in R is zero; the
primary interest is on the probability that the outcome of the random variable will fall into a
given region of R, which is more naturally expressed via the cumulative distribution function
(cdf) F (x), defined once again as P (X ≤ x), or

F (x) =

∫ x

−∞
p(x) dx

What is especially useful about the cumulative distribution function is that the proba-
bility that X will fall into a continuous region [x, y] of the real number line can be expressed
as the difference between the cdf at y and at x:
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P (x ≤ X ≤ y) =

∫ y

x

p(x) dx

=

∫ y

−∞
p(x) dx−

∫ x

−∞
p(x) dx

= F (y)− F (x)

Because of this property, and the fact that the probability of an outcome occurring at any
specific point x is 0 for a continuous random variable, the cumulative distribution is in many
cases more important than the density when working with continuous random variables.

2.8 Normalized and unnormalized probability distri-

butions

It is quite common to wind up defining a “probability”mass function F (or density function
f) that adheres to the first two axioms listed in Section 2.3—non-negativity and disjoint
union—but that does not adhere to the third axiom of properness. Such a function F is
called an unnormalized or improper probability distribution. In these cases, from
F a normalized, or proper, probability distribution P can be defined as

P (X = x) =
1

Z
F (x) (2.15)

where

Z
def
=

∑

x

F (x)

for discrete densities, and

Z
def
=

∫ ∞

−∞
f(x) dx

for continuous densities, when Z is finite. Here, Z is generally called the normalizing

constant or partition function.
When we have a function F (X) that we wish to use as an unnormalized probability

distribution, we will often write that

P (x) ∝ F (x) (2.16)

which is read as “P (x) is proportional to F (x)”.
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Example: suppose that we wanted to construct a probability distribution over total
orderings of three constituents S,O, V (e.g., the subject, object, and verb of a simple transi-
tive clause), and characterize the probability distribution purely on the basis of the relative
strengths of preference for linear precedence between every possible pair of constituents.
There are three possible pairs of these constituents—SO,SV , and OV—so we will introduce
one parameter for each of these pairs to indicate the relative strength of preference for one
linear ordering versus another. Thus we will have one parameter, γ1 indicating the preference
for S to precede O; we will denote this event as S ≺ O, with ≺ to be read as “precedes”. A
second parameter γ2 will indicating the preference for S to precede V , and a third parameter
γ3 indicating the preference for O to precede V . For simplicity, we’ll let each γi range be-
tween 0 and 1, and encourage the intuitive analogy between these three parameters and the
success parameters of three separate Bernoulli trials. That is, the word orders SOV , SV O,
and V SO could be thought of as “successes” for the Bernoulli trial, and we would want them
together to have something like probability γ1, whereas the word orders OSV , OV S, and
V OS could be thought of as “failures” for this Bernoulli trial, and we would want them to
have something like probability 1− γ1. So we’ll define a mass function F that assigns to any
word order the product of (i) all the “success” parameters for precedences that are satisfied,
and (ii) all the “failure”parameters for precedences that are violated. For example, we would
have:

F (SOV ) = γ1γ2γ3

since this word ordering satisfies all the three precedences,

F (SV O) = γ1γ2(1− γ3)

since this word ordering violates O ≺ V but satisfies the other two precedences, and so forth.
However, there is one crucial disanalogy between the present case and the case of three

separate Bernoulli trials. In three separate Bernoulli trials, there are eight logically pos-
sible outcomes, but in the case of ordering three constituents, there are only six logically
possible outcomes. There are two combinations of constituent-pair precedence which are
contradictory:

(1)S ≺ O, V ≺ S,O ≺ V (2)O ≺ S, S ≺ V, V ≺ O

As a result, the mass function F is improper: in general, it does not assign total mass of 1
to the six possible constituent orderings.

We can construct a proper probability distribution out of F , however, by computing
its normalizing constant and then defining a probability distribution as described in Equa-
tion 2.15. In Table 2.1 we make totally explicit the eight logically possible combinations of
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S O S V O V Outcome X F (X)
1 ≺ ≺ ≺ SOV γ1γ2γ3
2 ≺ ≺ ≻ SV O γ1γ2(1− γ3)
3 ≺ ≻ ≺ impossible γ1(1− γ2)γ3
4 ≺ ≻ ≻ V SO γ1(1− γ2)(1− γ3)
5 ≻ ≺ ≺ OSV (1− γ1)γ2γ3
6 ≻ ≺ ≻ impossible (1− γ1)γ2(1− γ3)
7 ≻ ≻ ≺ OV S (1− γ1)(1− γ2)γ3
8 ≻ ≻ ≻ V OS (1− γ1)(1− γ2)(1− γ3)

Table 2.1: The unnormalized distribution for {S,O,V} constituent-order model

Order SOV SVO VSO OSV OVS VOS
# Languages 566 488 95 25 11 4

Relative frequencies 0.476 0.410 0.080 0.021 0.009 0.003
Probabilities in constituent-order model 0.414 0.414 0.103 0.046 0.011 0.011

Table 2.2: Empirical frequencies of dominant constituent ordering among {S,O,V} for 1189
languages, taken from the World Atlas of Language Structures (Dryer, 2011; languages
reported as lacking dominant order omitted). Model probabilities are for γ1 = 0.9, γ2 =
0.8, γ3 = 0.5).

three pairwise precedences, the two that are contradictory, and the values assigned by F to
each of the eight.

Since the set of all eight together would give a proper distribution, a simple way of expressing
the normalizing constant is as 1− F (X3)− F (X6).

This is an interesting model: because it has only three parameters, it is not as expressive
as an arbitrary multinomial distribution over six classes (we would need five parameters for
that; see Section 2.5.2). It’s an empirical question whether it’s good for modeling the kind
of word-order frequencies across the languages of the world. The first two rows of Table 2.2
show the empirical frequencies of the six logically possible orderings of subject, object, and
verb; the two subject-initial orderings are by far the most common, with VSO a distant third
and the other orders all quite rare. If we wanted to produce a probability distribution that
looked like empirical frequencies, intuitively we might set γ1 close to 1, since S nearly always
precedes O; γ2 close to 1 as well, since S nearly always precedes V, but lower than γ1, since
the former generalization is stronger than the second; and γ3 around 1

2
, since V precedes

O about as often as it follows it. The third row of Table 2.2 shows the probabilities in the
constituent-order model obtained with such a setting, of γ1 = 0.9, γ2 = 0.8, γ3 = 0.5. It is a
pretty good qualitative fit: it fails to differentiate SOV from SVO probability but reproduces
the overall shape of the empirical relative frequency distribution reasonably well. In fact,
this three-parameter constituent-order model can achieve even better fits to word-order-
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frequency data than we see in Table 2.2; the principles according to which the optimal fit
can be determined will be introduced in Chapter 4, and the model is revisited in Exercise 4.6.

Problem 2.6 in the end of this chapter revisits the question of whether the parame-
ters γi really turn out to be the probabilities of satisfaction or violation of each individual
constituent-pair precedence relation for the probability distribution resulting from our choice
of the unnormalized mass function F .

2.9 Expected values and variance

We now turn to two fundamental quantities of probability distributions: expected value

and variance.

2.9.1 Expected value

The expected value of a random variable X, which is denoted in many forms including
E(X), E[X], 〈X〉, and µ, is also known as the expectation or mean. For a discrete
random variable X under probability distribution P , it’s defined as

E(X) =
∑

i

xiP (X = xi) (2.17)

For a Bernoulli random variable X with parameter π, for example, the possible outcomes
are 0 and 1, so we have

E(X) = 0×
P (X=0)︷ ︸︸ ︷
(1− π) + 1×

P (X=1)︷︸︸︷
π

= π

For a continuous random variableX under cpd p, the expectation is defined using integrals
instead of sums, as

E(X) =

∫ ∞

−∞
x p(x)dx (2.18)

For example, a uniformly-distributed random variable X with parameters a and b has ex-
pectation right in the middle of the interval, at a+b

2
(see Exercise 2.8).

2.9.2 Variance

The variance is a measure of how broadly distributed the r.v. tends to be. It’s defined as the
expectation of the squared deviation from the mean:

Var(X) = E[(X − E(X))2] (2.19)
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or equivalently

Var(X) = E[X2]− E[X]2 (2.20)

(see Exercise 3.1). The variance is often denoted σ2 and its positive square root, σ, is known
as the standard deviation.

If you rescale a random variable by defining Y = a + bX, then Var(Y ) = b2X. This is
part of what is known as linearity of the expectation, which will be introduced in full
in Section 3.3.1.

Variance of Bernoulli and uniform distributions

The variance of a Bernoulli-distributed random variable needs to be calculated explicitly,
by using the definition in Equation (2.20) and summing over the possible outcomes as in
Equation (2.17) (recall that the expectation for a Bernoulli random variable is π):

Var(X) = E[((X)− E(X))2] =
∑

x∈{0,1}
(x− π)2 P (x)

= (π − 0)2
P (X=0)︷ ︸︸ ︷
(1− π) + (1− π)2 ×

P (X=1)︷︸︸︷
π

= π(1− π) [π + (1− π)]

Var(X) = π(1− π)

Note that the variance is largest at π = 0.5 and zero when π = 0 or π = 1.

The uniform distribution also needs its variance explicitly calculated; its variance is (b−a)2

12

(see Exercise 2.9).

2.10 The normal distribution

We’re now in a position to introduce the normal distribution, which is likely to be the
most common continuous distribution you’ll encounter. It is characterized by two parameters,
the expected value µ and the variance σ2. (Sometimes the standard deviation σ is used
instead of the variance to parameterize the normal distribution.) Its probability density
function is:

p(x) =
1√
2πσ2

exp

[
−(x− µ)2

2σ2

]
(2.21)

This expression seems intimidating at first glance, but it will become familiar with time.4

It can be divided into three components:

4exp[x] is another way of writing ex; it’s used when the expression in the exponent is complex enough to
warrant typesetting in normal-size font.
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• 1√
2πσ2

is a normalizing constant (see Section 2.8).

• The denominator within the exponential, 2σ2, can be thought of a scaling factor de-
termined by the variance of the normal distribution.

• The numerator within the exponential, (x − µ)2, is the square of the Euclidean dis-
tance of x from the mean. The exponent is negative, so the probability density is
exponentially decreasing in the square of the distance from the mean.

The normal distribution doesn’t have a closed-form cumulative density function, but the
approximate cumulative density can be calculated numerically and is available in most sta-
tistical software packages. Figure 2.3 shows probability density and cumulative distribution
functions for normal distributions with different means and variances.

Example: normal distributions are often used for modeling the variability in acoustic
dimensions for production and perception in phonetics. Suppose that you are about to
record an adult male native speaker of American English pronouncing the vowel [i]. Data
from Peterson and Barney (1952) indicate that the F1 formant frequency for this vowel as
pronounced by this group may reasonably be modeled as normally distributed with mean
267Hz and standard deviation 36.9Hz. What is the probability that the recording will have F1
frequency falling between 225Hz and 267Hz (lower than average but not egregiously low)?
We follow the logic of Section 2.7.3 in expressing the answer in terms of the cumulative
distribution function:

P (225Hz ≤ F1 ≤ 267Hz) =

∫ 267

225

p(x) dx (2.22)

=

∫ 267

−∞
p(x) dx−

∫ 225

−∞
p(x) dx (2.23)

= F (267)− F (225) (2.24)

With the use of standard statistical software we can find the values of the cumulative distri-
butions function at 267 and 225, which gives us our answer:

= 0.5− 0.12 = 0.38 (2.25)

(Note that because the normal distribution is symmetric around its mean, the cumulative
distribution function applied to the mean will always be equal to 0.5.)

2.10.1 Standard normal random variables

A normal distribution with mean 0 and variance 1 is called the standard normal dis-

tribution, and a random variable following this distribution is called a standard nor-

mal random variable. The density function for a standard normal random variable is

p(x) = 1√
2π
e[−x2/2].
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Figure 2.3: The normal distribution: density and cumulative distribution functions

2.11 Estimating probability densities

Thus far we have concerned ourselves with definitions in probability theory and a few im-
portant probability distributions. Most of the time, however, we are in the situation of not
knowing the precise distribution from which a set of data have arisen, but of having to infer
a probability distribution from the observed data. This is the topic of statistical infer-

ence. We conclude this chapter by briefly describing some simple techniques for estimating
probability densities and evaluating the quality of those estimated densities.

2.11.1 Discrete probability densities: relative-frequency estima-
tion

Suppose that we are interested in estimating the Bernoulli parameter π associated with the
ordering preference of the English binomial {interest,principal} on the basis of ten tokens
collected from a corpus, with “success” arbitrarily associated with the ordering principal and
interest. Seven of them are principal and interest and three are interest and principal. The
simplest way for us to estimate the underlying Bernoulli distribution is to equate relative
frequency of occurrence with probability. In this case, we have seven of ten success so we
estimate π̂ = 7

10
.5 This process is called Relative Frequency Estimation.

We can generalize relative frequency estimation for use with multinomial trials. Suppose
that we observe N outcomes of a categorical variable that can take on some finite number r

5The ˆ symbol above the π indicates that this is an estimate of the parameter π which may or not be the
true underlying parameter value.
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〈SB,DO〉 〈SB, IO〉 〈DO,SB〉 〈DO, IO〉 〈IO,SB〉 〈IO,DO〉 Total
Count 478 59 1 3 20 9 570
Relative Freq. 0.839 0.104 0.001 0.005 0.035 0.016

Table 2.3: Frequency of grammatical functions on ordered pairs of full NPs in German
newspaper text, drawn from the NEGRA-II corpus (Kempen and Harbusch, 2004). SB
denotes “subject”, DO denotes “direct object”, and IO denotes direct object.

of different values. Table 2.3, for example, shows the counts of full NP pairs (presented in
the order in which they appear in the clause) obtained in a sample of a corpus of German
newspaper text.

In terms of probability theory, this categorical variable can be viewed as a discrete
multinomial-trial random variable, for which we have observed N outcomes (570, in the
case of Table 2.3). Once again we simply divide the count of each outcome by the total
count, as shown in the bottom line of Table 2.3. We will see in Section 4.3.1 that, in addi-
tion to being highly intuitive, relative frequency estimation for multinomial outcomes has a
deep theoretical justification.

2.11.2 Estimating continuous densities: histograms and kernel
density estimation

What about for continuous variables? Figure 2.4a plots the frequency of occurrence of F0 for-
mant frequency of the vowel A by adult male speakers in the classic study of Peterson and Barney
(1952).6 It is immediately apparent that relative frequency estimation is not suitable for
continuous densities; and if we were to treat the distribution over F0 formants as a discrete
distribution, we would run into the problem of data sparsity. For example, we would estimate
that P (F0 = 119Hz) = 0 even though there are many observations close to 119Hz.

One common technique for continuous density estimation is the use of histograms.
Constructing a histogram involves dividing the range of the random variable into K equally-
spaced bins and counting the number of observations that fall into each bin; K can be
chosen as seems appropriate to the dataset. These counts can then be normalized by the
total number of observations to achieve an estimate of the probability density. Figures 2.4b
and 2.4c show histograms of adult male speaker F0 frequency for 38-bin histograms of width
5Hz, starting at 95Hz and 94Hz respectively. Although the histogram determines a valid
continuous density, it has two weakness. First, it assigns zero probability to a number of
intervals for which the data seem to suggest possible outcomes (e.g., the 150–155Hz interval in
Figure 2.4b, and the 245–250Hz interval in Figure 2.4c). Second, the shape of the histogram
is quite sensitive to the exact positioning of the bins—this is apparent in the substantially
different shape of the two histograms in the 100–150Hz range.

A generally preferable approach is kernel density estimation. A kernel is simply

6The measurements reported in this dataset are rounded off to the nearest Hertz, so in Figure 2.4a they
are jittered to break ties.
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a weighting function that serves as a measure of the relevance of each observation to any
given point of interest on the range of a random variable. Technically, a kernel K simply
takes an observation xi and returns a non-negative function K(xi, ·) which distributes a total
probability mass of 1 over the range of the random variable.7 Hence we have

∑

x

K(xi, x) = 1 (2.26)

in the discrete case, or

∫

x

K(xi, x) dx = 1 (2.27)

in the continuous case. If one has only a single observation x1 of the outcome of a random
variable X, then the kernel density estimate of the probability density over X is simply
P (X = x) = K(x1, x). In general, if one has n observations x1, . . . , xn, then the kernel
density estimate for a point x is the average of the densities assigned to x by the kernel
function obtained from each observation:

p̂(x) =
1

n

n∑

i=1

K(xi, x) (2.28)

It is up to the researcher to choose the particular kernel function. Here, we give an example
for a continuous random variable; in the next section we give an example for discrete kernel
density estimation.

For continuous random variables, the normal kernel is perhaps the most popular
kernel; for an observation xi it simply allocates its probability mass according to a normal
density function with mean xi and standard deviation σ. The standard deviation is some-
times called the bandwidth of the kernel and denoted as b. The kernel density estimate
from a set of observations x1, . . . , xn using bandwidth b would be:

p̂(X = x) =
1

n
√
2πb2

n∑

i=1

exp

[
−(x− xi)

2

2b2

]

Figure 2.4d shows the kernel density estimate of adult male-speaker F0 frequency distri-
bution for b = 5, with the observations themselves superimposed on the F0-axis (just like
Figure 2.4a). Note that the kernel density estimate gives non-zero probability density to
the entire number line, and it is visibly non-zero for the entire span between the lowest
and highest observations; yet much of the nuance of the data’s empirical distribution is still
retained.

7Although a kernel serves as a type of distance metric, it is not necessarily a true distance; in particular,
it need not observe the triangle inequality.
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Figure 2.4: Adult male native English speaker F0 measurements for the vowel A from
Peterson and Barney (1952), together with histograms and a kernel density estimate of the
underlying distribution

Of course, there are many other possible kernel functions for continuous data than the
normal kernel. Another simple example is the rectangular kernel, which for an obser-
vation xi distributes a probability mass of 1 through a uniform distribution centered on xi

with width b. Figure 2.4e shows the result of applying this kernel with bandwidth b = 3 to
the same F0 data.8

One of the difficulties in kernel density estimation is the choice of bandwidth. This choice
is ultimately up to the researcher, but in the next section we will introduce some principles
that can help determine how good a given choice of bandwidth may be. Exercise 2.11 also
addresses this issue.

Histogram- and kernel-based density estimation is often called non-parametric esti-

mation. The term“non-parametric”turns up in many places in probability and statistics. In
density estimation, a non-parametric method is one whose estimated densities can grow arbi-
trarily complex as the amount of data used for estimation continues to grow. This contrasts
with parametric estimation, in which estimation is limited to a pre-specified parametric
family of models (covered in Chapter 4).

2.11.3 Kernel estimation for discrete densities

Kernel density estimation can also be useful for estimating discrete probability distributions
in which the number of possible outcomes is large in comparison to the number of observa-
tions, or even countably infinite. This is a common situation in the study of language. For
example, there has been considerable recent interest in estimating probability densities over
possible phonological forms for lexical items (e.g., Hayes and Wilson, 2007), to account for
phenomena such as gradience in speaker judgments of nonce word well-formedness. One way
of placing a density over the set of possible phonological forms is to define a kernel over pairs
of phoneme sequences.

8In case you try using the density() function in R to do rectangular kernel density estimation, the
bandwidth is defined differently—as the standard deviation of the kernel’s density function—and you need
to adjust the chosen bandwidth accordingly.

Roger Levy – Probabilistic Models in the Study of Language draft, November 6, 2012 26



As a simple example, let us consider the space of possible consonant-vowel-consonant
(CVC) lexical forms composed of the six phonemes /t/,/p/,/k/,/æ/,/2/, and/U/. There
are 27 possible such forms, and 18 of them occur in the English lexicon. Let us base our
kernel on the string-edit distance D(x, x′) between forms x and x′, which for these three-
phoneme sequences is simply the number of positions at which two strings differ—for exam-
ple, D(/pæt/, /tUt/) = 2. Less similar phoneme sequences should have a lower score in our
kernel, so let us define our kernel as

K(x, x′) ∝ 1

(1 +D(x, x′))3

We have used proportionality rather than equality here because of the requirement (Equa-
tion (2.26)) that the kernel sum to 1 over the complete space of possible outcomes {xj}.
We can renormalize the kernel just as we renormalize a probability distribution (see Sec-
tion 2.8), by defining for each observation xi a normalizing coefficient Zi =

∑
xj

1
(1+D(xi,xj))3

,

and dividing in this normalizing coefficient:

K(xi, x
′) =

1

Zi

1

(1 +D(x, x′))3

For our example, it turns out that Zi = 2.32 for all sequences xi.
Figure 2.5 shows the relative-frequency and kernel-density estimates for our toy problem.

Figure 2.5a shows the 18 forms in the English lexicon, and a relative-frequency estimate of
the distribution over possible forms if each such entry from the English lexicon is counted as
a single observation. Figure 2.5b shows the kernel density estimate. The unattested lexical
forms now have non-zero probability, and furthermore the probability of both attested and
unattested forms depends on how densely their neighborhoods in phonological space are
occupied.

2.11.4 Kernel density estimation and exemplar models

As is made explicit in Equation (2.28), computing the probability of an outcome using kernel
density estimation (KDE) involves iterating explicitly over the entire set of observations y.
From a computational point of view, a distinctive property of KDE is that it requires the
storage and access of complete datasets. In theoretical linguistics, psycholinguistics, and
computational linguistics, models with this requirement are often called exemplar models.
Exemplar models have received considerable attention in these fields as candidate models of
language acquisition and use. For example, Bailey and Hahn (2001) adapted the exemplar
model of Nosofsky (1986) to the problem of inducing probability distributions over possible
lexical forms (Section 2.11.3). In syntax, the Data-Oriented Parsing model (Scha, 1990;
Bod, 1992, 1998, 2006) is perhaps the best known formalized exemplar model. A point
that cannot be over-emphasized is that the core substance of an exemplar model consists of
(a) the representation of the space of possible exemplars, and (b) the metric of similarity
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Figure 2.5: Kernel density estimation for lexical forms

between points in the exemplar representation space. In kernel density estimation, the choice
of kernel constitutes the metric of similarity.

One of the common criticisms of exemplar-based models is on the grounds that it is
psychologically implausible to imagine that all the exemplars in a language user’s experience
are retained, and are exhaustively accessed whenever the probability of a given point in the
exemplar representation space is needed. We won’t take sides on this issue here. However,
in future chapters we do consider methods that do not have the requirement of exhaustive
storage and recall of the dataset.

2.11.5 Evaluating estimated probability densities

You now have basic tools for estimating probability densities from data. Even after this
brief introduction to density estimation it should be painfully obvious that there are many
ways to estimate a density from a given dataset. From the standpoint of modeling linguistic
cognition, this is in fact advantageous because different approaches to estimation encode
different learning biases. This means that density estimation procedures as models of human
language learning can be evaluated in terms of how closely they reflect the inferences made
by language learners from exposure to finite data.

There are many times, however, when you will also be interested in evaluating how well
a particular density estimate intrinsically encodes the data from which it is derived. Here we
cover two approaches to this type of evaluation that enjoy wide currency: classification
accuracy and likelihood.
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Classification accuracy

For discrete random variables, the simplest method of evaluating the performance of a den-
sity estimate is classification accuracy. Prerequisite to this notion is the notion of
prediction: for a given context (i.e. conditioning on some known information), what value
of a discrete random variable X do I expect? Suppose that I have a probability density
estimate based on some observations y and I expect to see n new observations. My predic-
tions for the observed outcomes in these new observations (before I actually see them) can
be labeled ŷ1, . . . , ŷn. My classification accuracy is simply the proportion of these predic-
tions that turn out to be correct. For example, suppose that for the German grammatical
function ordering data of Section 2.11.1 I expect to see three new observations. Without any
further information, the most sensible thing for me to do is simply to predict 〈SB,DO〉 all
three times, since I estimated it to be the most likely outcome. If the actual outcomes are
〈SB,DO〉, 〈SB, IO〉, 〈SB,DO〉, then my classification accuracy is 2

3
.

When we obtain a dataset all at once, then a common practice for evaluating the clas-
sification accuracy of a density estimation technique for making predictions from that data
is to remove a small part of the dataset and use the rest to construct the density estimate.
We then evaluate the classification accuracy of the density estimate on the small part of the
dataset that was removed. For example, in the German word order data we might draw 10%
of the data (57 observations)—say 45 of 〈SB,DO〉, 7 of 〈SB, IO〉, 3 of 〈IO,SB〉, and two of
〈IO,DO〉. In the remaining 90% of the data, 〈SB,DO〉 remains the most likely outcome,
so we predict that for all 57 of the removed observations. Our classification accuracy is thus
45
57

≈ 0.79. This approach is called held-out evaluation.

Of course, held-out evaluation has some disadvantages as well, notably that the evaluation
is based on only a small fraction of available data and hence will be noisy. Another widely
used technique is cross-validation, in which we split our dataset into k equally sized
portions. We then produce k different held-out evaluations of classification accuracy, each
portion in turn serving as the held-out portion of the dataset, and average the classification
accuracy across the folds. As a simple example, suppose we collected a corpus of {night,
day} binomials, with 160 examples of day and night (d) and 140 examples of night and day
(n). On 4-fold cross-validation, we might obtain the following outcomes:

Fold # d held out # n held out Prediction Accuracy
1 34 41 n 0.45
2 40 35 d 0.53
3 48 27 d 0.36
4 38 37 d 0.51
Total 0.46

If computing the predictions from observed data is fast, then the best kind of cross-validation
is generally leave-one-out cross-validation, where there are as many folds as there are
observations.
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Likelihood-based evaluation

Classification accuracy is“brittle”in the sense that it discards a great deal of information from
a density estimate. As a simple example, for the binomial {night,day} the best classification
decision is d if P̂ (d) > 0.5; but P̂ (d) = 0.51 and P̂ (d) = 0.99 are very different distributions,
and we’d like to distinguish the types of predictions they make. Furthermore, classification
accuracy doesn’t even make sense in the continuous random variable setting. We can address
both these problems, however, via the concept of likelihood, which we briefly encountered
in Section 2.4.1. The likelihood under a density estimate P̂ of a set of data y is simply

P (y|P̂ ) (2.29)

The likelihood is sometimes viewed as a function of a set of observations y, and sometimes
(see Chapter 4) viewed as a property of the estimate itself P̂ . If the observations yi are
assumed to be independent of one another, then we can rewrite the likelihood as

P (y|P̂ ) =
n∏

i=1

P (yi|P̂ ) (2.30)

Since likelihoods can be very small, and datasets can be very large, explicitly computing the
product in Equation (2.30) can lead to problems with computational underflow. This can
be avoided by computing the log-likelihood; in log-space you are extremely unlikely to
have computational underflow or overflow problems. Since the log of a product is the sum
of a log, you’ll usually see log-likelihood computed as in Equation (2.31) below:

logP (y|P̂ ) =
n∑

i=1

logP (yi|P̂ ) (2.31)

Likelihood can be evaluated with respect to the data used to estimate the density, with re-
spect to held-out data, or using cross-validation. Evaluating log-likelihood from the data used
to estimate the model is, however, a dangerous enterprise. This is illustrated in Figures 2.6
through 2.8, for the example from Section 2.11.2 of estimating F0 formant frequency through
normal-kernel density estimation. Figure 2.6 illustrates the change in estimated probabil-
ity density as a result of choosing different bandwidths. The narrower the bandwidth, the
more of the probability mass is focused around the observations themselves. As a result,
the log-likelihood of the data used to estimate the density increases monotonically as the
bandwidth decreases (Figure 2.7). The likelihood as evaluated with six-fold cross-validation,
on the other hand reaches a maximum at bandwidth b ≈ 10Hz (Figure 2.8). The discrepancy
between the shapes of the curves in Figures 2.7 and 2.8 for b < 10—and also of the generally
much higher log-likelihoods in the former figure—reveals that the narrow-bandwidth density
estimates are overfitting—intuitively, they mimic the observed data too closely and gen-
eralize too little. The cross-validated likelihood reveals that the assessment of The ability
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Figure 2.9: The relative frequency distributions of the first and second words of sentences of
the parsed Brown corpus

of the narrow-bandwidth density estimate to closely mimic observed data is a kind of com-
plexity of the estimation process. Finding a balance between complexity and generalization
is a hallmark issue of statistical inference, and we will see this issue arise again in numerous
contexts throughout the book.

2.12 Surprisal, entropy, and relative entropy

One of the most fundamental views of probability is as quantifying our degree of uncertainty
about events whose outcomes are unknown. Intuitively, the more uncertain we are as to
an event’s outcome, the more broadly distributed will be the probability mass over the
event’s possible outcomes. Likewise, we can say that learning the event’s outcome gives us
information about the world that we did not previously have. The quantity of information
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Figure 2.10: The relative frequency distributions of the parts of speech of the first and second
words of sentences of the parsed Brown corpus

conveyed by the outcome x of a discrete random variable is often measured by the surprisal,
alternatively called the Shannon information content or self-information, of the
outcome, defined as 1

log2 P (x)
or equivalently − log2 P (x); the unit of surprisal is the bit, which

is the amount of information conveyed by the flip of a fair coin. The surprisal of an event is
the minimum number of bits required to convey the event’s occurrence given knowledge of
the underlying probability distribution from which the event was generated.

As an example, Figure ?? shows the relative frequencies (in descending order) of all words
observed as the first word of at least one sentence in the parsed Brown corpus, excluding
punctuation (Marcus et al., 1994). The ten most common of these words are labeled in the
graph. If we oversimplify slightly and take these relative frequencies to be the true underlying
word probabilities, we can compute the surprisal value that each word would have if it is
seen as the first word in a new sentence drawn at random from the same corpus. These
surprisal values appear above each of the ten labeled words. We can see that although there
are thousands of different words attested to start sentences in this corpus, none of the ten
most common conveys more than six bits of information (for reference, 26 = 64).

The expected surprisal of a discrete random variable X, or the average information that
an outcome of X conveys, is known as its entropy H(X), defined as:

H(X) =
∑

x

P (x) log2
1

P (x)
(2.32)

or equivalently

= −
∑

x

P (x) log2 P (x) (2.33)

Applying this definition we find that the entropy of the distribution over first words in the
sentence is 7.21, considerably higher than the entropy for second words, which is 9.51. The
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precise values of these figures should be taken with a considerable grain of salt, because the
data are quite sparse (most words only occur a handful of times, and many possible words
don’t appear at all), but they suggest that there is considerably more uncertainty about
the second word in a sentence than about the first word of the sentence (recall, of course,
that these probabilities do not at this point take into account any information about the
context in which the word appears other than how many words preceded it in the sentence).
Figure 2.10 shows relative frequency plots for the parts of speech of these first and second
words (note, interestingly, that while PRP, or preposition, is the most frequent part of speech
for first words, the most frequent word is a determiner). Repeating the calculation for parts
of speech yields entropies of 3.33 and 3.8 for the first and second words respectively. Once
again the entropy for the second word is greater than the first word, though by a smaller
amount than in the word-level calculation (perhaps due to the fact that second words are
likelier than first words to be open-class parts of speech, which are much easier to predict at
the part-of-speech level than at the word-specific level).

Finally, consider the case where one has two different probability distributions P and Q
over the same event space. Note that in the definition of entropy in Equation (2.32) the
same probability function is used twice; one could imagine carrying out a similar calculation
using each of P and Q once:

∑

x

P (x) log2
1

Q(x)
(2.34)

(2.35)

This is known as cross entropy. It is useful to think of the distribution Q appearing inside
the logarithm as a guess distribution and the other distribution P as the true, or reference,
distribution. Cross entropy quantifies how many bits are required on average to convey an
event drawn from P when one does not know P and one’s best guess of the distribution is
Q. To determine how much worse this is than using the true distribution (and it is never
better!), we can subtract out the entropy of P ; this gives us what is called the relative

entropy or Kullback-Leibler Divergence (or KL divergence) from Q to P :

D(P ||Q) =
∑

x

P (x) log2
P (x)

Q(x)
(2.36)

The KL divergence can be thought of as the penalty, in bits, incurred by coding outcomes
from P using Q. It is never negative and is zero only when P = Q. In our most recent
example, if we call the two distributions over part-of-speech tags P1 for first words and P2

for second words, we find that the KL divergence D(P1||P2) = 0.92. (there are some parts of
speech appearing in the second-word position which do not appear in the first-word position,
such as the possessive clitic ’s, which is represented as a separate word in the Penn Treebank,
so that we cannot take the KL divergence from P1 to P2; it would be infinite.) This KL
divergence is well over a third the size of the entropy of the true distributions, indicating
that the part of speech distributions are very different for first and second words.
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Surprisal, entropy, and relative entropy are essential conceptual building blocks in infor-

mation theory (Shannon, 1948), which among many other important ideas and results
includes the source coding theorem, which gives theoretical bounds on the compress-
ibility of any information source, and the noisy channel theorem, which gives theoretical
bounds on the possible rate of error-free information transfer in noisy communication sys-
tems. Cover and Thomas (1991) is an authoritative text on many key areas of information
theory; MacKay (2003) is another accessible text covering these two theorems.

> roundN <- function(x,decimals=2,fore=5) sprintf(paste("%",fore,".",decimals,"f",sep="

2.13 Exercises

Exercise 2.1: Conditional independence and set intersection†

Show that if A and B are conditionally independent given C and P (A|C) > 0, then
P (B|A ∩C) = P (B|C). Hint: one natural solution involves making use of the definition of
conditional independence in two different ways.

Exercise 2.2: Loss of conditional independence∗∗

Give an example in words where two events A and B are conditionally independent given
some state of knowledge C, but when another piece of knowledge D is learned, A and B lose
conditional independence.

Exercise 2.3: tea in Wonderland
♣

1. You obtain infinitely many copies of the text Alice in Wonderland and decide to play
a word game with it. You cut apart each page of each copy into individual letters,
throw all the letters in a bag, shake the bag, and draw three letters at random from
the bag. What is the probability that you will be able to spell tea? What about tee?
[Hint: see Section 2.5.2; perhaps peek at Section A.8 as well.]

2. Why did the problem specify that you obtained infinitely many copies of the text? Sup-
pose that you obtained only one copy of the text? Would you have enough information
to compute the probability of being able to spell tea? Why?

Exercise 2.4: Bounds on probability density functions∗

• Discrete random variables are governed by probability mass functions, which are bounded
below by zero and above by 1 (that is, every value a probability mass function must be
at least zero and no more than 1). Why must a probability mass function be bounded
above by 1?

• Continuous random variables are governed by probability density functions, which are
bounded below by zero. What are probability density functions bounded above by?
Why?
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Exercise 2.5: Probabilities in the constituent-order model♣

For the constituent-order example given in 2.8, let γ1 = 0.6, γ2 = 0.4, and γ3 = 0.3.
Compute the probabilities of all six possible word orders.

Exercise 2.6: Parameters of the constituent-order model∗∗

In the constituent-order example given in 2.8, I mentioned that we would like to interpret
the probability of each parameter γi analogously to the success parameter of a single Bernoulli
trial, so that the probability that S ≺ O is γ1, the probability that S ≺ V is γ2, and the
probability that O ≺ V is γ3. Given the mass function F actually used in the example, is
the probability that S ≺ O actually γ1? Show your work.

Exercise 2.7: More on the constituent-order model

Play around with specific parameter values for the constituent-order model to get a feel
for it. We know that it is more constrained than a general six-class multinomial distribution,
since it has only three parameters instead of five. Qualitatively speaking, what kinds of
distributions over the six logically possible word orders is it incapable of modeling?

Exercise 2.8: Expectation of a uniform random variable∗

Prove mathematically that the expectation of a uniform random variable X on [a, b] is
E(X) = a+b

2
. (This involves a simple integration; consult A.6 if you need a refresher.)

Exercise 2.9: Variance of a uniform random variable∗∗

Prove that the variance of a continuous, uniformly distributed random variable X on

[a, b] is (b−a)2

12
. [Sections 2.7.1 and 2.9.2]

Exercise 2.10: Normal distributions♣

For adult female native speakers of American English, the distribution of first-formant
frequencies for the vowel [E] is reasonably well modeled as a normal distribution with mean
608Hz and standard deviation 77.5Hz. What is the probability that the first-formant fre-
quency of an utterance of [E] for a randomly selected adult female native speaker of American
English will be between 555Hz and 697Hz?

Exercise 2.11: Assessing optimal kernel bandwidth through cross-validation†,Ï

Use leave-one-out cross-validation to calculate the cross-validated likelihood of kernel
density estimates (using a normal kernel) of adult male speaker [A] and [i] F2 formants from
the Peterson and Barney dataset. Plot the cross-validated likelihood as a function of kernel
bandwidth. Are the bandwidths that work best for [A] and [i] similar to each other? Explain
your results.

Exercise 2.12: Kernel density estimation and change of variables

Complete Exercise 2.11, but this time change the formant frequency measurements from
Hertz to log-Hertz before carrying out bandwidth selection. Once you’re done, compare
the optimal bandwidths and the corresponding density estimates obtained using log-Hertz
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measurements with that obtained using Hertz measurements. How different are they?

Exercise 2.13: Kernels in discrete linguistic spaces‡

Construct your own kernel over the space of 27 CVC lexical forms used in Section 2.11.3.
With the 18 attested forms listed in that section, use leave-one-out cross-validation to com-
pute the cross-validated likelihood of your kernel. Does it do better or worse than the original
kernel?

Exercise 2.14: Exemplar-based model of phonotactic knowledge‡

The file syllCounts contains phonetic representations of attested word-initial syllables
in disyllabic words of English, based on the CELEX lexical database, together with their
frequencies of occurrence. Find a partner in your class. Each of you should independently
construct a kernel over the phonetic representations of these word-initial syllables. Using ten-
fold cross-validation, compute the cross-validated likelihood of kernel density estimtes using
each of your kernels. Compare the results, noting which syllables each kernel did better on.
Now join forces and try to construct a third kernel which combines the best qualities of your
two kernels, and (hopefully) has a higher cross-validated likelihood than either one.
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Chapter 3

Multivariate Probability

3.1 Joint probability mass and density functions

Recall that a basic probability distribution is defined over a random variable, and a random
variable maps from the sample space to the real numbers.What about when you are interested
in the outcome of an event that is not naturally characterizable as a single real-valued number,
such as the two formants of a vowel?

The answer is simple: probability mass and density functions can be generalized over
multiple random variables at once. If all the random variables are discrete, then they are
governed by a joint probability mass function; if all the random variables are con-
tinuous, then they are governed by a joint probability density function. There are
many things we’ll have to say about the joint distribution of collections of random variables
which hold equally whether the random variables are discrete, continuous, or a mix of both.
1 In these cases we will simply use the term “joint density” with the implicit understanding
that in some cases it is a probability mass function.

Notationally, for random variables X1, X2, · · · , XN , the joint density is written as

p(X1 = x1, X2 = x2, · · · , XN = xn) (3.1)

or simply

p(x1, x2, · · · , xn) (3.2)

for short.

1If some of the random variables are discrete and others are continuous, then technically it is a probability
density function rather than a probability mass function that they follow; but whenever one is required to
compute the total probability contained in some part of the range of the joint density, one must sum on the
discrete dimensions and integrate on the continuous dimensions.
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3.1.1 Joint cumulative distribution functions

For a single random variable, the cumulative distribution function is used to indicate the
probability of the outcome falling on a segment of the real number line. For a collection of N
random variables X1, . . . , XN (or density), the analogous notion is the joint cumulative

distribution function, which is defined with respect to regions of N -dimensional space.
The joint cumulative distribution function, which is sometimes notated as F (x1, · · · , xn), is
defined as the probability of the set of random variables all falling at or below the specified
values of Xi:

2

F (x1, · · · , xn)
def
= P (X1 ≤ x1, · · · , XN ≤ xn)

The natural thing to do is to use the joint cpd to describe the probabilities of rectangular
volumes. For example, suppose X is the f1 formant and Y is the f2 formant of a given
utterance of a vowel. The probability that the vowel will lie in the region 480Hz ≤ f1 ≤
530Hz, 940Hz ≤ f2 ≤ 1020Hz is given below:

P (480Hz ≤ f1 ≤ 530Hz, 940Hz ≤ f2 ≤ 1020Hz) =

F (530Hz, 1020Hz)− F (530Hz, 940Hz)− F (480Hz, 1020Hz) + F (480Hz, 940Hz)

and visualized in Figure 3.1 using the code below.

3.2 Marginalization

Often we have direct access to a joint density function but we are more interested in the
probability of an outcome of a subset of the random variables in the joint density. Obtaining
this probability is called marginalization, and it involves taking a weighted sum3 over the
possible outcomes of the random variables that are not of interest. For two variables X, Y :

2Technically, the definition of the multivariate cumulative distribution function is

F (x1, · · · , xn) def
= P (X1 ≤ x1, · · · , XN ≤ xn) =

∑

~x≤〈x1,··· ,xN 〉
p(~x) [Discrete] (3.3)

F (x1, · · · , xn) def
= P (X1 ≤ x1, · · · , XN ≤ xn) =

∫ x1

−∞
· · ·

∫ xN

−∞
p(~x)dxN · · · dx1 [Continuous] (3.4)

3or integral in the continuous case
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Figure 3.1: The probability of the formants of a vowel landing in the grey rectangle can be
calculated using the joint cumulative distribution function.

P (X = x) =
∑

y

P (x, y)

=
∑

y

P (X = x|Y = y)P (y)

In this case P (X) is often called a marginal density and the process of calculating it from
the joint density P (X, Y ) is known as marginalization.

As an example, consider once again the historical English example of Section 2.4. We
can now recognize the table in I as giving the joint density over two binary-valued random
variables: the position of the object with respect to the verb, which we can denote as X,
and the pronominality of the object NP, which we can denote as Y . From the joint density
given in that section we can calculate the marginal density of X:

P (X = x) =

{
0.224 + 0.655 = 0.879 x = Preverbal

0.014 + 0.107 = 0.121 x = Postverbal
(3.5)

Additionally, if you now look at the old English example of Section 2.4.1 and how we
calculated the denominator of Equation 2.7, you will see that it involved marginalization
over the animacy of the object NP. Repeating Bayes’ rule for reference:

P (A|B) =
P (B|A)P (A)

P (B)

It is very common to need to explicitly marginalize over A to obtain the marginal prob-
ability for B in the computation of the denominator of the right-hand side.

Roger Levy – Probabilistic Models in the Study of Language draft, November 6, 2012 39



3.3 Linearity of expectation, covariance, correlation,

and variance f sums of random variables

3.3.1 Linearity of the expectation

Linearity of the expectation is an extremely important property and can expressed in two
parts. First, if you rescale a random variable, its expectation rescales in the exact same way.
Mathematically, if Y = a+ bX, then E(Y ) = a+ bE(X).

Second, the expectation of the sum of random variables is the sum of the expectations.
That is, if Y =

∑
i Xi, then E(Y ) =

∑
i E(Xi). This holds regardless of any conditional

dependencies that hold among the Xi.
We can put together these two pieces to express the expectation of a linear combination

of random variables. If Y = a+
∑

i biXi, then

E(Y ) = a+
∑

i

biE(Xi) (3.6)

This is incredibly convenient. We’ll demonstrate this convenience when we introduc the
binomial distribution in Section 3.4.

3.3.2 Covariance

The covariance between two random variables X and Y is a measure of how tightly the
outcomes of X and Y tend to pattern together. It defined as follows:

Cov(X, Y ) = E[(X − E(X))(Y − E(Y ))]

When the covariance is positive, X tends to be high when Y is high, and vice versa; when
the covariance is negative, X tends to be high when Y is low, and vice versa.

As a simple example of covariance we’ll return once again to the Old English example of
Section 2.4; we repeat the joint density for this example below, with the marginal densities
in the row and column margins:

(1)

Coding for Y
0 1

Coding for X Pronoun Not Pronoun
0 Object Preverbal 0.224 0.655 .879
1 Object Postverbal 0.014 0.107 .121

.238 .762

We can compute the covariance by treating each of X and Y as a Bernoulli random variable,
using arbitrary codings of 1 for Postverbal and Not Pronoun, and 0 for Preverbal and
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Pronoun. As a result, we have E(X) = 0.121, E(Y ) = 0.762. The covariance between the
two can then be computed as follows:

(0− 0.121)× (0− .762)× .224 (for X=0,Y=0)

+(1− 0.121)× (0− .762)× 0.014 (for X=1,Y=0)

+(0− 0.121)× (1− .762)× 0.655 (for X=0,Y=1)

+(1− 0.121)× (1− .762)× 0.107 (for X=1,Y=1)

=0.014798

If X and Y are conditionally independent given our state of knowledge, then Cov(X, Y )
is zero (Exercise 3.2 asks you to prove this).

3.3.3 Covariance and scaling random variables

What happens to Cov(X, Y ) when you scale X? Let Z = a + bX. It turns out that the
covariance with Y increases by b (Exercise 3.4 asks you to prove this):

Cov(Z, Y ) = bCov(X, Y )

As an important consequence of this, rescaling a random variable by Z = a+ bX rescales its
variance by b2: Var(Z) = b2Var(X) (see Exercise 3.3).

3.3.4 Correlation

We just saw that the covariance of word length with frequency was much higher than with
log frequency. However, the covariance cannot be compared directly across different pairs of
random variables, because we also saw that random variables on different scales (e.g., those
with larger versus smaller ranges) have different covariances due to the scale. For this reason,
it is commmon to use the correlation ρ as a standardized form of covariance:

ρXY =
Cov(X, Y )√

V ar(X)V ar(Y )

[1] 0.020653248 -0.018862690 -0.009377172 0.022384614

In the word order & pronominality example above, where we found that the covariance
of verb-object word order and object pronominality was 0.01, we can re-express this rela-
tionship as a correlation. We recall that the variance of a Bernoulli random variable with
success parameter π is π(1−π), so that verb-object word order has variance 0.11 and object
pronominality has variance 0.18. The correlation between the two random variables is thus

0.01√
0.11×0.18

= 0.11.

If X and Y are independent, then their covariance (and hence correlation) is zero.
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3.3.5 Variance of the sum of random variables

It is quite often useful to understand how the variance of a sum of random variables is
dependent on their joint distribution. Let Z = X1 + · · ·+Xn. Then

Var(Z) =
n∑

i=1

Var(Xi) +
∑

i 6=j

Cov(Xi, Xj) (3.7)

Since the covariance between conditionally independent random variables is zero, it follows
that the variance of the sum of pairwise independent random variables is the sum of their
variances.

3.4 The binomial distribution

We’re now in a position to introduce one of the most important probability distributions for
linguistics, the binomial distribution. The binomial distribution family is characterized
by two parameters, n and π, and a binomially distributed random variable Y is defined as
the sum of n identical, independently distributed (i.i.d.) Bernoulli random variables, each
with parameter π.

For example, it is intuitively obvious that the mean of a binomially distributed r.v. Y
with parameters n and π is πn. However, it takes some work to show this explicitly by
summing over the possible outcomes of Y and their probabilities. On the other hand, Y
can be re-expressed as the sum of n Bernoulli random variables Xi. The resulting
probability density function is, for k = 0, 1, . . . , n: 4

P (Y = k) =

(
n

k

)
πk(1− π)n−k (3.8)

We’ll also illustrate the utility of the linearity of expectation by deriving the expectation
of Y . The mean of each Xi is trivially π, so we have:

E(Y ) =
n∑

i

E(Xi) (3.9)

=
n∑

i

π = πn (3.10)

which makes intuitive sense.
Finally, since a binomial random variable is the sum of n mutually independent Bernoulli

random variables and the variance of a Bernoulli random variable is π(1 − π), the variance
of a binomial random variable is nπ(1− π).

4Note that
(
n
k

)
is pronounced “n choose k”, and is defined as n!

k!(n−k)! . In turn, n! is pronounced “n

factorial”, and is defined as n× (n− 1)× · · · × 1 for n = 1, 2, . . . , and as 1 for n = 0.
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3.4.1 The multinomial distribution

The multinomial distribution is the generalization of the binomial distribution to r ≥ 2
possible outcomes. (It can also be seen as the generalization of the distribution over multino-
mial trials introduced in Section 2.5.2 to the case of n ≥ 1 trials.) The r-class multinomial is
a sequence of r random variablesX1, . . . , Xr whose joint distribution is characterized by r pa-
rameters: a size parameter n denoting the number of trials, and r−1 parameters π1, . . . , πr−1,
where πi denotes the probability that the outcome of a single trial will fall into the i-th class.

(The probability that a single trial will fall into the r-th class is πr
def
= 1 − ∑r−1

i=1 πi, but
this is not a real parameter of the family because it’s completely determined by the other
parameters.) The (joint) probability mass function of the multinomial looks like this:

P (X1 = n1, · · · , Xr = nr) =

(
n

n1 · · ·nr

) r∏

i=1

πi (3.11)

where ni is the number of trials that fell into the r-th class, and
(

n
n1···nr

)
= n!

n1!...nr!
.

3.5 Multivariate normal distributions

Finally, we turn to the multivariate normal distribution. Recall that the univari-
ate normal distribution placed a probability density over outcomes of a single continuous
random variable X that was characterized by two parameters—mean µ and variance σ2.
The multivariate normal distribution in N dimensions, in contrast, places a joint probability
density on N real-valued random variables X1, . . . , XN , and is characterized by two sets of
parameters: (1) a mean vector µ of length N , and (2) a symmetric covariance matrix (or
variance-covariance matrix) Σ in which the entry in the i-th row and j-th column expresses
the covariance between Xi and Xj. Since the covariance of a random variable with itself is
its variance, the diagonal entries of Σ are the variances of the individual Xi and must be
non-negative. In this situation we sometimes say that X1, . . . , XN are jointly normally

distributed.
The probability density function for the multivariate normal distribution is most easily ex-

pressed using matrix notation (Section A.9); the symbol x stands for the vector 〈x1, . . . , xn〉:

p(x) =
1√

(2π)N |Σ|
exp

[
−(x− µ)TΣ−1(x− µ)

2

]
(3.12)

For example, a bivariate normal distribution (N = 2) over random variables X1 and
X2 has two means µ1, µ2, and the covariance matrix contains two variance terms (one for
X1 and one for X2), and one covariance term showing the correlation between X1 and Y2.

The covariance matrix would look like

(
σ2
11 σ2

12

σ2
12 σ2

22

)
. Once again, the terms σ2

11 and σ2
22 are
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Figure 3.2: Visualizing the multivariate normal distribution

simply the variances of X1 and X2 respectively (the subscripts appear doubled for notational
consistency). The term σ2

12 is the covariance between the two axes. 5 Figure 3.2 visualizes a

bivariate normal distribution with µ = (0, 0) and Σ =

(
1 1.5
1.5 4

)
. Because the variance is

larger in the X2 axis, probability density falls off more rapidly along the X1 axis. Also note
that the major axis of the ellipses of constant probability in Figure 3.2b does not lie right
on the X2 axis, but rather is at an angle reflecting the positive covariance.

The multivariate normal distribution is very useful in modeling multivariate data such
as the distribution of multiple formant frequencies in vowel production. As an example,
Figure 3.3 shows how a large number of raw recordings of five vowels in American English
can be summarized by five “characteristic ellipses”, one for each vowel. The center of each
ellipse is placed at the empirical mean for the vowel, and the shape of the ellipse reflects the
empirical covariance matrix for that vowel.

In addition, multivariate normal distributions plays an important role in almost all hier-
archical models, covered starting in Chapter 8.

5The probability density function works out to be

p(x1, x2) =
1

2π
√
σ2
11σ

2
22 − σ4

12

exp

[
(x1 − µ1)

2σ2
22 − 2(x1 − µ1)(x2 − µ2)σ

2
12 + (x2 − µ2)

2σ2
11

σ2
11σ

2
22 − σ4

12

]

Note that if σ11 is much larger than σ22, then x2−µ2 will be more important than x1−µ1 in the exponential.
This reflects the fact that if the variance is much larger on the X1 axis than on the X2 axis, a fixed amount
of deviation from the mean is much less probable along the x2 axis.
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(b) Representation as multivariate normal
distributions. The character is placed at
the empirical mean for each vowel, and
the covariance structure of each vowel is
represented by an equiprobability ellipse

Figure 3.3: F1 and F2 formant frequency representations using multivariate normal distri-
butions, based on the data of Peterson and Barney (1952)

3.5.1 The sum of jointly normal random variables

Yet another attractive property of the multivariate normal distribution is that the sum of
a set of jointly normal random variables is itself a normal random variable. The mean and
variance of the sum can be computed based on the formulae given in Sections 3.3.1 and 3.3.5.
So if 〈X1, . . . , Xn〉 are jointly normal with mean 〈µ1, . . . , µn〉 and covariance matrix Σ, then
Z = X1+· · ·+Xn is normally distributed with mean

∑n
i=1 µi and variance

∑n
i=1 σ

2
i +

∑
i 6=j σij .

3.6 The central limit theorem

The central limit theorem is a powerful result from probability theory that states that
the sum of a large quantity of i.i.d. random variables will have an approximately normal
distribution, regardless of the distribution of the individual random variables. More formally,
suppose that we have n i.i.d. random variables Xi, with Y = X1 + · · ·+Xn. From linearity
of the variance, we know that Y ’s mean is µY = nE[Xi], and its variance is σ2

Y = nσ2
Xi
. The

central limit theorem states that as the number n of random variables grows, the distribution
of the random variable Z = Y−µY

σY
approaches that of a standard normal random variable.

The central limit theorem traditionally serves as the basis for using the normal distribu-
tion to model the outcome of a complex process with many underlying contributing factors.
Exercise 3.12 explores a simple example illustrating the truth of the theorem, showing how
a binomial distribution with large n can be approximated by the normal distribution.
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3.7 Joint entropy, conditional entropy, and mutual in-

formation

In Section 2.12 we introduced the basic information-theoretic ideas of surprisal and entropy.
With multivariate probability, there is not much more to say about surprisal: all there is to
say is that the surprisal of the joint outcome of multiple random variables is the log of the
inverse of the joint probability of outcomes:

log
1

P (x1, x2, . . . , xn)
or − logP (x1, x2, . . . , xn). (3.13)

However, there is much more to say about entropies. In the rest of this section we will
limit the discussion to cases where there are two random variables X and Y , but most of
what is discussed can be generated to collections of arbitrary quantities of random variables.

We begin by defining the joint entropy of X and Y analogously from the surprisal of
a joint outcome:

H(X, Y ) =
∑

x,y

P (x, y) log
1

P (x, y)
(3.14)

What gets really interesting is when we break down the joint entropy into its constituent
parts. We start by imagining situations in which we obtain knowledge of X while remaining
ignorant of Y . The average entropy that Y will have after we learn about X is called the
conditional entropy of Y given X and is notated as follows:

H(Y |X) =
∑

x

P (x)
∑

y

P (y|x) log2
1

P (y|x) (3.15)

where P (x) is the marginal probability of x. Note that this equation follows simply from
the definition of expectation. Recall that in Section 2.12 we showed the distributions and
entropies of non-punctuation words and their corresponding parts of speech. Returning to
this example and slightly modifying the dataset (now excluding all sentences in which either
the first or the second word was a punctuation term, a more stringent criterion), we find
that the entropy of the part of speech for the second word is 3.66 and that its conditional
entropy given the first word’s part of speech is 2.43. That is, the first word removes about
a third of the entropy of the second word!

Next, we can ask how much information we would lose regarding the joint distribution
of X and Y if we were to treat the two variables as independent. Recall once again from
Section 2.12 that the KL divergence from Q to P measures the penalty incurred by using
Q to approximate P . Here, let us define Q(x, y) = PX(x)PY (y) where PX and PY are the
marginal probabilities for X and Y respectively. The KL divergence from Q to P is known
as the mutual information between X and Y and is defined as

I(X;Y ) =
∑

x,y

P (x, y) log
P (x, y)

PX(x)PY (y)
(3.16)
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Figure 3.4: Entropy and mutual information for two random variables as a Venn diagram.
Circle sizes and positions reflect the entropies of our example, where X is the first-word part
of speech and Y is the second-word part of speech.

In our example, the mutual information between the parts of speech for the first and
second words comes out to 1.23. You may notice that the three numbers we have just seen
stand in a very simple relationship: 3.66 = 2.43 + 1.23. This is no coincidence! In general,
given any two random variables X and Y , the entropy of Y can always be decomposed as
precisely the sum of the mutual information—which measures how much X tells you about
Y—and the conditional entropy—which measures how much X doesn’t tell you about Y :

H(Y ) = I(X;Y ) +H(Y |X) and likewise H(X) = I(X;Y ) +H(X|Y ). (3.17)

There is one more remarkable decomposition to be had. In our example, the entropy
of the first-word part of speech is 3.38, and the joint entropy for the two words is 5.81. In
general, the joint entropy of X and Y is the sum of the individual variables’ entropies minus
the mutual information—which measures the redundancy between X and Y :

H(X, Y ) = H(X) +H(Y )− I(X;Y ) (3.18)

In our case, 3.38 + 3.66 - 1.23 = 5.81. This decomposition arises from the original definition
of mutual information as the coding penalty incurred for assuming independence between
two variables.

In closing this section, let us notice that mutual information comes up in both an asym-
metric decomposition—in the decomposition of H(Y ) as how much information X gives
about Y—and in a symmetric decomposition—in the relationship between a joint entropy
and the marginal entropies. For two random variables, the complete set of relations among
the joint entropies, individual-variable entropies, conditional entropies, and mutual informa-
tion can be depicted in a Venn diagram, as in Figure 3.4. The relations described in this
section are well worth reviewing repeatedly, until they become second nature.
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3.8 Exercises

Exercise 3.1: Simpler formula for variance.
Show from the definition of the variance as Var(X) ≡ E[(X − E(X))2] that it can

equivalently be written as Var(X) = E[X2] − E[X]2, which we stated without proof in
Section 2.9.2. [Section 3.3.1]

Exercise 3.2: Covariance of conditionally independent random variables.
Use linearity of the expectation to prove that if two random variables X and Y are

conditionally independent given your state of knowledge, then Cov(X, Y ) = 0 under this
state of knowledge. (Hint: you can rewrite

∑
x,y Xp(X = x)Y p(Y = y) as

∑
xXp(X =

x)
∑

y Y p(Y = y), since X and p(X = x) are constant with respect to y.)

Exercise 3.3: ♣

• What is the covariance of a random variable X with itself?

• Now show that if you rescale a random variable X by defining Z = a + bX, then
Var(Z) = b2Var(X).

Exercise 3.4
Show that if you rescale X as Z = a+ bX, then Cov(Z, Y ) = bCov(X, Y ).

Exercise 3.5
Prove Equation 3.7—that is, that Var(X1+· · ·+Xn) =

∑n
i=1 Var(Xi)+

∑
i 6=j Cov(Xi, Xj).

Exercise 3.6
Let’s return to coin flipping, but use a different process to generate a sequence of coin flips.

Suppose I start flipping a coin with success parameter π, and every time it comes up tails I
keep on flipping, but the first time it comes up heads I stop. The random variable of interest
is the length of the sequence of coin flips. The geometric distribution characterizes the
probability density on this random variable. The probability mass function of the geometric
distribution has the form

P (X = k) = (1− π)aπb, k ∈ {1, 2, · · · }

for some choice of a and b. Complete the specification of the distribution (i.e., say what
a and b are are) and justify it.

Exercise 3.7
The file brown-counts-lengths-nsyll contains the following properties for each word

type found in the parsed Brown corpus:

• The token frequency of the word;
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• The length of the word in letters;

• The number of syllables in the word, as determined by the CMU Pronouncing dictio-
nary (http://www.speech.cs.cmu.edu/cgi-bin/cmudict).

Plot histograms of the number of syllables for word, over (a) word types and (b) word
tokens. Which of the histograms looks more binomially-distributed? Which looks more
geometrically-distributed? Try to find a good fit (by eyeball assessment) to each of the
histograms by choosing binomial or geometric parameters that match the data as well as you
can.

Exercise 3.8
The negative binomial distribution is a generalization of the geometric distribution in

which you are interested in how many coin flips you can make before you achieve a total of r
successes (where the successes are included in the total number of flips). The distribution is
characterized by two parameters: the required number of successes r, and the probability p of
success on any given coin flip. (The geometric distribution is a negative binomial distribution
for which r = 1.) If the total number of coin flips obtained in a given trial is k, then the
probability mass function for a negative binomial distribution with parameters p, r has the
form

P (X = k; r, p) =

(
a

b

)
(1− p)cpd, k ∈ {r, r + 1, · · · }

for some choice of a, b, c, d. Complete the specification of the distribution (i.e., say what
a, b, c, d are) and justify it.

Exercise 3.9: Linearity of expectation
You put two coins in a pouch; one coin is weighted such that it lands heads 5

6
of the time

when it’s flipped, and the other coin is weighted such that it lands heads 1
3
of the time when

it’s flipped. You shake the pouch, choose one of the coins from it at random and flip it twice.
Write out both the marginal density for the outcome of the first flip and the joint density
for the outcome of the two coin flips. Define the random variable X as the number of heads
resulting from the two coin flips. Use linearity of the expectation to compute E(X). Then
compute E(X) directly from the joint density to confirm that linearity of the expectation
holds.

Exercise 3.10
Explain why rescaling a random variable by Z = a+ bX changes the variance by a factor

of b2, so that Var(Z) = b2 Var(X). (See Section 3.3.3.)

Exercise 3.11
You are planning on conducting a word recognition study using the lexical-decision

paradigm, in which a participant is presented a letter sequence on a computer screen and
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then presses a key on the keyboard as soon as she recognizes it as either a word (the key
F) or a non-word (the key J). The distribution of measured response times for non-words in
this study is the sum of two independent random variables: X, the elapsed time from the
appearance of the letter string on the screen to the participant’s successful pressing of a key;
and Y , the time elapsed between the pressing of the key and the successful recording of the
key press by the computer (this distribution is governed by the polling rate and reliability of
the keyboard). Suppose that X has mean 600 and standard deviation 80, and Y has mean 15
and standard deviation 9 (all measured in milliseconds). What are the mean and standard
deviation of recorded reaction times (X + Y )? [Section 3.3.5]

Exercise 3.12
Test the validity of the central limit theorem. Choose your own probability distribution,

generate n i.i.d. random variables, add them together repeatedly, and standardize them
(subtract out the mean and divide by the standard deviation). Use these multiple trials to
generate estimated probability density and cumulative distribution functions. Compare these
to the density and cumulative distribution function of the standard normal distribution. Do
this for at least (a) the uniform and (b) the Bernoulli distribution. You’re also welcome to
use other distributions or invent your own.

1

Roger Levy – Probabilistic Models in the Study of Language draft, November 6, 2012 50



Chapter 4

Parameter Estimation

Thus far we have concerned ourselves primarily with probability theory : what events may
occur with what probabilities, given a model family and choices for the parameters. This is
useful only in the case where we know the precise model family and parameter values for the
situation of interest. But this is the exception, not the rule, for both scientific inquiry and
human learning & inference. Most of the time, we are in the situation of processing data
whose generative source we are uncertain about. In Chapter 2 we briefly covered elemen-
tary density estimation, using relative-frequency estimation, histograms and kernel density
estimation. In this chapter we delve more deeply into the theory of probability density es-
timation, focusing on inference within parametric families of probability distributions (see
discussion in Section 2.11.2). We start with some important properties of estimators, then
turn to basic frequentist parameter estimation (maximum-likelihood estimation and correc-
tions for bias), and finally basic Bayesian parameter estimation.

4.1 Introduction

Consider the situation of the first exposure of a native speaker of American English to
an English variety with which she has no experience (e.g., Singaporean English), and the
problem of inferring the probability of use of active versus passive voice in this variety with
a simple transitive verb such as hit :

(1) The ball hit the window. (Active)

(2) The window was hit by the ball. (Passive)

There is ample evidence that this probability is contingent on a number of features of the
utterance and discourse context (e.g., Weiner and Labov, 1983), and in Chapter 6 we cover
how to construct such richer models, but for the moment we simplify the problem by assuming
that active/passive variation can be modeled with a binomial distribution (Section 3.4) with
parameter π characterizing the probability that a given potentially transitive clause eligible
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for passivization will in fact be realized as a passive.1 The question faced by the native
American English speaker is thus, what inferences should we make about π on the basis of
limited exposure to the new variety? This is the problem of parameter estimation, and
it is a central part of statistical inference. There are many different techniques for parameter
estimation; any given technique is called an estimator, which is applied to a set of data to
construct an estimate. Let us briefly consider two simple estimators for our example.

Estimator 1. Suppose that our American English speaker has been exposed to n transi-
tive sentences of the variety, and m of them have been realized in the passive voice in eligible
clauses. A natural estimate of the binomial parameter π would be m/n. Because m/n is the
relative frequency of the passive voice, this is known as the relative frequency estimate

(RFE; see Section 2.11.1). In addition to being intuitive, we will see in Section 4.3.1 that the
RFE can be derived from deep and general principles of optimality in estimation procedures.
However, RFE also has weaknesses. For instance, it makes no use of the speaker’s knowledge
of her native English variety. In addition, when n is small, the RFE is unreliable: imagine,
for example, trying to estimate π from only two or three sentences from the new variety.

Estimator 2. Our speaker presumably knows the probability of a passive in American
English; call this probability q. An extremely simple estimate of π would be to ignore all new
evidence and set π = q, regardless of how much data she has on the new variety. Although
this option may not be as intuitive as Estimator 1, it has certain advantages: it is extremely
reliable and, if the new variety is not too different from American English, reasonably accu-
rate as well. On the other hand, once the speaker has had considerable exposure to the new
variety, this approach will almost certainly be inferior to relative frequency estimation. (See
Exercise to be included with this chapter.)

In light of this example, Section 4.2 describes how to assess the quality of an estimator
in conceptually intuitive yet mathematically precise terms. In Section 4.3, we cover fre-

quentist approaches to parameter estimation, which involve procedures for constructing
point estimates of parameters. In particular we focus on maximum-likelihood estimation
and close variants, which for multinomial data turns out to be equivalent to Estimator 1
above.In Section 4.4, we cover Bayesian approaches to parameter estimation, which involve
placing probability distributions over the range of possible parameter values. The Bayesian
estimation technique we will cover can be thought of as intermediate between Estimators 1
and 2.

4.2 Desirable properties for estimators

In this section we briefly cover three key properties of any estimator, and discuss the desir-
ability of these properties.

1By this probability we implicitly conditionalize on the use of a transitive verb that is eligible for pas-
sivization, excluding intransitives and also unpassivizable verbs such as weigh.
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4.2.1 Consistency

An estimator is consistent if the estimate θ̂ it constructs is guaranteed to converge to the
true parameter value θ as the quantity of data to which it is applied increases. Figure 4.1
demonstrates that Estimator 1 in our example is consistent: as the sample size increases, the
probability that the relative-frequency estimate π̂ falls into a narrow band around the true
parameter π grows asymptotically toward 1 (this behavior can also be proved rigorously; see
Section 4.3.1). Estimator 2, on the other hand, is not consistent (so long as the American
English parameter q differs from π), because it ignores the data completely. Consistency is
nearly always a desirable property for a statistical estimator.

4.2.2 Bias

If we view the collection (or sampling) of data from which to estimate a population pa-
rameter as a stochastic process, then the parameter estimate θ̂η resulting from applying a
pre-determined estimator η to the resulting data can be viewed as a continuous random
variable (Section 3.1). As with any random variable, we can take its expectation. In general,
it is intuitively desirable that the expected value of the estimate be equal (or at least close)
to the true parameter value θ, but this will not always be the case. The bias of an estimator
η is defined as the deviation of the expectation from the true value: E[θ̂η]− θ. All else being
equal, the smaller the bias in an estimator the more preferable. An estimator for which the
bias is zero—that is, E[θη] = θ—is called unbiased.

Is Estimator 1 in our passive-voice example biased? The relative-frequency estimate π̂ is
m
n
, so E[π̂ = E[m

n
]. Since n is fixed, we can move it outside of the expectation (see linearity

of the expectation in Section 3.3.1) to get

E[π̂] =
1

n
E[m]

But m is just the number of passive-voice utterances heard, and since m is binomially
distributed, E[m] = πn. This means that

E[π̂] =
1

n
πn

= π

So Estimator 1 is unbiased. Estimator 2, on the other hand, has bias q − π.

4.2.3 Variance (and efficiency)

Suppose that our speaker has decided to use Estimator 1 to estimate the probability π of a
passive, and has been exposed to n utterances. The intuition is extremely strong that she
should use all n utterances to form her relative-frequency estimate π̂, rather than, say, using
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only the first n/2. But why is this the case? Regardless of how many utterances she uses
with Estimator 1, her estimate will be unbiased (think about this carefully if you are not
immediately convinced). But our intuitions suggest that an estimate using less data is less
reliable: it is likely to vary more dramatically due to pure freaks of chance.

It is useful to quantify this notion of reliability using a natural statistical metric: the
variance of the estimator, Var(θ̂) (Section 4.2.3). All else being equal, an estimator with
smaller variance is preferable to one with greater variance. This idea, combined with a
bit more simple algebra, quantitatively explains the intuition that more data is better for
Estimator 1:

Var(π̂) = Var
(m
n

)

=
1

n2
Var(m) (From scaling a random variable, Section 3.3.3)

Since m is binomially distributed, and the variance of the binomial distribution is nπ(1− π)
(Section 3.4), so we have

Var(π̂) =
π(1− π)

n
(4.1)

So variance is inversely proportional to the sample size n, which means that relative frequency
estimation is more reliable when used with larger samples, consistent with intuition.

It is almost always the case that each of bias and variance comes at the cost of the other.
This leads to what is sometimes called bias-variance tradeoff: one’s choice of estimator
may depend on the relative importance of expected accuracy versus reliability in the task
at hand. The bias-variance tradeoff is very clear in our example. Estimator 1 is unbiased,
but has variance that can be quite high when samples size n is small. Estimator 2 is biased,
but it has zero variance. Which of the two estimators is preferable is likely to depend on
the sample size. If our speaker anticipates that she will have very few examples of transitive
sentences in the new English variety to go on, and also anticipates that the new variety will
not be hugely different from American English, she may well prefer (and with good reason)
the small bias of Estimator 2 to the large variance of Estimator 1. The lower-variance of two
estimators is called the more efficient estimator, and the efficiency of one estimator η1
relative to another estimator η2 is the ratio of their variances, Var(θ̂η1)/Var(θ̂η2).

4.3 Frequentist parameter estimation and prediction

We have just covered a simple example of parameter estimation and discussed key proper-
ties of estimators, but the estimators we covered were (while intuitive) given no theoretical
underpinning. In the remainder of this chapter, we will cover a few major mathematically mo-
tivated estimation techniques of general utility. This section covers frequentist estimation
techniques. In frequentist statistics, an estimator gives a point estimate for the parameter(s)
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of interest, and estimators are preferred or dispreferred on the basis of their general behavior,
notably with respect to the properties of consistency, bias, and variance discussed in Sec-
tion 4.2. We start with the most widely-used estimation technique, maximum-likelihood
estimation.

4.3.1 Maximum Likelihood Estimation

We encountered the notion of the likelihood in Chapter 2, a basic measure of the quality
of a set of predictions with respect to observed data. In the context of parameter estimation,
the likelihood is naturally viewed as a function of the parameters θ to be estimated, and is
defined as in Equation (2.29)—the joint probability of a set of observations, conditioned on
a choice for θ—repeated here:

Lik(θ;y) ≡ P (y|θ) (4.2)

Since good predictions are better, a natural approach to parameter estimation is to choose
the set of parameter values that yields the best predictions—that is, the parameter that
maximizes the likelihood of the observed data. This value is called themaximum likelihood

estimate (MLE), defined formally as:2

θ̂MLE
def
= argmax

θ

Lik(θ;y) (4.3)

In nearly all cases, the MLE is consistent (Cramer, 1946), and gives intuitive results. In
many common cases, it is also unbiased. For estimation of multinomial probabilities, the
MLE also turns out to be the relative-frequency estimate. Figure 4.2 visualizes an example
of this. The MLE is also an intuitive and unbiased estimator for the means of normal and
Poisson distributions.

Likelihood as function of data or model parameters?

In Equation (4.2) I defined the likelihood as a function first and foremost of the parameters
of one’s model. I did so as

4.3.2 Limitations of the MLE: variance

As intuitive and general-purpose as it may be, the MLE has several important limitations,
hence there is more to statistics than maximum-likelihood. Although the MLE for multi-
nomial distributions is unbiased, its variance is problematic for estimating parameters that
determine probabilities of events with low expected counts. This can be a major problem

2The expression argmaxx f(x) is defined as “the value of x that yields the maximum value for the ex-
pression f(x).” It can be read as “arg-max over x of f(x).”
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even when the sample size is very large. For example, word n-gram probabilities—
the probability distribution over the next word in a text given the previous n − 1 words
of context—are of major interest today not only in applied settings such as speech recog-
nition but also in the context of theoretical questions regarding language production, com-
prehension, and acquisition (e.g., Gahl, 2008; Saffran et al., 1996b; 2-gram probabilities are
sometimes called transitional probabilities). N-gram probability models are simply
collections of large multinomial distributions (one distribution per context). Yet even for ex-
tremely high-frequency preceding contexts, such as the word sequence near the, there will be
many possible next words that are improbable yet not impossible (for example, reportedly).
Any word that does not appear in the observed data in that context will be assigned a con-
ditional probability of zero by the MLE. In a typical n-gram model there will be many, many
such words—the problem of data sparsity. This means that the MLE is a terrible means
of prediction for n-gram word models, because if any unseen word continuation appears in
a new dataset, the MLE will assign zero likelihood to the entire dataset. For this reason,
there is a substantial literature on learning high-quality n-gram models, all of which can in
a sense be viewed as managing the variance of estimators for these models while keeping the
bias reasonably low (see Chen and Goodman, 1998 for a classic survey).

4.3.3 Limitations of the MLE: bias

In addition to these problems with variance, the MLE is biased for some types of model
parameters. Imagine a linguist interested in inferring the original time of introduction of a
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novel linguistic expression currently in use today, such as the increasingly familiar phrase the
boss of me, as in:3

(3) “You’re too cheeky,” said Astor, sticking out his tongue. “You’re not the boss of me.”
(Tool, 1949, cited in Language Log by Benjamin Zimmer, 18 October 2007)

The only direct evidence for such expressions is, of course, attestations in written or recorded
spoken language. Suppose that the linguist had collected 60 attestations of the expression,
the oldest of which was recored 120 years ago.

From a probabilistic point of view, this problem involves choosing a probabilistic model
whose generated observations are n attestation dates y of the linguistic expression, and one
of whose parameters is the earliest time at which the expression is coined, or t0. When the
problem is framed this way, the linguist’s problem is to devise a procedure for constructing
a parameter estimate t̂0 from observations. For expository purposes, let us oversimplify and
use the uniform distribution as a model of how attestation dates are generated.4 Since the
innovation is still in use today (time tnow), the parameters of the uniform distribution are
[t0, tnow] and the only parameter that needs to be estimated is tnow. Let us arrange our
attestation dates in chronological order so that the earliest date is y1.

What is the maximum-likelihood estimate t̂0? For a given choice of t0, a given date
yi either falls in the interval [t0, tnow] or it does not. From the definition of the uniform
distribution (Section 2.7.1) we have:

P (yi|t0, tnow) =
{

1
tnow−t0

t0 ≤ yi ≤ tnow
0 otherwise

(4.4)

Due to independence, the likelihood for the interval boundaries is Lik(t0) =
∏

i P (yi|t0, tnow).
This means that for any choice of interval boundaries, if at least one date lies before t0,
the entire likelihood is zero! Hence the likelihood is non-zero only for interval boundaries
containing all dates. For such boundaries, the likelihood is

Lik(t0) =
n∏

i=1

1

tnow − t0
(4.5)

=
1

(tnow − t0)n
(4.6)

This likelihood grows larger as tnow − t0 grows smaller, so it will be maximized when the
interval length tnow− t0 is as short as possible—namely, when t0 is set to the earliest attested

3This phrase has been the topic of intermittent discussion on the Language Log blog since 2007.
4This is a dramatic oversimplification, as it is well known that linguistic innovations prominent

enough for us to notice today often followed an S-shaped trajectory of usage frequency (Bailey, 1973;
Cavall-Sforza and Feldman, 1981; Kroch, 1989; Wang and Minett, 2005). However, the general issue of bias
in maximum-likelihood estimation present in the oversimplified uniform-distribution model here also carries
over to more complex models of the diffusion of linguistic innovations.
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Figure 4.4: Bias of the MLE (left) and the bias-corrected estimator (right), shown numerically
using 500 simulations for each value of n.

date y1. This fact is illustrated in Figure 4.3: the tighter the posited interval between t0 and
tnow, the greater the resulting likelihood.

You probably have the intuition that this estimate of the contact interval duration is
conservative: certainly the novel form appeared in English no later than t0, but it seems
rather unlikely that the first use in the language was also the first attested use!5 This
intuition is correct, and its mathematical realization is that the MLE for interval boundaries
of a uniform distribution is biased. Figure 4.4 visualizes this bias in terms of average interval
length (over a number of samples) as a function of sample size.

For any finite sample size, the MLE is biased to underestimate true interval length,
although this bias decreases as sample size increases (as well it should, because the MLE is a
consistent estimator). Fortunately, the size of the MLE’s bias can be quantified analytically:
the expected ML-estimated interval size is n

n+1
times the true interval size.Therefore, if we

adjust the MLE by multiplying it by n+1
n
, we arrive at an unbiased estimator for interval

length. The correctness of this adjustment is confirmed by the right-hand plot in Figure 4.4.
In the case of our historical linguist with three recovered documents, we achieve the estimate

5The intuition may be different if the first attested use was by an author who is known to have introduced
a large number of novel expressions into the language which subsequently gained in popularity. This type
of situation would point to a need for a more sophisticated probabilistic model of innovation, diffusion, and
attestation.
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Furthermore, there is a degree of intuitiveness about the behavior of the adjustment in
extreme cases: if N = 1, the adjustment would be infinite, which makes sense: one cannot
estimate the size of an unconstrained interval from a single observation.

Another famous example of bias in the MLE is in estimating the variance of a normal
distribution. The MLEs for mean and variance of a normal distribution as estimated from a
set of N observations y are as follows:

µ̂MLE =
1

N

∑

i

yi (i.e. the sample mean) (4.7)

σ̂2
MLE =

1

N

∑

i

(yi − µ̂)2 (i.e. the sample variance divided by N) (4.8)

While it turns out that µ̂MLE is unbiased, σ̂2
MLE is biased for reasons similar to those given for

interval size in the uniform distribution. You can see this graphically by imagining the MLE
for a single observation, as in Figure 4.5. As σ̂2 shrinks, the likelihood of the observation will
continue to rise, so that the MLE will push the estimated variance to be arbitrarily small.
This is a type of overfitting (see Section 2.11.5).

It turns out that the this bias can be eliminated by adjusting the MLE by the factor N
N−1

.
This adjusted estimate of σ2 is called S2:
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I θ Y

Figure 4.7: The structure of a simple Bayesian model. Observable data Y and prior beliefs
I are conditionally independent given the model parameters.

S2 =
N

N − 1
σ̂2
MLE (4.9)

=
1

N − 1

∑

i

(yi − µ̂)2 (4.10)

This is the most frequently used estimate of the underlying variance of a normal distribution
from a sample. In R, for example, the function var(), which is used to obtain sample
variance, computes S2 rather than σ̂MLE. An example of estimating normal densities is
shown in Figure 4.6, using F3 formants from 15 native English-speaking children on the
vowel [æ]. The MLE density estimate is a slightly narrower curve than the bias-adjusted
estimate.

4.4 Bayesian parameter estimation and density esti-

mation

In frequentist statistics as we have discussed thus far, one uses observed data to construct
a point estimate for each model parameter. The MLE and bias-adjusted version of the
MLE are examples of this. In Bayesian statistics, on the other hand, parameter estimation
involves placing a probability distribution over model parameters. In fact, there is no concep-
tual difference between parameter estimation (inferences about θ) and prediction or density
estimation (inferences about future y) in Bayesian statistics.

4.4.1 Anatomy of inference in a simple Bayesian model

A simple Bayesian model has three components. Observable data are generated as random
variables y in some model from a model family with parameters θ. Prior to observing
a particular set of data, however, we already have beliefs/expectations about the possible
model parameters θ; we call these beliefs I. These beliefs affect y only through the mediation
of the model parameters—that is, y and I are conditionally independent given θ (see Section
2.4.2). This situation is illustrated in Figure 6.1, which has a formal interpretation as a
graphical model (Appendix C).

In the Bayesian framework, both parameter estimation and density estimation simply
involve the application of Bayes’ rule (Equation (2.5)). For example, parameter estimation
means calculating the probability distribution over θ given observed data y and our prior
beliefs I. We can use Bayes rule to write this distribution as follows:
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P (θ|y, I) = P (y|θ, I)P (θ|I)
P (y|I) (4.11)

=

Likelihood for θ︷ ︸︸ ︷
P (y|θ)

Prior over θ︷ ︸︸ ︷
P (θ|I)

P (y|I)︸ ︷︷ ︸
Likelihood marginalized over θ

(because y ⊥ I | θ) (4.12)

The numerator in Equation (4.12) is composed of two quantities. The first term, P (y|θ),
should be familiar from Section 2.11.5: it is the likelihood of the parameters θ for the data y.
As in much of frequentist statistics, the likelihood plays a central role in parameter estimation
in Bayesian statistics. However, there is also a second term, P (θ|I), the prior distribution

over θ given only I. The complete quantity (4.12) is the posterior distribution over θ.
It is important to realize that the terms“prior”and“posterior” in no way imply any temporal
ordering on the realization of different events. The only thing that P (θ|I) is “prior” to is
the incorporation of the particular dataset y into inferences about θ. I can in principle
incorporate all sorts of knowledge, including other data sources, scientific intuitions, or—in
the context of language acquisition—innate biases. Finally, the denominator is simply the
marginal likelihood P (y|I) =

∫
θ
P (y|θ)P (θ|I) dθ (it is the model parameters θ that are

being marginalized over; see Section 3.2). The data likelihood is often the most difficult term
to calculate, but in many cases its calculation can be ignored or circumvented because we
can accomplish everything we need by computing posterior distributions up to a normalizing
constant (Section 2.8; we will see an new example of this in the next section).

Since Bayesian inference involves placing probability distributions on model parameters,
it becomes useful to work with probability distributions that are specialized for this purpose.
Before we move on to our first simple example of Bayesian parameter and density estimation,
we’ll now introduce one of the simplest (and most easily interpretable) such probability
distributions: the beta distribution.

4.4.2 The beta distribution

The beta distribution is important in Bayesian statistics involving binomial distributions.
It has two parameters α1, α2 and is defined as follows:

P (π|α1, α2) =
1

B(α1, α2)
πα1−1(1− π)α2−1 (0 ≤ π ≤ 1, α1 > 0, α2 > 0) (4.13)

where the beta function B(α1, α2) (Section B.1) serves as a normalizing constant:

B(α1, α2) =

∫ 1

0

πα1−1(1− π)α2−1 dπ (4.14)
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Figure 4.8 gives a few examples of beta densities for different parameter choices. The beta
distribution has a mean of α1

α1+α2
and mode (when both α1, α2 > 1) of α1−1

α1+α2−2
. Note that a

uniform distribution on [0, 1] results when α1 = α2 = 1.

Beta distributions and beta functions are very often useful when dealing with Bayesian
inference on binomially-distributed data. One often finds oneself in the situation of knowing
that some random variableX is distributed such that P (X) ∝ πa(1−π)b, but not knowing the
normalization constant. If and when you find yourself in this situation, recognize thatX must
be beta-distributed, which allows you to determine the normalization constant immediately.
Additionally, whenever one is confronted with an integral of the form

∫ 1

0
πa(1 − π)b dπ (as

in Section 5.2.1), recognize that it is a beta function, which will allow you to compute the
integral very easily.

4.4.3 Simple example of Bayesian estimation with the binomial
distribution

Historically, one of the major reasons that Bayesian inference has been avoided is that
it can be computationally intensive under many circumstances. The rapid improvements
in available computing power over the past few decades are, however, helping overcome
this obstacle, and Bayesian techniques are becoming more widespread both in practical
statistical applications and in theoretical approaches to modeling human cognition. We will
see examples of more computationally intensive techniques later in the book, but to give the
flavor of the Bayesian approach, let us revisit the example of our native American English
speaker and her quest for an estimator for π, the probability of the passive voice, which turns
out to be analyzable without much computation at all.

We have already established that transitive sentences in the new variety can be modeled
using a binomial distribution where the parameter π characterizes the probability that a
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given transitive sentence will be in the passive voice. For Bayesian statistics, we must first
specify the beliefs I that characterize the prior distribution P (θ|I) to be held before any
data from the new English variety is incorporated. In principle, we could use any proper
probability distribution on the interval [0, 1] for this purpose, but here we will use the beta
distribution (Section 4.4.2). In our case, specifying prior knowledge I amounts to choosing
beta distribution parameters α1 and α2.

Once we have determined the prior distribution, we are in a position to use a set of
observations y to do parameter estimation. Suppose that the observations y that our speaker
has observed are comprised of n total transitive sentences, m of which are passivized. Let
us simply instantiate Equation (4.12) for our particular problem:

P (π|y, α1, α2) =
P (y|π)P (π|α1, α2)

P (y|α1, α2)
(4.15)

The first thing to notice here is that the denominator, P (y|α1, α2), is not a function of π.
That means that it is a normalizing constant (Section 2.8). As noted in Section 4.4, we can
often do everything we need without computing the normalizing constant, here we ignore
the denominator by re-expressing Equation (4.15) in terms of proportionality:

P (π|y, α1, α2) ∝ P (y|π)P (π|α1, α2)

From what we know about the binomial distribution, the likelihood is P (y|π) =
(
n
m

)
πm(1−

π)n−m, and from what we know about the beta distribution, the prior is P (π|α1, α2) =
1

B(α1,α2)
πα1−1(1− π)α2−1. Neither

(
n
m

)
nor B(α1, α2) is a function of π, so we can also ignore

them, giving us

P (π|y, α1, α2) ∝
Likelihood︷ ︸︸ ︷

πm(1− π)n−m

Prior︷ ︸︸ ︷
πα1−1(1− π)α2−1

∝ πm+α1−1(1− π)n−m+α2−1 (4.16)

Now we can crucially notice that the posterior distribution on π itself has the form of
a beta distribution (Equation (4.13)), with parameters α1 + m and α2 + n − m. This fact
that the posterior has the same functional form as the prior is called conjugacy; the beta
distribution is said to be conjugate to the binomial distribution. Due to conjugacy, we can
circumvent the work of directly calculating the normalizing constant for Equation (4.16), and
recover it from what we know about beta distributions. This gives us a normalizing constant
of B(α1 +m,α2 + n−m).

Now let us see how our American English speaker might apply Bayesian inference to
estimating the probability of passivization in the new English variety. A reasonable prior
distribution might involve assuming that the new variety could be somewhat like American
English. Approximately 8% of spoken American English sentences with simple transitive
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Figure 4.9: Prior, likelihood, and posterior distributions over π. Note that the likelihood
has been rescaled to the scale of the prior and posterior; the original scale of the likelihood
is shown on the axis on the right.

verbs are passives (Roland et al., 2007), hence our speaker might choose α1 and α2 such
that the mode of P (π|α1, α2) is near 0.08. A beta distribution has a mode if α1, α2 > 1,
in which case the mode is α1−1

α1+α2−2
, so a reasonable choice might be α1 = 3, α2 = 24, which

puts the mode of the prior distribution at 2
25

= 0.08.6 Now suppose that our speaker is
exposed to n = 7 transitive verbs in the new variety, and two are passivized (m = 2). The
posterior distribution will then be beta-distributed with α1 = 3 + 2 = 5, α2 = 24 + 5 = 29.
Figure 4.9 shows the prior distribution, likelihood, and posterior distribution for this case,
and also for the case where the speaker has been exposed to three times as much data in
similar proportions (n = 21,m = 6). In the n = 7, because the speaker has seen relatively
little data, the prior distribution is considerably more peaked than the likelihood, and the
posterior distribution is fairly close to the prior. However, as our speaker sees more and
more data, the likelihood becomes increasingly peaked, and will eventually dominate in the
behavior of the posterior (See Exercise to be included with this chapter).

In many cases it is useful to summarize the posterior distribution into a point estimate
of the model parameters. Two commonly used such point estimates are the mode (which

6Compare with Section 4.3.1—the binomial likelihood function has the same shape as a beta distribution!
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we covered a moment ago) and the mean. For our example, the posterior mode is 4
32
, or

0.125. Selecting the mode of the posterior distribution goes by the name of Maximum a

posteriori (MAP) estimation. The mean of a beta distribution is α1

α1+α2
, so our posterior

mean is 5
34
, or about 0.15. There are no particular deep mathematical principles motivating

the superiority of the mode over the mean or vice versa, although the mean should generally
be avoided in cases where the posterior distribution is multimodal. The most “principled”
approach to Bayesian parameter estimation is in fact not to choose a point estimate for model
parameters after observing data, but rather to make use of the entire posterior distribution
in further statistical inference.

Bayesian density estimation

The role played in density estimation by parameter estimation up to this point has been as
follows: an estimator is applied to observed data to obtain an estimate for model parameters
θ̂, and the resulting probabilistic model determines a set of predictions for future data,
namely the distribution P (Y |θ̂). If we use Bayesian inference to form a posterior distribution
on θ and then summarize that distribution into a point estimate, we can use that point
estimate in exactly the same way. In this sense, using a given prior distribution together with
the MAP or posterior mean can be thought of as simply one more estimator. In fact, this view
creates a deep connection between Bayesian inference and maximum-likelihood estimation:
maximum-likelihood estimation (Equation (4.3)) is simply Bayesian MAP estimation when
the prior distribution P (θ|I) (Equation (4.11)) is taken to be uniform over all values of θ.

However, in the purest Bayesian view, it is undesirable to summarize our beliefs about
model parameters into a point estimate, because this discards information. In Figure 4.9, for
example, the two likelihoods are peaked at the same place, but the n = 21 likelihood is more
peaked than the n = 7 likelihood. This translates into more peakedness and therefore more
certainty in the posterior; this certainty is not reflected in the MLE or even in the MAP
estimate. Pure Bayesian density estimation involves marginalization (Section 3.2) over the
model parameters, a process which automatically incorporates this degree of certainty. That
is, we estimate a density over new observations ynew as:

P (ynew|y, I) =
∫

θ

P (ynew|θ)P (θ|y, I) dθ (4.17)

where P (θ|y, I) is familiar from Equation (4.12).
Suppose, for example, that after hearing her n examples from the new English dialect,

our speaker wanted to predict the number of passives r she would hear after the next k trials.
We would have:

P (r|k, I,y) =
∫ 1

0

P (r|k, π)P (π|y, I) dπ
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This expression can be reduced to

P (r|k, I,y) =
(
k

r

)∏r−1
i=0 (α1 +m+ i)

∏k−r−1
i=0 (α2 + n−m+ i)∏k−1

i=0 (α1 + α2 + n+ i)
(4.18)

=

(
k

r

)
B(α1 +m+ r, α2 + n−m+ k − r)

B(α1 +m,α2 + n−m)
(4.19)

which is an instance of what is known as the beta-binomial model. The expression
may seem formidable, but experimenting with specific values for k and r reveals that it is
simpler than it may seem. For a single trial (k = 1), for example, this expression reduces to
P (r = 1|k, I,y) = α1+m

α1+α2+n
, which is exactly what would be obtained by using the posterior

mean. For two trials (k = 2), we would have P (r = 1|k, I,y) = 2 (α1+m)(α2+n−m)
(α1+α2+n)(α1+α2+n+1)

, which

is slightly less than what would be obtained by using the posterior mean.7 This probability
mass lost from the r = 1 outcome is redistributed into the more extreme r = 0 and r = 2
outcomes. For k > 1 trials in general, the beta-binomial model leads to density estimates
of greater variance—also called dispersion in the modeling context—than for the binomial
model using posterior mean. This is illustrated in Figure 4.10. The reason for this greater
dispersion is that different future trials are only conditionally independent given a fixed choice
of the binomial parameter π. Because there is residual uncertainty about this parameter,
successes on different future trials are positively correlated in the Bayesian prediction despite
the fact that they are conditionally independent given the underlying model parameter (see
also Section 2.4.2 and Exercise 2.2). This is an important property of a wide variety of
models which involve marginalization over intermediate variables (in this case the binomial
parameter); we will return to this in Chapter 8 and later in the book.

4.5 Computing approximate Bayesian inferences with

sampling techniques

In the example of Bayesian inference given in Section 4.4.3, we were able to express both
(i) the posterior probability over the binomial parameter π, and (ii) the probability distri-
bution over new observations as the closed-form expressions8 shown in Equations (4.16)

7With the posterior mean, the term (α1 + α2 + n+ 1) in the denominator would be replaced by another
instance of (α1 + α2 + n), giving us

P (r = 1|k, π̂) = (α1 +m)(α2 + n−m)

(α1 + α2 + n)2
(4.20)

8A closed-form expression is one that can be written exactly as a combination of a finite number of
“well-known” functions (such as polynomials, logarithms, exponentials, and so forth).
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Figure 4.10: The beta-binomial model has greater dispersion than the binomial model. Re-
sults shown for α1 +m = 5, α2 + n−m = 29.

and (4.20) respectively. We were able to do this due to the conjugacy of the beta distri-
bution to the binomial distribution. However, it will sometimes be the case that we want
to perform Bayesian inferences but don’t have conjugate distributions to work with. As a
simple example, let us turn back to a case of inferring the ordering preference of an English
binomial, such as {radio, television}. The words in this particular binomial differ in length
(quantified as, for example, number of syllables), and numerous authors have suggested that
a short-before-long metrical constraint is one determinant of ordering preferences for En-
glish binomials (Cooper and Ross, 1975; Pinker and Birdsong, 1979, inter alia). Our prior
knowledge therefore inclines us to expect a preference for the ordering radio and television
(abbreviated as r) more strongly than a preference for the ordering television and radio (t),
but we may be relatively agnostic as to the particular strength of the ordering preference. A
natural probabilistic model here would be the binomial distribution with success parameter
π, and a natural prior might be one which is uniform within each of the ranges 0 ≤ π ≤ 0.5
and 0.5 < π < 1, but twice as large in the latter range as in the former range. This would
be the following prior:

p(π = x) =





2
3

0 ≤ x ≤ 0.5
4
3

0.5 < x ≤ 1

0 otherwise

(4.21)

which is a step function, illustrated in Figure 4.11a.
In such cases, there are typically no closed-form expressions for the posterior or predic-

tive distributions given arbitrary observed data y. However, these distributions can very
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often be approximated using general-purpose sampling-based approaches. Under these
approaches, samples (in principle independent of one another) can be drawn over quantities
that are unknown in the model. These samples can then be used in combination with density
estimation techniques such as those from Chapter ?? to approximate any probability density
of interest. Chapter ?? provides a brief theoretical and practical introduction to sampling
techniques; here, we introduce the steps involved in sampling-based approaches as needed.

For example, suppose we obtain data y consisting of ten binomial tokens—five of r and
five of t—and are interested in approximating the following distributions:

1. The posterior distribution over the success parameter π;

2. The posterior predictive distribution over the observed ordering of an eleventh token;

3. The posterior predictive distribution over the number of r orderings seen in ten more
tokens.

We can use BUGS, a highly flexible language for describing and sampling from structured
probabilistic models, to sample from these distributions. BUGS uses Gibbs sampling, a
Markov-chain Monte Carlo technique (Chapter ??), to produce samples from the posterior
distributions of interest to us (such as P (π|y, I) or P (ynew|y, I)). Here is one way to describe
our model in BUGS:

model {

/* the model */

for(i in 1:length(response)) { response[i] ~ dbern(p) }

/* the prior */

pA ~ dunif(0,0.5)

pB ~ dunif(0.5,1)

i ~ dbern(2/3)

p <- (1 - i) * pA + i * pB

/* predictions */

prediction1 ~ dbern(p)

prediction2 ~ dbin(p, 10) /* dbin() is for binomial distribution */

}

The first line,

for(i in 1:length(response)) { response[i] ~ dbern(p) }

says that each observation is the outcome of a Bernoulli random variable with success pa-
rameter p.

The next part,
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pA ~ dunif(0,0.5)

pB ~ dunif(0.5,1)

i ~ dbern(2/3)

p <- (1 - i) * pA + i * pB

is a way of encoding the step-function prior of Equation (4.21). The first two lines say that
there are two random variables, pA and pB, drawn from uniform distributions on [0, 0.5] and
[0.5, 1] respectively. The next two lines say that the success parameter p is equal to pA 2

3
of

the time, and is equal to pB otherwise. These four lines together encode the prior of Equation
(4.21).

Finally, the last two lines say that there are two more random variables parameterized
by p: a single token (prediction1) and the number of r outcomes in ten more tokens
(prediction2).

There are several incarnations of BUGS, but here we focus on a newer incarnation, JAGS,
that is open-source and cross-platform. JAGS can interface with R through the R library
rjags.9 Below is a demonstration of how we can use BUGS through R to estimate the
posteriors above with samples.

> ls()

> rm(i,p)

> set.seed(45)

> # first, set up observed data

> response <- c(rep(1,5),rep(0,5))

> # now compile the BUGS model

> m <- jags.model("../jags_examples/asymm_binomial_prior/asymm_binomial_prior.bug",data

> # initial period of running the model to get it converged

> update(m,1000)

> # Now get samples

> res <- coda.samples(m, c("p","prediction1","prediction2"), thin = 20, n.iter=5000)

> # posterior predictions not completely consistent due to sampling noise

> print(apply(res[[1]],2,mean))

> posterior.mean <- apply(res[[1]],2,mean)

> plot(density(res[[1]][,1]),xlab=expression(pi),ylab=expression(paste("p(",pi,")")))

> # plot posterior predictive distribution 2

> preds2 <- table(res[[1]][,3])

> plot(preds2/sum(preds2),type='h',xlab="r",ylab="P(r|y)",lwd=4,ylim=c(0,0.25))

> posterior.mean.predicted.freqs <- dbinom(0:10,10,posterior.mean[1])

> x <- 0:10 + 0.1

> arrows(x, 0, x, posterior.mean.predicted.freqs,length=0,lty=2,lwd=4,col="magenta")

> legend(0,0.25,c(expression(paste("Marginizing over ",pi)),"With posterior mean"),lty=c(1,2),col=c("black

9JAGS can be obtained freely at http://calvin.iarc.fr/~martyn/software/jags/, and rjags at
http://cran.r-project.org/web/packages/rjags/index.html.

Roger Levy – Probabilistic Models in the Study of Language draft, November 6, 2012 69

http://calvin.iarc.fr/~martyn/software/jags/
http://cran.r-project.org/web/packages/rjags/index.html


0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

π

P
(π

)

(a) Prior over π

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

density.default(x = res[[1]][, 1])

π

p(
π)

(b) Posterior over π

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

r

P
(r

|y
)

0 1 2 3 4 5 6 7 8 9 10

Marginizing over π
With posterior mean

(c) Posterior predictive dis-
tribution for N = 10,
marginalizing over π versus
using posterior mean

Figure 4.11: A non-conjugate prior for the binomial distribution: prior distribution, posterior
over π, and predictive distribution for next 10 outcomes

Two important notes on the use of sampling: first, immediately after compiling we specify
a “burn-in” period of 1000 iterations to bring the Markov chain to a “steady state” with:10

update(m,1000)

Second, there can be autocorrelation in the Markov chain: samples near to one
another in time are non-independent of one another.11 In order to minimize the bias in the
estimated probability density, we’d like to minimize this autocorrelation. We can do this
by sub-sampling or “thinning” the Markov chain, in this case taking only one out of every
20 samples from the chain as specified by the argument thin = 20 to coda.samples().
This reduces the autocorrelation to a minimal level. We can get a sense of how bad the
autocorrelation is by taking an unthinned sample and computing the autocorrelation at a
number of time lags:

> m <- jags.model("../jags_examples/asymm_binomial_prior/asymm_binomial_prior.bug",data

> # initial period of running the model to get it converged

> update(m,1000)

> res <- coda.samples(m, c("p","prediction1","prediction2"), thin = 1, n.iter=5000)

> autocorr(res,lags=c(1,5,10,20,50))

We see that the autocorrelation is quite problematic for an unthinned chain (lag 1), but it
is much better at higher lags. Thinning the chain by taking every twentieth sample is more
than sufficient to bring the autocorrelation down

10For any given model there is no guarantee how many iterations are needed, but most of the models
covered in this book are simple enough that on the order of thousands of iterations is enough.

11The autocorrelation of a sequence ~x for a time lag τ is simply the covariance between elements in the
sequence that are τ steps apart, or Cov(xi, xi+τ ).
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Notably, the posterior distribution shown in Figure 4.11a looks quite different from a beta
distribution. Once again the greater dispersion of Bayesian prediction marginalizing over π,
as compared with the predictions derived from the posterior mean, is evident in Figure 4.11c.

Finally, we’ll illustrate one more example of simple Bayesian estimation, this time of a
normal distribution for the F3 formant of the vowel [æ], based on speaker means of 15 child
native speakers of English from Peterson and Barney (1952). Since the normal distribution
has two parameters—the mean µ and variance σ2—we must use a slightly more complex prior
of the form P (µ, σ2). We will assume that these parameters are independent of one another
in the prior—that is, P (µ, σ2) = P (µ)P (σ2). For our prior, we choose non-informative

distributions (ones that give similar probability to broad ranges of the model parameters).
In particular, we choose uniform distributions over µ and log σ over the ranges [0, 105] and
[−100, 100] respectively.:12 This gives us the model:

y ∼ N (µ, σ2)

µ ∼ U(0, 105)
log σ ∼ U(−100, 100)

where ∼ means “is distributed as”.
Here is the model in BUGS:

var predictions[M]

model {

/* the model */

for(i in 1:length(response)) { response[i] ~ dnorm(mu,tau) }

/* the prior */

mu ~ dunif(0,100000) # based on F3 means for other vowels

log.sigma ~ dunif(-100,100)

sigma <- exp(log.sigma)

tau <- 1/(sigma^2)

/* predictions */

for(i in 1:M) { predictions[i] ~ dnorm(mu,tau) }

}

The first line,

var predictions[M]

states that the predictions variable will be a numeric array of length M (with M to be
specified from R). BUGS parameterizes the normal distribution differently than we have, using

a precision parameter τ
def
= 1

σ2 . The next line,

12See Gelman et al. (2004, Appendix C) for the relative merits of different choices of how to place a prior
on σ2.
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for(i in 1:length(response)) { response[i] ~ dnorm(mu,tau) }

simply expresses that observations y are drawn from a normal distribution parameterized by
µ and τ . The mean µ is straightforwardly parameterized with a uniform distribution over a
wide range. When we set the prior over τ we do so in three stages, first saying that log σ is
uniformly distributed:

log.sigma ~ dunif(-100,100)

and transforming from log σ to σ and then to τ :

sigma <- exp(log.sigma)

tau <- 1/(sigma^2)

From R, we can compile the model and draw samples as before:

> pb <- read.table("../data/peterson_barney_data/pb.txt",header=T)

> pb.means <- with(pb,aggregate(data.frame(F0,F1,F2,F3), by=list(Type,Sex,Speaker,Vowel

> names(pb.means) <- c("Type","Sex","Speaker","Vowel","IPA",names(pb.means)[6:9])

> set.seed(18)

> response <- subset(pb.means,Vowel=="ae" & Type=="c")[["F3"]]

> M <- 10 # number of predictions to make

> m <- jags.model("../jags_examples/child_f3_formant/child_f3_formant.bug",data=list("r

> update(m,1000)

> res <- coda.samples(m, c("mu","sigma","predictions"),n.iter=20000,thin=1)

and extract the relevant statistics and plot the outcome as follows:

> # compute posterior mean and standard deviation

> mu.mean <- mean(res[[1]][,1])

> sigma.mean <- mean(res[[1]][,12])

> # plot Bayesian density estimate

> from <- 1800

> to <- 4800

> x <- seq(from,to,by=1)

> plot(x,dnorm(x,mu.mean,sigma.mean),col="magenta",lwd=3,lty=2,type="l",xlim=c(from,to)

> lines(density(res[[1]][,2],from=from,to=to),lwd=3)

> rug(response)

> legend(from,0.0011,c("marginal density","density from\nposterior mean"),lty=c(1,2),lwd=2,col=c(

> # plot density estimate over mean observed in 10 more observations

> from <- 2500

> to <- 4100

> plot(x,dnorm(x,mu.mean,sigma.mean/sqrt(M)),type="l",lty=2,col="magenta",lwd=3,xlim=c(

> lines(density(apply(res[[1]][,2:11],1,mean,from=from,to=to)),lwd=3) # using samples to

> rug(response)

> legend(from,0.0035,c("marginal density","density from\nposterior mean"),lty=c(1,2),lwd=2,col=c(
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Figure 4.12: Bayesian inference for normal distribution

The resulting density estimate for a single future observation is shown in Figure 4.12a. This
is almost the same as the result obtained from using the posterior mean. However, the
density estimate for the mean obtained in ten future observations, shown in Figure 4.12b, is
rather different: once again it has greater dispersion than the estimate obtained using the
posterior mean.13

The ability to specify model structures like this, drawing from a variety of distributions,
and to compute approximate posterior densities with general-purpose tools, gives tremen-
dous modeling flexibility. The only real limits are conceptual—coming up with probabilistic
models that are appropriate for a given type of data—and computational—time and memory.

4.6 Further reading

Gelman et al. (2004) is probably the best reference for practical details and advice in Bayesian
parameter estimation and prediction.

4.7 Exercises

Exercise 4.1

13The density on the mean of ten future observations under the posterior mean µ and σ2 is given by
expressing the mean as a linear combination of ten independent identically distributed normal random
variables (Section 3.3).
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Confirm using simulations that the variance of relative-frequency estimation of π for bino-
mially distributed data really is π(1−π)

n
: for all possible combinations of π ∈ {0.1, 0.2, 0.5}, n ∈

{10, 100, 1000}, randomly generate 1000 datasets and estimate π̂ using relative frequency es-
timation. Plot the observed variance against the variance predicted in Equation 4.1.

Exercise 4.2: Maximum-likelihood estimation for the geometric distribution

You encountered the geometric distribution in Chapter 3, which models the generation of
sequence lengths as the repeated flipping of a weighted coin until a single success is achieved.
Its lone parameter is the success parameter π. Suppose that you have a set of observed
sequence lengths y = y1, . . . , yn. Since a sequence of length k corresponds to k− 1 “failures”
and one “success”, the total number of “failures” in y is

∑
i(yi − 1) and the total number of

“successes” is n.

1. From analogy to the binomial distribution, guess the maximum-likelihood estimate of
π.

2. Is your guess of the maximum-likelihood estimate biased? You’re welcome to answer
this question either through mathematical analysis or through computational simu-
lation (i.e. choose a value of π, repeatedly generate sets of geometrically-distributed
sequences using your choice of π, and quantify the discrepancy between the average
estimate π̂ and the true value).

3. Use your estimator to find best-fit distributions for token-frequency and type-frequency
distributions of word length in syllables as found in the file brown-counts-lengths-nsyll
(parsed Brown corpus; see Exercise 3.7).

Exercise 4.3

We covered Bayesian parameter estimation for the binomial distribution where the prior
distribution on the binomial success parameter π was of the form

P (π) ∝ πa(1− π)b

Plot the shape of this prior for a variety of choices of a and b. What determines the mode
of the distribution (i.e., the value of π where the curve’s maximum lies) and its degree of
peakedness? What do a and b together represent?

Exercise 4.4: “Ignorance” priors

A uniform prior distribution on the binomial parameter, P (π) = 1, is often called the
“ignorance” distribution. But what is the ignorance of? Suppose we have

X ∼ Binom(n, π).
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The beta-binomial distribution overX (i.e., marginalizing over π) is P (X = k) =
∫ 1

0

(
n
k

)
πn(1−

π)n−k dπ. What does this integral evaluate to (as a function of n and k) when the prior dis-
tribution on π is uniform? (Bayes, 1763; Stigler, 1986)

Exercise 4.5: Binomial and beta-binomial predictive distributions
Three native English speakers start studying a new language together. This language

has flexible word order, so that sometimes the subject of the sentence can precede the verb
(SV), and sometimes it can follow the verb (VS). Of the first three utterances of the new
language they are taught, one is VS and the other two are SV.

Speaker A abandons her English-language preconceptions and uses the method of max-
imum likelihood to estimate the probability that an utterance will be SV. Speakers B and
C carry over some preconceptions from English; they draw inferences regarding the SV/VS
word order frequency in the language according to a beta-distributed prior, with α1 = 8
and α2 = 1 (here, SV word order counts as a “success”), which is then combined with the
three utterances they’ve been exposed to thus far. Speaker B uses maximum a-posterior
(MAP) probability to estimate the probability that an utterance will be SV. Speaker C is
fully Bayesian and retains a full posterior distribution on the probability that an utterance
will be SV.

It turns out that the first three utterances of the new language were uncharacteristic;
of the next twenty-four utterances our speakers hear, sixteen of them are VS. Which of our
three speakers was best prepared for this eventuality, as judged by the predictive distribution
placed by the speaker on the word order outcomes of these twenty-four utterances? Which
of our speakers was worst prepared? Why?

Exercise 4.6: Fitting the constituent-order model.Ï

Review the constituent-order model of Section 2.8 and the word-order-frequency data of
Table 2.2.

• Consider a heuristic method for choosing the model’s parameters: set γ1 to the relative
frequency with which S precedes O, γ2 to the relative frequency with which S precedes
V, and γ3 to the relative frequency with which V precedes O. Compute the probability
distribution it places over word orders.

• Implement the likelihood function for the constituent-order model and use convex op-
timization software of your choice to find the maximum-likelihood estimate of γ1, γ2, γ3
for Table 2.2. (In R, for example, the optim() function, using the default Nelder-Mead
algorithm, will do fine.) What category probabilities does the ML-estimated model
predict? How does the heuristic-method fit compare? Explain what you see.

Exercise 4.7: What level of autocorrelation is acceptable in a Markov chain?
How do you know when a given level of autocorrelation in a thinned Markov chain is

acceptably low? One way of thinking about this problem is to realize that a sequence
of independent samples is generally going to have some non-zero autocorrelation, by pure
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chance. The longer such a sequence, however, the lower the autocorrelation is likely to be.
(Why?) Simulate a number of such sequences of length N = 100, drawn from a uniform
distribution, and compute the 97.5% quantile autocorrelation coefficient—that is, the value
r such that 97.5% of the generated sequences have correlation coefficient smaller than this
value. Now repeat this process for a number of different lengths N , and plot this threshold
r as a function of N .

Exercise 4.8: Autocorrelation of Markov-chain samples from BUGS.
Explore the autocorrelation of the samples obtained in the two models of Section 4.5, vary-

ing how densely you subsample the Markov chain by varying the thinning interval (specified
by the thin argument of coda.samples()). Plot the average (over 20 runs) autocorrela-
tion on each model parameter as a function of the thinning interval. For each model, how
sparsely do you need to subsample the chain in order to effectively eliminate the autocorre-
lation? Hint: in R, you can compute the autocorrelation of a vector x with:

> cor(x[-1],x[-length(x)])
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Chapter 5

Confidence Intervals and Hypothesis
Testing

Although Chapter 4 introduced the theoretical framework for estimating the parameters of a
model, it was very much situated in the context of prediction: the focus of statistical inference
is on inferring the kinds of additional data that are likely to be generated by a model, on the
basis of an existing set of observations. In much of scientific inquiry, however, we wish to
use data to make inferences about models themselves: what plausible range can be inferred
for a parameter or set of parameters within a model, or which of multiple models a given
set of data most strongly supports. These are the problems of confidence intervals and
hypothesis testing respectively. This chapter covers the fundamentals of Bayesian and
frequentist approaches to these problems.

5.1 Bayesian confidence intervals

Recall from Section 4.4 that Bayesian parameter estimation simply involves placing a pos-
terior probability distribution over the parameters θ of a model, on the basis of Bayes rule:

P (θ|y) = P (y|θ)P (θ)

P (y)
(5.1)

In Bayesian inference, a confidence interval over a single model parameter φ is simply
a contiguous interval [φ1, φ2] that contains a specified proportion of the posterior probability
mass over φ. The proportion of probability mass contained in the confidence interval can
be chosen depending on whether one wants a narrower or wider interval. The tightness
of the interval (in frequentist as well as Bayesian statistics) is denoted by a value α that
expresses the amount of probability mass excluded from the interval—so that (1 − α)% of
the probability mass is within the interval. The interpretation of a (1 − α)% confidence
interval [φ1, φ2] is that the probability that the model parameter φ resides in [φ1, φ2]
is (1− α).
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Figure 5.1: HPD and symmetric Bayesian confidence intervals for a posterior distributed as
Beta(5, 29)

Of course, there is always more than one way of choosing the bounds of the interval [φ1, φ2]
to enclose (1− α)% of the posterior mass. There are two main conventions for determining
how to choose interval boundaries:

• Choose the shortest possible interval enclosing (1−α)% of the posterior mass. This is
called a highest posterior density (HPD) confidence interval.

• Choose interval boundaries such that an equal amount of probability mass is contained
on either side of the interval. That is, choose [φ1, φ2] such that P (φ < φ1|y) = P (φ >
φ2|y) = α

2
. This is called a symmetric confidence interval.

Let us return, for example, to our American English speaker of Chapter 4, assuming
that she models speaker choice in passivization as a binomial random variable (with passive
voice being “success”) with parameter π over which she has a Beta prior distribution with
parameters (3, 24), and observes five active and two passive clauses. The posterior over π
has distribution Beta(5, 29). Figure 5.1 shows HPD and symmetric 95% confidence intervals
over π, shaded in gray, for this posterior distribution. The posterior is quite asymmetric,
and for the HPD interval there is more probability mass to the right of the interval than
there is to the left. The intervals themselves are, of course, qualitatively quite similar.

5.2 Bayesian hypothesis testing

In all types of statistics, hypothesis testing involves entertaining multiple candidate gen-
erative models of how observed data has been generated. The hypothesis test involves an
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assessment of which model is most strongly warranted by the data. Bayesian hypothesis
testing in particular works just like any other type of Bayesian inference. Suppose that we
have a collection of hypotheses H1, . . . , Hn. Informally, a hypothesis can range over diverse
ideas such as “this coin is fair”, “the animacy of the agent of a clause affects the tendency of
speakers to use the passive voice”, “females have higher average F1 vowel formants than males
regardless of the specific vowel”, or “a word’s frequency has no effect on naming latency”.
Formally, each hypothesis should specify a model that determines a probability distribution
over possible observations y. Furthermore, we need a prior probability over the collection of
hypotheses, P (Hi). Once we have observed some data y, we use Bayes’ rule (Section 2.4.1)
to calculate the posterior probability distribution over hypotheses:

P (Hi|y) =
P (y|Hi)P (Hi)

P (y)
(5.2)

where P (y) marginalizes (Section 3.2) over the hypotheses:

P (y) =
n∑

j=1

P (y|Hj)P (Hj) (5.3)

As an example, let us return once more to the case of English binomials, such as salt
and pepper. A number of constraints have been hypothesized to play a role in determining
binomial ordering preferences; as an example, one hypothesized constraint is that ordered
binomials of the form A and B should be disfavored when B has ultimate-syllable stress
(*Bstr; Bolinger, 1962; Müller, 1997). For example, pepper and salt violates this constraint
against ultimate-syllable stress, but its alternate salt and pepper does not. We can construct a
simple probabilistic model of the role of *Bstr in binomial ordering preferences by assuming
that every time an English binomial is produced that could potentially violate *Bstr, the
binomial is produced in the satisfying order B and A ordering with probability π, otherwise
it is produced in the violating ordering A and B.1 If we observe n such English binomials,
then the distribution over the number of satisfactions of *Bstr observed is (appropriately
enough) the binomial distribution with parameters π and n.

Let us now entertain two hypotheses about the possible role of *Bstr in determining
binomial ordering preferences. In the first hypothesis, H1, *Bstr plays no role, hence
orderings A and B and B and A are equally probable; we call this the “no-preference”
hypothesis. Therefore in H1 the binomial parameter π is 0.5. In Bayesian inference, we need
to assign probability distributions to choices for model parameters, so we state H1 as:

H1 : P (π|H1) =

{
1 π = 0.5
0 π 6= 0.5

1For now we ignore the role of multiple overlapping constraints in jointly determining ordering preferences,
as well as the fact that specific binomials may have idiosyncratic ordering preferences above and beyond their
constituent constraints. The tools to deal with these factors are introduced in Chapters 6 and 8 respectively.
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The probability above is a prior probability on the binomial parameter π.

In our second hypothesis H2, *Bstr does affect binomial ordering preferences (the “pref-
erence” hypothesis). For this hypothesis we must place a non-trivial probability distribution
on π. Keep in mind have arbitrarily associated the “success” outcome with satisfaction of
*Bstr. Suppose that we consider only two possibilities in H2: that the preference is either
2
3
for A and B or 2

3
for outcome B and A, and let these two preferences be equally likely in

H2. This gives us:

H2 : P (π|H2) =

{
0.5 π = 1

3

0.5 π = 2
3

(5.4)

In order to complete the Bayesian inference of Equation (5.2), we need prior probabilities
on the hypotheses themselves, P (H1) and P (H2). If we had strong beliefs one way or another
about the binomial’s ordering preference (e.g., from prior experience with other English
binomials, or with experience with a semantically equivalent binomial in other languages),
we might set one of these prior probabilities close to 1. For these purposes, we will use
P (H1) = P (H2) = 0.5.

Now suppose we collect a dataset y of six English binomials in which two orderings violate
*Bstr from a corpus:

Binomial Constraint status (S: *Bstr satisfied, V: *Bstr violated)
salt and pepper S

build and operate S

follow and understand V

harass and punish S

ungallant and untrue V

bold and entertaining S

Do these data favor H1 or H2?

We answer this question by completing Equation (5.2). We have:

P (H1) = 0.5

P (y|H1) =

(
6

4

)
π4(1− π)2 =

(
6

4

) (
1

2

)4 (
1

2

)2

= 0.23

Now to complete the calculation of P (y) in Equation (5.3), we need P (y|H2). To get
this, we need to marginalize over the possible values of π, just as we are marginalizing over
H to get the probability of the data. We have:
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P (y|H2) =
∑

i

P (y|πi)P (πi|H2)

= P

(
y|π =

1

3

)
P

(
π =

1

3
|H2

)
+ P

(
y|π =

2

3

)
P

(
π =

2

3
|H2

)

=

(
6

4

)(
1

3

)4 (
2

3

)2

× 0.5 +

(
6

4

)(
2

3

)4 (
1

3

)2

× 0.5

= 0.21

thus

P (y) =

P (y|H1)︷︸︸︷
0.23 ×

P (H1)︷︸︸︷
0.5 +

P (y|H2)︷︸︸︷
0.21 ×

P (H2)︷︸︸︷
0.5 (5.5)

= 0.22 (5.6)

And we have

P (H1|y) =
0.23× 0.5

0.22
(5.7)

= 0.53 (5.8)

Note that even though the maximum-likelihood estimate of π̂ from the data we observed is
exactly one of the two possible values of π under H2, our data in fact support the“preference”
hypothesis H1 – it went from prior probability P (H1) = 0.5 up to posterior probability
P (H1|y) = 0.53. See also Exercise 5.3.

5.2.1 More complex hypotheses

We might also want to consider more complex hypotheses than H2 above as the “preference”
hypothesis. For example, we might think all possible values of π in [0, 1] are equally probable
a priori :

H3 : P (π|H3) = 1 0 ≤ π ≤ 1

(In Hypothesis 3, the probability distribution over π is continuous, not discrete, so H3 is still
a proper probability distribution.) Let us discard H2 and now compare H1 against H3.

Let us compare H3 against H1 for the same data. To do so, we need to calculate the
likelihood P (y|H3), and to do this, we need to marginalize over π:

Since π can take on a continuous range of values under H3, this marginalization takes
the form of an integral:
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P (y|H3) =

∫

π

P (y|π)P (π|H3) dπ =

∫ 1

0

P (y|π)︷ ︸︸ ︷(
6

4

)
π4(1− π)2

P (π|H3)︷︸︸︷
1 dπ

We use the critical trick of recognizing this integral as a beta function (Section 4.4.2), which
gives us:

=

(
6

4

)
B(5, 3) = 0.14

If we plug this result back in, we find that

P (H1|y) =

P (y|H1)︷︸︸︷
0.23 ×

P (H1)︷︸︸︷
0.5

0.23︸︷︷︸
P (y|H1)

× 0.5︸︷︷︸
P (H1)

+ 0.14︸︷︷︸
P (y|H3)

× 0.5︸︷︷︸
P (H3)

= 0.62

So H3 fares even worse than H2 against the no-preference hypothesis H1. Correspondingly,
we would find that H2 is favored over H3.

5.2.2 Bayes factor

Sometimes we do not have strong feelings about the prior probabilities P (Hi). Nevertheless,
we can quantify how much evidence a given dataset provides for one hypothesis over another.
We can express the relative preference between H and H ′ in the face of data y in terms of
the prior odds of H versus H ′ combined with the likelihood ratio between the two
hypotheses. This combination gives us the posterior odds:

Posterior odds︷ ︸︸ ︷
P (H|y)
P (H ′|y) =

Likelihood ratio︷ ︸︸ ︷
P (y|H)

P (y|H ′)

Prior odds︷ ︸︸ ︷
P (H)

P (H ′)

The contribution of the data y to the posterior odds is simply the likelihood ratio:

P (y|H)

P (y|H ′)
(5.9)

which is also called the Bayes factor between H and H ′. A Bayes factor above 1 indicates
support for H over H ′; a Bayes factor below 1 indicates support for H ′ over H. For example,
the Bayes factors for H1 versus H2 and H1 versus H3 in the preceding examples
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P (y|H1)

P (y|H2)
=

0.23

0.21

P (y|H1)

P (y|H3)
=

0.23

0.14

= 1.14 = 1.64

indicating weak support for H1 in both cases.

5.2.3 Example: Learning contextual contingencies in sequences

One of the key tasks of a language learner is to determine which cues to attend to in learning
distributional facts of the language in their environment (Saffran et al., 1996a; Aslin et al.,
1998; Swingley, 2005; Goldwater et al., 2007). In many cases, this problem of cue relevance
can be framed in terms of hypothesis testing or model selection.

As a simplified example, consider a length-21 sequence of syllables:

da ta da ta ta da da da da da ta ta ta da ta ta ta da da da da

Let us entertain two hypotheses. The first hypothesis H1, is that the probability of an
da is independent of the context. The second hypothesis, H2, is that the probability of
an da is dependent on the preceding token. The learner’s problem is to choose between
these hypotheses—that is, to decide whether immediately preceding context is relevant in
estimating the probability distribution over what the next phoneme will be. How should
the above data influence the learner’s choice? (Before proceeding, you might want to take
a moment to examine the sequence carefully and answer this question on the basis of your
own intuition.)

We can make these hypotheses precise in terms of the parameters that each entails. H1

involves only one binomial parameter P (da), which we will denote as π. H2 involves three
binomial parameters:

1. P (da|∅) (the probability that the sequence will start with da), which we will denote as
π∅;

2. P (da|da) (the probability that an da will appear after an da), which we will denote as
πda;

3. P (da|ta) (the probability that an da will appear after an ta), which we will denote as
πta.

(For expository purposes we will assume that the probability distribution over the number of
syllables in the utterance is the same under both H1 and H2 and hence plays no role in the
Bayes factor.) Let us assume that H1 and H2 are equally likely; we will be concerned with
the Bayes factor between the two hypotheses. We will put a uniform prior distribution on
all model parameters—recall that this can be expressed as a beta density with parameters
α1 = α2 = 1 (Section 4.4.2).
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There are 21 observations, 12 of which are da and 9 of which are ta. The likelihood of
H1 is therefore simply

∫ 1

0

π12(1− π)9 dπ = B(13, 10)

= 1.55× 10−7

once again recognizing the integral as a beta function (see Section 4.4.2).
To calculate the likelihood of H2 it helps to lay out the 21 events as a table of conditioning

contexts and outcomes:

Outcome
Context da ta

∅ 1 0
da 7 4
ta 4 5

The likelihood of H2 is therefore

∫ 1

0

π1
∅ dπ∅

∫ 1

0

π7
da
(1− πda)

4 dπda

∫ 1

0

π4
ta
(1− πta)

5 dπta = B(2, 1)B(8, 5)B(5, 6)

= 1× 10−7

This dataset provides some support for the simpler hypothesis of statistical independence—
the Bayes factor is 1.55 in favor of H1.

5.2.4 Phoneme discrimination as hypothesis testing

In order to distinguish spoken words such as bat and pat out of context, a listener must
rely on acoustic cues to discriminate the sequence of phonemes that is being uttered. One
particularly well-studied case of phoneme discrimination is of voicing in stop consonants. A
variety of cues are available to identify voicing; here we focus on the well-studied cue of voice
onset time (VOT)—the duration between the sound made by the burst of air when the stop
is released and the onset of voicing in the subsequent segment. In English, VOT is shorter
for so-called “voiced” stops (e.g., /b/,/d/,/g/) and longer for so-called “voiceless” stops (e.g.,
/p/,/t/,/k/), particularly word-initially, and native speakers have been shown to be sensitive
to VOT in phonemic and lexical judgments (Liberman et al., 1957).

Within a probabilistic framework, phoneme categorization is well-suited to analysis as a
Bayesian hypothesis test. For purposes of illustration, we dramatically simplify the problem
by focusing on two-way discrimination between the voiced/voiceless stop pair /b/ and /p/.
In order to determine the phoneme-discrimination inferences of a Bayesian listener, we must
specify the acoustic representations that describe spoken realizations x of any phoneme,
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Figure 5.2: Likelihood functions for /b/–
/p/ phoneme categorizations, with µb =
0, µp = 50, σb = σp = 12. For the input
x = 27, the likelihoods favor /p/.
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Figure 5.3: Posterior probability curve
for Bayesian phoneme discrimination as
a function of VOT

the conditional distributions over acoustic representations, Pb(x) and Pp(x) for /b/ and
/p/ respectively (the likelihood functions), and the prior distribution over /b/ versus /p/.
We further simplify the problem by characterizing any acoustic representation x as a single
real-valued number representing the VOT, and the likelihood functions for /b/ and /p/ as
normal density functions (Section 2.10) with means µb, µp and standard deviations σb, σp

respectively.

Figure 5.2 illustrates the likelihood functions for the choices µb = 0, µp = 50, σb = σp =
12. Intuitively, the phoneme that is more likely to be realized with VOT in the vicinity of a
given input is a better choice for the input, and the greater the discrepancy in the likelihoods
the stronger the categorization preference. An input with non-negligible likelihood for each
phoneme is close to the “categorization boundary”, but may still have a preference. These
intuitions are formally realized in Bayes’ Rule:

P (/b/|x) = P (x|/b/)P (/b/)

P (x)
(5.10)

and since we are considering only two alternatives, the marginal likelihood is simply the
weighted sum of the likelihoods under the two phonemes: P (x) = P (x|/b/)P (/b/) +
P (x|/p/)P (/p/). If we plug in the normal probability density function we get

P (/b/|x) =
1√
2πσ2

b

exp
[
− (x−µb)

2

2σ2
b

]
P (/b/)

1√
2πσ2

b

exp
[
− (x−µb)2

2σ2
b

]
P (/b/) + 1√

2πσ2
p

exp
[
− (x−µp)2

2σ2
p

]
P (/p/)

(5.11)

In the special case where σb = σp = σ we can simplify this considerably by cancelling the
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Figure 5.5: Ideal posterior
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wide variances
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Figure 5.6: Response rates
observed by Clayards et al.
(2008)

constants and multiplying through by exp
[
(x−µb)

2

2σ2
b

]
:

P (/b/|x) = P (/b/)

P (/b/) + exp
[
(x−µb)2−(x−µp)2

2σ2

]
P (/p/)

(5.12)

Since e0 = 1, when (x − µb)
2 = (x − µp)

2 the input is “on the category boundary” and the
posterior probabilities of each phoneme are unchanged from the prior. When x is closer to
µb, (x − µb)

2 − (x − µp)
2 > 0 and /b/ is favored; and vice versa when x is closer to µp.

Figure 5.3 illustrates the phoneme categorization curve for the likelihood parameters chosen
for this example and the prior P (/b/) = P (/p/) = 0.5.

This account makes clear, testable predictions about the dependence on the parame-
ters of the VOT distribution for each sound category on the response profile. Clayards et al.
(2008), for example, conducted an experiment in which native English speakers were exposed
repeatedly to words with initial stops on a /b/–/p/ continuum such that either sound cate-
gory would form a word (beach–peach, beak–peak, bes–peas). The distribution of the /b/–/p/
continuum used in the experiment was bimodal, approximating two overlapping Gaussian
distributions (Section 2.10); high-variance distributions (156ms2) were used for some exper-
imental participants and low-variance distribution (64ms2) for others (Figure 5.4). If these
speakers were to learn the true underlying distributions to which they were exposed and
use them to draw ideal Bayesian inferences about which word they heard on a given trial,
then the posterior distribution as a function of VOT would be as in Figure 5.5: note that
low-variance Gaussians would induce a steeper response curve than high-variance Gaussians.
The actual response rates are given in Figure 5.6; although the discrepancy between the low-
and high-variance conditions is smaller than predicted by ideal inference, suggesting that
learning may have been incomplete, the results of Clayards et al. confirm human response
curves are indeed steeper when category variances are lower, as predicted by principles of
Bayesian inference.
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5.3 Frequentist confidence intervals

We now move on to frequentist confidence intervals and hypothesis testing, which have been
developed from a different philosophical standpoint. To a frequentist, it does not make sense
to say that “the true parameter θ lies between these points x and y with probability p∗.” The
parameter θ is a real property of the population from which the sample was obtained and is
either in between x and y, or it is not. Remember, to a frequentist, the notion of probability
as reasonable belief is not admitted! Under this perspective, the Bayesian definition of a
confidence interval—while intuitively appealing to many—is incoherent.

Instead, the frequentist uses more indirect means of quantifying their certainty about the
estimate of θ. The issue is phrased thus: imagine that I were to repeat the same experiment—
drawing a sample from my population—many times, and each time I repeated the experiment
I constructed an interval I on the basis of my sample according to a fixed procedure Proc.
Suppose it were the case that 1 − p percent of the intervals I thus constructed actually
contained θ. Then for any given sample S, the interval I constructed by Proc is a (1− p)%
confidence interval for θ.

If you think that this seems like convoluted logic, well, you are not alone. Frequentist
confidence intervals are one of the most widely misunderstood constructs in
statistics. The Bayesian view is more intuitive to most people. Under some circumstances,
there is a happy coincidence where Bayesian and frequentist confidence intervals look the
same and you are free to misinterpret the latter as the former. In general, however, they do
not necessarily look the same, and you need to be careful to interpret each correctly.

Here’s an example, where we will explain the standard error of the mean. Suppose
that we obtain a sample of n observations from a normal distribution N(µ, σ2). It turns out
that the following quantity follows the tn−1 distribution (Section B.5):

µ̂− µ√
S2/n

∼ tn−1 (5.13)

where

µ̂ =
1

n

∑

i

Xi [maximum-likelihood estimate of the mean]

S2 =
1

n− 1

∑

i

(Xi − µ̂)2 [unbiased estimate of σ2; Section 4.3.3]

Let us denote the quantile function for the tn−1 distribution as Qtn−1 . We want to choose
a symmetric interval [−a, a] containing (1 − α) of the probability mass of tn−1. Since the t
distribution is symmetric around 0, if we set a =

√
S2/n Qtn−1(1− α/2), we will have
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P (µ̂− µ < −a) =
α

2
(5.14)

P (µ̂− µ > a) =
α

2

Figure 5.7 illustrates this for α = 0.05 (a 95% confidence interval). Most of the time, the
“standardized” difference between µ̂ and µ is small and falls in the unshaded area. But 5%
of the time, this standardized difference will fall in the shaded area—that is, the confidence
interval won’t contain µ.

Note that the quantity S/
√
n is called the the standard error of the mean or

simply the standard error. Note that this is different from the standard deviation of the
sample, but related! (How?) When the number of observations n is large, the t distribution
looks approximately normal, and as a rule of thumb, the symmetric 95% tail region of the
normal distribution is about 2 standard errors away from the mean.

Another example: let’s look at the data from a classic study of the English vowel space
(Peterson and Barney, 1952). The distribution of the F1 formant for the vowel E is roughly
normal (see Figure 5.8). The 95% confidence interval can be calculated by looking at the
quantity S/

√
n Qt151(0.975) = 15.6. This is half the length of the confidence interval; the

confidence interval should be centered around the sample mean µ̂ = 590.7. Therefore our
95% confidence interval for the mean F1 is [575.1, 606.3].

5.4 Frequentist hypothesis testing

In most of science, including areas such as psycholinguistics and phonetics, statistical in-
ference is most often seen in the form of hypothesis testing within the Neyman-Pearson

paradigm. This paradigm involves formulating two hypotheses, the null hypothesis H0
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and a more general alternative hypothesisHA (sometimes denoted H1). We then design
a decision procedure which involves collecting some data y and computing a statistic T (y),
or just T for short. Before collecting the data y, T (y) is a random variable, though we do
not know its distribution because we do not know whether H0 is true. At this point we divide
the range of possible values of T into an acceptance region and a rejection region.
Once we collect the data, we accept the null hypothesis H0 if T falls into the acceptance
region, and reject H0 if T falls into the rejection region.

Now, T is a random variable that will have one distribution under H0, and another
distribution under HA. Let us denote the probability mass in the rejection region under H0

as α, and the mass in the same region under HA as 1− β. There are four logically possible
combinations of the truth value of H0 and our decision once we have collected y:

(1)

Our decision
Accept H0 Reject H0

H0 is. . .
True Correct decision (prob. 1− α) Type I error (prob. α)
False Type II error (prob. β) Correct decision (prob. 1− β)

The probabilities in each row of I sum to 1, since they represent the conditional probability
of our decision given the truth/falsity of H0.

As you can see in I, there are two sets of circumstances under which we have done the
right thing:

1. The null hypothesis is true, and we accept it (probability 1− α).

2. The null hypothesis is false, and we reject it (probability 1− β).

This leaves us with two sets of circumstances under which we have made an error:

1. The null hypothesis is true, but we reject it (probability α). This by convention is
called a Type I error.

2. The null hypothesis is false, but we accept it (probability β). This by convention is
called a Type II error.

For example, suppose that a psycholinguist uses a simple visual world paradigm to ex-
amine the time course of word recognition. She presents to participants a display on which
a desk is depicted on the left, and a duck is depicted on the right. Participants start with
their gaze on the center of the screen, and their eye movements are recorded as they hear
the word “duck”. The question at issue is whether participants’ eye gaze fall reliably more
often on the duck than on the desk in the window 200− 250 milliseconds after the onset of
“duck”, and the researcher devises a simple rule of thumb that if there are more than twice
as many fixations on the duck than on the chair within this window, the null hypothesis will
be rejected. Her experimental results involve 21% fixations on the duck and 9% fixations on
the chair, so she rejects the null hypothesis. However, she later finds out that her computer
was miscalibrated by 300 milliseconds and the participants had not even heard the onset of
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the word by the end of the relevant window. The researcher had committed a Type I error.
(In this type of scenario, a Type I error is often called a false positive, and a Type II
error is often called a false negative.)

The probability α of Type I error is referred to as the significance level of the hypoth-
esis test. In the Neyman-Pearson paradigm, T is always chosen such that its (asymptotic)
distribution can be computed. The probability 1 − β of not committing Type II error is
called the power of the hypothesis test. There is always a trade-off between significance
level and power, but the goal is to use decision procedures that have the highest possible
power for a given significance level. To calculate β and thus the power, however, we need to
know the true model, so determining the optimality of a decision procedure with respect to
power can be tricky.

Now we’ll move on to a concrete example of hypothesis testing in which we deploy some
probability theory.

5.4.1 Hypothesis testing: binomial ordering preference

One of the simplest cases of hypothesis testing—and one that is often useful in the study of
language—is the binomial test, which we illustrate here.

You decide to investigate the role of ultimate-syllable stress avoidance in English binomial
ordering preferences by collecting from the British National Corpus 45 tokens of binomials
in which *Bstr could be violated. As the test statistic T you simply choose the number
of successes r in these 45 tokens. Therefore the distribution of T under the no-preference
null hypothesis H0 : π = 0.5 is simply the distribution on the number of successes r for a
binomial distribution with parameters n = 45, π = 0.5. The most general natural alternative
hypothesis HA of “preference” would be that the binomial has some arbitrary preference

HA : 0 ≤ π ≤ 1 (5.15)

Unlike the case with Bayesian hypothesis testing, we do not put a probability distribution
on π under HA. We complete our decision procedure by partitioning the possible values of
T into acceptance and rejection regions. To achieve a significance level α we must choose
a partitioning such that the rejection region contains probability mass of no more than α
under the null hypothesis. There are many such partitions that achieve this. For example,
the probability of achieving 18 successes in 45 trials is just under 5%; so is the probability of
achieving at least 27 successes but not more than 29 successes. The black line in Figure 5.9a
shows the probability density function for H0, and each of the gray areas corresponds to one
of these rejection regions.

However, the principle of maximizing statistical power helps us out here. Recall that
when HA is true, the power of the hypothesis test, 1−β, is the probability that T (y) will fall
in our rejection region. The significance level α that we want to achieve, however, constrains
how large our rejection region can be. To maximize the power, it therefore makes sense to
choose as the rejection region that part of the range of T assigned lowest probability by H0
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Figure 5.9: The trade-off between significance level and power

and highest probability by HA. Let us denote the probability mass functions for T under
H0 and HA as P0(T ) and PA(T ) respectively. Figure 5.9b illustrates the tradeoff by plotting

the log-ratio log PA(T )
P0(T )

under two example instantiations of HA: πA = 0.25 and πA = 0.75.
The larger this ratio for a given possible outcome t of T , the more power is obtained by
inclusion of t in the rejection region. When πA < 0.5, the most power is obtained by filling
the rejection region with the largest possible values of T . Likewise, when πA > 0.5, the
most power is obtained by filling the rejection region with the smallest possible values of T .2

Since our HA entertains all possible values of π, we obtain maximal power by splitting our
rejection region into two symmetric halves, one on the left periphery and the other on the
right periphery. In Figure 5.9c, the gray shaded area represents the largest such split region
that contains less than 5% of the probability mass under H0 (actually α = 0.0357). If our
45 tokens do not result in at least 16 and at most 29 successes, we will reject H0 in favor
of HA under this decision rule. This type of rule is called a two-tailed test because the
rejection region is split equally in the two tails of the distribution of T under H0.

Another common type of alternative hypothesis would be that is a tendency to satisfy
*Bstr. This alternative hypothesis would naturally be formulated as H ′

A : 0.5 < π ≤ 1.
This case corresponds to the green line in Figure 5.9b; in this case we get the most power by
putting our rejection region entirely on the left. The largest possible such rejection region
for our example consists of the lefthand gray region plus the black region in Figure 5.9c
(α = 0.0362). This is called a one-tailed test. The common principle which derived
the form of the one-tailed and two-tailed tests alike is the idea that one should choose the
rejection region that maximizes the power of the hypothesis test if HA is true.

Finally, a common approach in science is not simply to choose a significance level α

2Although it is beyond the scope of this text to demonstrate it, this principle of maximizing statistical
power leads to the same rule for constructing a rejection region regardless of the precise values entertained
for π under HA, so long as values both above and below 0.5 are entertained.
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in advance and then report whether H0 is accepted or rejected, but rather to report the
lowest value of α for which H0 would be rejected. This is what is known as the p-value
of the hypothesis test. For example, if our 45 tokens resulted in 14 successes and we con-
ducted a two-tailed test, we would compute twice the cumulative distribution function of
Binom(45,0.5) at 14, which would give us an outcome of p = 0.016.

5.4.2 Quantifying strength of association in categorical variables

There are many situations in quantitative linguistic analysis where you will be interested
in the possibility of association between two categorical variables. In this case, you will
often want to represent your data as a contingency table. A 2× 2 contingency table has the
following form:

Y
y1 y2

X x1 n11 n12 n1∗
x2 n21 n22 n2∗

n∗1 n∗2 n∗∗

(5.16)

where the ni∗ are the marginal totals for different values of xi across values of Y , the n∗j are
the marginal totals for different values of yj across values of X, and n∗∗ is the grand total
number of observations.

We’ll illustrate the use of contingency tables with an example of quantitative syntax: the
study of coordination. In traditional generative grammar, rules licensing coordination had
the general form

NP → NP Conj NP

or even

X → X Conj X

encoding the intuition that many things could be coordinated with each other, but at some
level every coordination should be a “combination of like categories”, a constraint referred
to as Conjoin Likes (Chomsky, 1965). However, this approach turned out to be of lim-
ited success in a categorical context, as demonstrated by clear violations of like-category
constraints such as II below (Sag et al., 1985; Peterson, 1986):

(2) Pat is a Republican and proud of it (coordination of noun phrase with adjective
phrase)

However, the preference for coordination to be between like categories is certainly strong as a
statistical tendency (Levy, 2002). This in turn raises the question of whether the preference
for coordinated constituents to be similar to one another extends to a level more fine grained
than gross category structure (Levy, 2002; Dubey et al., 2008). Consider, for example, the
following four coordinate noun phrases (NPs):
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Example NP1 NP2
1. The girl and the boy noPP noPP
2. [The girl from Quebec] and the boy hasPP noPP
3. The girl and [the boy from Ottawa] noPP hasPP
4. The girl from Quebec and the boy from Ottawa hasPP hasPP

Versions 1 and 4 are parallel in the sense that both NP conjuncts have prepositional-phrase
(PP) postmodifiers; versions 2 and 3 are non-parallel. If Conjoin Likes holds at the level of
NP-internal PP postmodification as a violable preference, then we might expect coordinate
NPs of types 1 and 4 to be more common than would “otherwise be expected”—a notion
that can be made precise through the use of contingency tables.

For example, here are patterns of PP modifications in two-NP coordinations of this type
from the parsed Brown and Switchboard corpora of English, expressed as 2× 2 contingency
tables:

(3)

NP2 NP2
Brown hasPP noPP Switchboard hasPP noPP

NP1 hasPP 95 52 147 NP1 hasPP 78 76 154
noPP 174 946 1120 noPP 325 1230 1555

269 998 1267 403 1306 1709

From the table you can see that in both corpora, NP1 is more likely to have a PP postmodifier
when NP2 has one, and NP2 is more likely to have a PP postmodifier when NP1 has one.
But we would like to go beyond that and quantify the strenght of the association between
PP presence in NP1 on NP2. We would also like to test for significance of the association.

Quantifying association: odds ratios

In Section 3.3 we already saw one method of quantifying the strength of association between
two binary categorical variables: covariance or correlation. Another popular way way
of quantifying the predictive power of a binary variable X on another binary variable Y is
with the odds ratio. To introduce this concept, we first introduce the overall odds ωY of
y1 versus y2:

ωY def
=

n∗1
n∗2

(5.17)

Likewise, the odds ωX of x1 versus x2 are n1∗

n2∗
. For example, in our Brown corpus examples

we have ωY = 147
1120

= 0.13 and ωX = 269
998

= 0.27.
We further define the odds for Y if X = x1 as ωY

1 and so forth, giving us:

ωY
1

def
=

n11

n12

ωY
2

def
=

n21

n22

ωX
1

def
=

n11

n21

ωX
2

def
=

n12

n22
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If the odds of Y for X = x2 are greater than the odds of Y for X = x1, then the outcome of
X = x2 increases the chances of Y = y1. We can express the effect of the outcome of X on
the odds of Y by the odds ratio (which turns out to be symmetric between X, Y ):

OR def
=

ωY
1

ωY
2

=
ωX
1

ωX
2

=
n11n22

n12n21

An odds ratio OR = 1 indicates no association between the variables. For the Brown and
Switchboard parallelism examples:

ORBrown = 95×946
52×174

= 9.93 ORSwbd = 78×1230
325×76

= 3.88

So the presence of PPs in left and right conjunct NPs seems more strongly interconnected
for the Brown (written) corpus than for the Switchboard (spoken). Intuitively, this differ-
ence might be interpreted as parallelism of PP presence/absence in NPs being an aspect of
stylization that is stronger in written than in spoken language.

5.4.3 Testing significance of association in categorical variables

In frequentist statistics there are several ways to test the significance of the association
between variables in a two-way contingency table. Although you may not be used to thinking
about these tests as the comparison of two hypotheses in form of statistical models, they
are!

Fisher’s exact test

Fisher’s exact test applies to 2 × 2 contingency tables such as (5.16). It takes as H0 the
model in which all marginal totals are fixed, but that the individual cell totals are not—
alternatively stated, that the individual outcomes of X and Y are independent. This means
that under H0, the true underlying odds ratio OR is 1. HA is the model that the
individual outcomes of X and Y are not independent. With Fisher’s exact test, the test
statistic T is the odds ratio OR, which follows the hypergeometric distribution under
the null hypothesis (Section B.3).

An advantage of this test is that it computes the exact p-value (that is, the smallest α for
which H0 would be rejected). Because of this, Fisher’s exact test can be used even for very
small datasets. In contrast, many of the tests we cover elsewhere in this book (including the
chi-squared and likelihood-ratio tests later in this section) compute p-values that are only
asymptotically correct, and are unreliable for small datasets. As an example, consider the
small hypothetical parallelism dataset given in IV below:
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(4)

NP2
hasPP noPP

NP1
hasPP 3 14 26
noPP 22 61 83

34 75 109

The odds ratio is 2.36, and Fisher’s exact test gives a p-value of 0.07. If we were to see
twice the data in the exact same proportions, the odds ratio would stay the same, but the
significance of Fisher’s exact test for non-independence would increase.

Chi-squared test

This is probably the best-known contingency-table test. It is very general and can be applied
to arbitrary N -cell tables, if you have a model with k parameters that predicts expected
values Eij for all cells. For the chi-squared test, the test statistic is Pearson’s X2:

X2 =
∑

ij

[nij − Eij]
2

Eij

(5.18)

In the chi-squared test, HA is the model that each cell in the table has its own parameter pi
in one big multinomial distribution. When the expected counts in each cell are large enough
(the generally agreed lower bound is ≥ 5), the X2 statistic is approximately distributed as a
chi-squared (χ2) random variable with N − k − 1 degrees of freedom (Section B.4). The χ2

distribution is asymmetric and the rejection region is always placed in the right tail of the
distribution (see Section B.4), so we can calculate the p-value by subtracting from one the
value of the cumulative distribution function for the observed X2 test statistic.

The most common way of using Pearson’s chi-squared test is to test for the independence
of two factors in a two-way contingency table. Take a k × l two-way table of the form:

y1 y2 · · · yl
x1 n11 n12 · · · n1l n1∗
x2 n21 n22 · · · n2l n2∗

...
...

. . .
...

...
xl nk1 nk2 · · · nkl nk∗

n∗1 n∗2 · · · n∗l n

Our null hypothesis is that the xi and yi are independently distributed from one another.
By the definition of probabilistic independence, that means that H0 is:

P (xi, yj) = P (xi)P (yj)

In the chi-squared test we use the relative-frequency (and hence maximum-likelihood; Sec-
tion 4.3.1) estimates of the marginal probability that an observation will fall in each row or
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column: P̂ (xi) =
ni∗

n
and P̂ (yj) =

n∗j

n
. This gives us the formula for the expected counts in

Equation (5.18):

Eij = nP (xi)P (yj)

Example: For the Brown corpus data in III, we have

P (x1) =
147

1267
= 0.1160 P (y1) =

269

1267
= 0.2123 (5.19)

P (x2) =
1120

1267
= 0.8840 P (y2) =

998

1267
= 0.7877 (5.20)

giving us

E11 = 31.2 E12 = 115.8 E21 = 237.8 E21 = 882.2 (5.21)

Comparing with III, we get

X2 =
(95− 31.2)2

31.2
+

(52− 115.8)2

115.8
+

(174− 237.8)2

237.8
+

(946− 882.2)2

882.2
(5.22)

= 187.3445 (5.23)

We had 2 parameters in our model of independence, and there are 4 cells, so X2 is distributed
as χ2

1 (since 4−2−1 = 1). The cumulative distribution function of χ2
1 at 187.3 is essentially 1,

so the p-value is vanishingly small; by any standards, the null hypothesis can be confidently
rejected.

Example with larger data table:

NP PP NP NP NP other
gave 17 79 34
paid 14 4 9
passed 4 1 16

It is worth emphasizing, however, that the chi-squared test is not reliable when expected
counts in some cells are very small. For the low-count table in IV, for example, the chi-
squared test yields a significance level of p = 0.038. Fisher’s exact test is the gold standard
here, revealing that the chi-squared test is too aggressive in this case.

5.4.4 Likelihood ratio test

With this test, the statistic you calculate for your data y is the likelihood ratio

Λ∗ =
maxLikH0(y)

maxLikHA
(y)

(5.24)
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—that is, the ratio of the data likelihood under the MLE in H0 to the data likelihood under
the MLE in HA. This requires that you explicitly formulate H0 and HA, since you need to
find the MLEs and the corresponding likelihoods. The quantity

G2 def
= −2 log Λ∗ (5.25)

is sometimes called the deviance, and it is approximately chi-squared distributed (Sec-
tion B.4) with degrees of freedom equal to the difference in the number of free parameters
in HA and H0. (This test is also unreliable when expected cell counts are low, as in < 5.)

The likelihood-ratio test gives similar results to the chi-squared for contingency tables,
but is more flexible because it allows the comparison of arbitrary nested models. We will see
the likelihood-ratio test used repeatedly in later chapters.

Example: For the Brown corpus data above, let H0 be the model of independence
between NP1 and NP2 with respective success parameters π1 and π2, and HA be the model of
full non-independence, in which each complete outcome 〈xi, yj〉 can have its own probability
πij (this is sometimes called the saturated model). We use maximum likelihood to fit
each model, giving us for H0:

π1 = 0.116 π2 = 0.212

and for HA:

π11 = 0.075 π12 = 0.041 π21 = 0.137 π22 = 0.747

We calculate G2 as follows:

−2 log Λ∗ = −2 log
(π1π2)

95(π1(1− π2))
52((1− π1)π2)

174((1− π1)(1− π2))
946

π95
11π

52
12π

174
21 π946

22

= −2 [95 log(π1π2) + 52 log(π1(1− π2)) + 174 log((1− π1)π2) + 946 log((1− π1)(1− π2))

−95π11 − 52π12 − 174π21 − 946π22]

= 151.6

H0 has two free parameters, and HA has three free parameters, so G2 should be approxi-
mately distributed as χ2

1. Once again, the cumulative distribution function of χ2
1 at 151.6 is

essentially 1, so the p-value of our hypothesis test is vanishingly small.

5.5 Exercises

Exercise 5.1
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Would the Bayesian hypothesis-testing results of Section 5.2 be changed at all if we did
not consider the data as summarized by the number of successes and failures, and instead
used the likelihood of the specific sequence HHTHTH instead? Why?

Exercise 5.2
For Section 5.2, compute the posterior probabilities ofH1, H2, andH3 in a situation where

all three hypotheses are entertained with prior probabilities P (H1) = P (H2) = P (H3) =
1
3
.

Exercise 5.3
Recompute the Bayesian hypothesis tests, computing both posterior probabilities and

Bayes Factors, of Section 5.2 (H1 vs. H2 and H1 vs. H3) for the same data replicated twice
– that is, the observations SSVSVSSSVSVS. Are the preferred hypotheses the same as for the
original computations in Section 5.2? What about for the data replicated three times?

Exercise 5.4: Phoneme discrimination for Gaussians of unequal variance and
prior probabilities.

1. Plot the optimal-response phoneme discrimination curve for the /b/–/p/ VOT contrast
when the VOT of each category is realized as a Gaussian and the Gaussians have equal
variances σb = 12, different means µb = 0, µp = 50, and different prior probabilities:
P (/b/) = 0.25, P (/p/) = 0.75. How does this curve look compared with that in
Figure ???

2. Plot the optimal-response phoneme discrimination curve for the /b/–/p/ VOT contrast
when the Gaussians have equal prior probabilities but both unequal means and unequal
variances: µb = 0, µp = 50, σb = 8, σp = 14.

3. Propose an experiment along the lines of Clayards et al. (2008) testing the ability of
listeners to learn category-specific variances and prior probabilities and use them in
phoneme discrimination.

4. It is in fact the case that naturalistic VOTs in English have larger variance /p/ than
for /b/ [TODO: get reference for this]. For part 2 of this question, check what the
model predicts as VOT extends to very large negative values (e.g., -200ms). There is
some counter-intuitive behavior: what is it? What does this counter-intuitive behavior
tell us about the limitations of the model we’ve been using?

Exercise 5.5
Use simulation to check that the theoretical confidence interval based on the t distribution
for normally distributed data in Section 5.3 really works.

Exercise 5.6
For a given choice of α, is the procedure denoted in Equation (5.14) the only frequentist

confidence interval that can be constructed for µ for normally distributed data?

Exercise 5.7: Hypothesis testing: philosophy.
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You surreptitiously observe an obsessed linguist compulsively searching a corpus for bi-
nomials of the form pepper and salt (P) or salt and pepper (S). He collects twenty examples,
obtaining the sequence

SPSSSPSPSSSSPPSSSSSP

1. The linguist’s research assistant tells you that the experiment was to obtain twenty
examples and record the number of P’s obtained. Can you reject the no-preference null
hypothesis H0 at the α = 0.05 level?

2. The next day, the linguist tells you in class that she purposely misled the research
assistant, and the actual experiment was to collect tokens from the corpus until six P

examples were obtained and then stop. Does this new information affect the p-value
with which you can reject the null hypothesis?

3. The linguist writes up her research results and sends them to a prestigious journal.
The editor sends this article to two Bayesian reviewers. Both reviewers argue that this
mode of hypothesis testing is ridiculous, and that a Bayesian hypothesis test should be
made. Reviewer A suggests that the null hypothesis H0 of π = 0.5 should be compared
with the alternative hypothesis H1 of π = 0.25, and the two hypotheses should be given
equal prior probability.

(a) What is the posterior probability of H0 given the binomials data? Does the
criteria by which the scientist decided how many binomials to collect affect the
conclusions of a Bayesian hypothesis test? Hint: if P (H0|~x)

P (H1|~x) = a, then

P (H0|~x) =
a

1 + a

because P (H0|~x) = 1− P (H1|~x).
(b) Reviewer B suggests that H1 should be π = 0.4 instead. What is the posterior

probability of H0 under this Bayesian comparison?

Exercise 5.8: Bayesian confidence intervals.

The binom.bayes() function in the binom package permits the calculation of Bayesian
confidence intervals over π for various numbers of successes x, total trials n, and a and b
(specified as prior.shape1 and prior.shape2 respectively—but prior.shape1=a− 1 and
prior.shape2=b− 1). Install the binom package with the command

install.packages("binom")
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and then use the binom.bayes() function to plot the size of a 95% confidence interval on
π as a function of the total number of trials n, ranging from 10 to 10000 (in multiples of
10), where 70% of the trials are always successes. (Hold a and b constant, as values of your
choice.)

Exercise 5.9: Contextual dependency in phoneme sequences.

1. Reproduce the Bayesian hypothesis test of Section 5.2.3 for uniform priors with the
following sequences, computing P (H1|y) for each sequence. One of the three sequences
was generated from a context-independent distribution, whereas the other two were
generated from context-dependent distributions. Which one is most strongly indicated
by the Bayesian hypothesis test to be generated from the context-independent distri-
bution?

(a) A B A B B B B B A B B B A A A B B B B B B

(b) B A B B A B A B A A B A B A B B A A B A B

(c) B B B B A A A A B B B B B A A A A B B B B

2. Although we put uniform priors on all success parameters in Section 5.2.3, in the
contextual-dependence model it makes more sense to have a sparse prior—that is,
one that favors strong preferences for some phonemes over others after each type of
context. A sparse beta prior is one for which at least one αi parameter is low (< 1).
Revise the model so that the prior on π∅ remains uniform, but that πA and πB have
symmetric 〈α, α〉 priors (and give both πA and πB the same prior). Plot the posterior
probabilities P (H1|y) for sequences (i-iii) as a function of α for 0 < α ≤ 1. What is the
value of α for which the context-independent sequence is most strongly differentiated
from the context-dependent sequences (i.e. the differences in P (H1|y) between sequence
pairs are greatest)?

Exercise 5.10: Phoneme categorization.

1. Plot the Bayesian phoneme discrimination curve for /b/–/p/ discrimination with µb =
0, µp = 50, σb = 5, σp = 10.

2. Write out the general formula for Bayesian phoneme discrimination when VOTs in the
two categories are normally distributed with unequal variances. Use algebra to simplify
it into the form P (/b/|x) = 1

1+...
. Interpret the formula you obtained.

Exercise 5.11
Frequentist confidence intervals.
In this problem you’ll be calculating some frequentist confidence intervals to get a firmer

sense of exactly what they are.
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1. The english dataset in languageR has lexical-decision and naming reaction times
(RTlexdec and RTnaming respectively) for 2197 English words. Plot histograms of
the mean RT of each item. Calculate 95% frequentist confidence intervals for lexical-
decision and naming times respectively, as described in Lecture 7, Section 2. Which
experimental method gives tighter confidence intervals on mean RT?

2. The t.test() function, when applied to a set of data, returns a list whose component
conf.int is the upper and lower bounds of a 95% confidence interval:

> x <- rnorm(100,2)

> t.test(x)$conf.int

[1] 1.850809 2.241884

attr(,"conf.level")

[1] 0.95

Show that the procedure used in Section 5.3 gives the same results as using t.test()

for the confidence intervals for the English lexical decision and naming datasets.

3. Not all confidence intervals generated from an “experiment” are the same size. For
“experiments”consisting of 10 observations drawn from a standard normal distribution,
use R to calculate a histogram of lengths of 95% confidence intervals on the mean. What
is the shape of the distribution of confidence interval lengths? For this problem, feel
free to use t.test() to calculate confidence intervals.

Exercise 5.12: Comparing two samples.
In class we covered confidence intervals and the one-sample t-test. This approach allows

us to test whether a dataset drawn from a(n approximately) normally distributed population
departs significantly from has a particular mean. More frequently, however, we are interested
in comparing two datasets x and y of sizes nx and ny respectively, and inferring whether or
not they are drawn from the same population. For this purpose, the two-sample t-test
is appropriate.3

1. Statistical power. Suppose you have two populations and you can collect n total
observations from the two populations. Intuitively, how should you distribute your
observations among the two populations to achieve the greatest statistical power

in a test that the two populations follow the same distribution?

3For completeness, the statistic that is t-distributed for the two-sample test is:

ȳ − x̄√
σ2

(
1
nx

+ 1
ny

)

where x̄ and ȳ are the sample means; in general, the variance σ2 is unknown and is estimated as σ̂2 =
∑

i
(xi−x̄)2+

∑
i
(yi−ȳ)2

N−2 where N = nx + ny.
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2. Check your intuitions. Let n = 40 and consider all possible values of nx and ny (note
that ny = n − nx). For each possible value, run 1000 experiments where the two
populations are X ∼ N (0, 1) and Y ∼ N (1, 1). Plot the power of the two-sample
t-test at the α = 0.05 level as a function of nx.

3. Paired t-tests. Sometimes a dataset can be naturally thought of as consisting of
pairs of measurements. For example, if a phonetician measured voice onset time for
the syllables [ba] and [bo] for many different speakers, the data could be grouped into
a matrix of the form

Syllable
Speaker [ba] [bo]
1 x11 x12

2 x21 x22
...

If we wanted to test whether the voice onset times for [ba] and [bo] came from the
same distribution, we could simply perform a two-sample t-test on the data in column
1 versus the data in column 2.

On the other hand, this doesn’t take into account the systematic differences in voice-
onset time that may hold across speakers. What we might really want to do is test
whether the differences between xi1 and xi2 are clustered around zero—which would
indicate that the two data vectors probably do come from the same population—or
around some non-zero number. This comparison is called a paired t-test.

The file spillover_word_rts contains the average reading time (in milliseconds) of the
second “spillover” word after a critical manipulation in self-paced reading experiment,
for 52 sentence pairs of the form:

The children went outside to play early in the afternoon. (Expected)
The children went outside to chat early in the afternoon. (Unexpected)

In a separate sentence completion study, 90% of participants completed the sentence

The children went outside to

with the word play, making this the Expected condition. In these examples, the word
whose reading time (RT) is measured would be in, as it appears two words after the
critical word (in bold).

(a) Use paired and unpaired t-tests to test the hypothesis that mean reading times
at the second spillover word differ significantly in the Expected and Unexpected
conditions. Which test leads to a higher significance value?
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Figure 5.10: A bar plot with non-overlapping standard error bars

(b) Calculate the correlation between the RTs for the unexpected and expected con-
ditions of each item. Intuitively, should higher correlations lead to an increase or
drop in statistical power for the paired test over the unpaired test? Why?

Exercise 5.13: Non-overlapping standard errors.♥

You and your colleague measure the F1 formant frequency in pronunciation of the vowel
[a] for two groups of 50 native speakers of English, one measurement for each speaker. The
means and standard errors of these measurements are shown in Figure 5.10. Your colleague
states, “we can be fairly confident in inferring that the two groups have significantly different
mean F1 formant frequencies. As a rule of thumb, when you have a reasonably large number
of measurements in each group and the standard error bars between the two groups are
non-overlapping, we can reject the null hypothesis that the group means are the same at the
p < 0.05 level.” Is your colleague’s rule of thumb correct?

Exercise 5.14: Log odds ratio versus correlation.

Are (log) odds ratios any different from correlation coefficients? Plot the relationship
between log odds ratio and correlation coefficient for a number of different 2× 2 contingency
tables. (If you want to take a sampling-based approach to exploring the space of possible
contingency tables, you might use the Dirichlet distribution—see Section B.8—to randomly
generate sets of cell probabilities).

Exercise 5.15: Contingency tables.
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1. Bresnan et al. (2007) conducted a detailed analysis of the dative alternation, as in the
example below:

The actress gave the toys to the children. (Prepositional Object, PO)
The actress gave the children the toys. (Double Object, DO)

The analysis was based on data obtained from the parsed Switchboard corpus (Godfrey et al.,
1992).4 Irrespective of which alternate was used, it turns out that there are correlations
among the properties of the theme (the toys) and the recipient (the children).

Definiteness and animacy are often found to be correlated. Look at the relationship
between animacy and definiteness of (1) the theme, and (2) the recipient within this
dataset, constructing contingency tables and calculating the odds ratios in each case.
For which semantic role are definiteness and animacy more strongly associated? Why
do you think this might be the case? (Note that organizations, animals, intelligent
machines, and vehicles were considered animate for this coding scheme (Zaenen et al.,
2004)).

2. The language Warlpiri, one of the best-studied Australian Aboriginal languages, is
characterized by extremely free word order and heavy use of morphological cues as
to the grammatical function played by each word in the clause (i.e. case marking).
Below, for example, the ergative case marking (erg) on the first word of the sentence
identifies it as the subject of the sentence:

Ngarrka-
man

ngku
erg

ka
aux

wawirri
kangaroo

panti-
spear

rni.
nonpast

(Hale, 1983)

“The man is spearing the kangaroo”.

In some dialects of Warlpiri, however, using the ergative case is not obligatory. Note
that there would be a semantic ambiguity if the case marking were eliminated from
the first word, because neither man nor kangaroo would have case marking to indicate
its grammatical relationship to the verb spear. O’Shannessy (2009) carried out a study
of word order and case marking variation in sentences with transitive main clauses
and overt subjects (“A” arguments in the terminology of Dixon, 1979) in elicited story
descriptions by Warlpiri speakers. Her dataset includes annotation of speaker age,
whether the transitive subject was animate, whether the transitive subject had ergative
case marking, whether the sentence had an animate object (Dixon’s “O” argument),
whether that object was realized overtly, and whether the word order of the sentence
was subject-initial.5

4The dataset can be found in R’s languageR package; there it is a data frame named dative.
5O’Shannessy’s dataset can be found in R’s languageR package under the name warlpiri.
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(a) Does subject animacy have a significant association (at the α = 0.05 level)
with ergative case marking? What about word order (whether the subject was
sentence-initial)?

(b) Which of the following variables have an effect on whether subject animacy and
word order have a significant association with use of ergative case marking? (For
each of the below variables, split the dataset in two and do a statistical test of
association on each half.)

overtness of object
age group
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Chapter 6

Generalized Linear Models

In Chapters 2 and 4 we studied how to estimate simple probability densities over a single
random variable—that is, densities of the form P (Y ). In this chapter we move on to the
problem of estimating conditional densities—that is, densities of the form P (Y |X). Logically
speaking, it would be possible to deal with this problem simply by assuming that Y may
have an arbitrarily different distribution for each possible value of X, and to use techniques
we’ve covered already to estimate a different density P (Y |X = xi) for each possible value xi

of X. However, this approach would miss the fact that X may have a systematic effect on Y ;
missing this fact when it is true would make it much more difficult to estimate the conditional
distribution. Here, we cover a popular family of conditional probability distributions known
as generalized linear models. These models can be used for a wide range of data types
and have attractive computational properties.

6.1 The form of the generalized linear model

Suppose we are interested in modeling the distribution of Y conditional on a number of
random variables X1, . . . , Xn. Generalized linear models are a framework for modeling this
type of conditional distribution P (Y |X1, . . . , Xn) subject to four key assumptions:

1. The influences of the {Xi} variables on Y can be summarized into an intermediate
form, the linear predictor η;

2. η is a linear combination of the {Xi};

3. There is a smooth, invertible function l mapping η to the expected value µ of Y ;

4. The distribution P (Y = y;µ) of Y around µ is a member of a certain class of noise
functions and is not otherwise sensitive to the Xi variables.

1

Assumptions 1 through 3 can be expressed by the following two equations:

1The class of allowable noise functions is described in Section ??.
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X η

θ

Y

Figure 6.1: A graphical depiction of the generalized linear model. The influence of the
conditioning variables X on the response Y is completely mediated by the linear predictor
η.

η = α + β1X1 + · · ·+ βnXn (linear predictor) (6.1)

η =l(µ) (link function) (6.2)

Assumption 4 implies conditional independence of Y from the {Xi} variables given η.
Various choices of l(µ) and P (Y = y;µ) give us different classes of models appropriate

for different types of data. In all cases, we can estimate the parameters of the models using
any of likelihood-based techniques discussed in Chapter 4. We cover three common classes
of such models in this chapter: linear models, logit (logistic) models, and log-linear models.

6.2 Linear models and linear regression

We can obtain the classic linear model by chooosing the identity link function

η = l(µ) = µ

and a noise function that adds noise

ǫ ∼ N(0, σ2)

to the mean µ. Substituting these in to Equations (6.1) and 6.2, we can write Y directly
as a function of {Xi} as follows:

Y =

Predicted Mean︷ ︸︸ ︷
α + β1X1 + · · ·+ βnXn +

Noise∼N(0,σ2)︷︸︸︷
ǫ (6.3)

We can also write this whole thing in more compressed form as Y ∼ N(α
∑

i βiXi, σ
2).

To gain intuitions for how this model places a conditional probability density on Y , we
can visualize this probability density for a single independent variable X, as in Figure 6.2—
lighter means more probable. Each vertical slice of constant X = x represents a conditional
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(a) Predicted outcome

Conditional probability density P(y|x) for a linear model

x

y

−4

−2

0

2

4

−4 −2 0 2 4

0.00

0.05

0.10

0.15

0.20

(b) Probability density

Figure 6.2: A plot of the probability density on the outcome of the Y random variable given
the X random variable; in this case we have η = 1

2
X and σ2 = 4.

distribution P (Y |x). If you imagine a vertical line extending through the plot at X = 0, you
will see that the plot along this line is lightest in color at Y = −1 = α. This is the point
at which ǫ takes its most probable value, 0. For this reason, α is also called the intercept

parameter of the model, and the βi are called the slope parameters.

6.2.1 Fitting a linear model

The process of estimating the parameters α and βi of a linear model on the basis of some
data (also called fitting the model to the data) is called linear regression. There are
many techniques for parameter estimation in linear regression; here we will cover the method
of maximum likelihood and also Bayesian linear regression.

Maximum-likelihood linear regression

Before we talk about exactly what the maximum-likelihood estimate looks like, we’ll intro-
duce some useful terminology. Suppose that we have chosen model parameters α̂ and {β̂i}.
This means that for each point 〈xj, yj〉 in our dataset y, we can construct a predicted

value for ŷj as follows:

ŷj = α̂ + β̂1xj1 + . . . β̂nxjn

where xji is the value of the i-th predictor variable for the j-th data point. This predicted
value is both the expectated value and the modal value of Yj due to the Gaussian-noise
assumption of linear regression. We define the residual of the j-th data point simply as
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yj − ŷj

—that is, the amount by which our model’s prediction missed the observed value.
It turns out that for linear models with a normally-distributed error term ǫ, the log-

likelihood of the model parameters with respect to y is proportional to the sum of the
squared residuals. This means that the maximum-likelihood estimate of the parameters
is also the estimate that minimizes the the sum of the squared residuals. You will often
see description of regression models being fit using least-squares estimation. Whenever
you see this, recognize that this is equivalent to maximum-likelihood estimation under the
assumption that residual error is normally-distributed.

6.2.2 Fitting a linear model: case study

The dataset english contains reaction times for lexical decision and naming of isolated
English words, as well as written frequencies for those words. Reaction times are measured
in milliseconds, and word frequencies are measured in appearances in a 17.9-million word
written corpus. (All these variables are recorded in log-space) It is well-established that
words of high textual frequency are generally responded to more quickly than words of low
textual frequency. Let us consider a linear model in which reaction time RT depends on the
log-frequency, F , of the word:

RT = α + βFF + ǫ (6.4)

This linear model corresponds to a formula in R, which can be specified in either of the
following ways:Introduction to

section 11.1
RT ~ F

RT ~ 1 + F

The 1 in the latter formula refers to the intercept of the model; the presence of an intercept
is implicit in the first formula.

The result of the linear regression is an intercept α = 843.58 and a slope βF = −29.76.
The WrittenFrequency variable is in natural log-space, so the slope can be interpreted as
saying that if two words differ in frequency by a factor of e ≈ 2.718, then on average the
more frequent word will be recognized as a word of English 26.97 milliseconds faster than the
less frequent word. The intercept, 843.58, is the predicted reaction time for a word whose
log-frequency is 0—that is, a word occurring only once in the corpus.

6.2.3 Conceptual underpinnings of best linear fit

Let us now break down how the model goes about fitting data in a simple example.
Suppose we have only three observations of log-frequency/RT pairs:
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Figure 6.3: Lexical decision reaction times as a function of word frequency

〈4, 800〉
〈6, 775〉
〈8, 700〉

Let use consider four possible parameter estimates for these data points. Three estimates
will draw a line through two of the points and miss the third; the last estimate will draw a
line that misses but is reasonably close to all the points.

First consider the solid black line, which has intercept 910 and slope -25. It predicts the
following values, missing all three points:

x ŷ Residual (ŷ − y)
4 810 −10
6 760 15
8 710 −10

and the sum of its squared residuals is 425. Each of the other three lines has only one non-zero
residual, but that residual is much larger, and in all three case, the sum of squared residuals
is larger than for the solid black line. This means that the likelihood of the parameter values
α = 910, βF = −25 is higher than the likelihood of the parameters corresponding to any of
the other lines.

What is the MLE for α, βF with respect to these three data points, and what are the
residuals for the MLE?
Results of a linear fit (almost every statistical software package supports linear regression)
indicate that the MLE is α = 9081

3
, β = −25. Thus the MLE has the same slope as the solid
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Figure 6.4: Linear regression with three points

black line in Figure 6.4, but the intercept is slightly lower. The sum of squared residuals is
slightly better too.

Take-home point: for linear regression, getting everything wrong by a little bit is better
than getting a few things wrong by a lot.

6.3 Handling multiple predictors

In many cases, we are interested in simultaneously investigating the linear influence of two
or more predictor variables on a single response. We’ll discuss two methods of doing this:
residualizing and multiple linear regression.

As a case study, consider naming reaction times from the english dataset, and now
imagine that we’re interested in the influence of orthographic neighbors. (An orthographic
neighbor of a word w is one that shares most of its letters with w; for example, cat has
several orthographic neighbors including mat and rat.) The english dataset summarizes
this information in the Ncount variable, which measures orthographic neighborhood

density as (I believe) the number of maximally close orthographic neighbors that the word
has. How can we investigate the role of orthographic neighborhood while simultaneously
taking into account the role of word frequency?

6.3.1 Residualizing

One approach would be a two-step process: first, construct a linear regression with frequency
as the predictor and RT as the response. (This is commonly called “regressing RT against
frequency”.) Second, construct a new linear regression with neighborhood density as the
predictor the residuals from the first regression as the response. The transformation of a raw
RT into the residual from a linear regression is called residualization. Figure 6.5):
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Figure 6.5: Plot of frequency-residualized word naming times and linear regression against
neighborhood density

> english.young <- subset(english,AgeSubject=="young")

> attach(english.young)

> rt.freq.lm <- lm(exp(RTnaming) ~ WrittenFrequency)

> rt.freq.lm

Call:

lm(formula = exp(RTnaming) ~ WrittenFrequency)

Coefficients:

(Intercept) WrittenFrequency

486.506 -3.307

> rt.res <- resid(rt.freq.lm)

> rt.ncount.lm <- lm(rt.res ~ Ncount)

> plot(Ncount, rt.res)

> abline(rt.ncount.lm,col=2,lwd=3)

> detach()

> rt.ncount.lm

Call:

lm(formula = rt.res ~ Ncount)

Coefficients:

(Intercept) Ncount

9.080 -1.449
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Even after linear effects of frequency have been accounted for by removing them from the
RT measure, neighborhood density still has some effect – words with higher neighborhood
density are named more quickly.

6.3.2 Multiple linear regression

The alternative is to build a single linear model with more than one predictor. A linear
model predicting naming reaction time on the basis of both frequency F and neighborhood
density D would look like this:

RT = α + βFF + βDD + ǫ

and the corresponding R formula would be either of the following:

RT ~ F + D

RT ~ 1 + F + D

Plugging this in gives us the following results:

> rt.both.lm <- lm(exp(RTnaming) ~ WrittenFrequency + Ncount, data=english.young)

> rt.both.lm

Call:

lm(formula = exp(RTnaming) ~ WrittenFrequency + Ncount, data = english.young)

Coefficients:

(Intercept) WrittenFrequency Ncount

493.638 -2.899 -1.465

Note that the results are qualitatively similar but quantitatively different than for the resid-
ualization approach: larger effect sizes have been estimated for both WrittenFrequency and
Ncount.

6.4 Confidence intervals and hypothesis testing for lin-

ear regression

Just as there was a close connection between hypothesis testing with the one-sample t-test
and a confidence interval for the mean of a sample, there is a close connection between
hypothesis testing and confidence intervals for the parameters of a linear model. We’ll start
by explaining the confidence interval as the fundamental idea, and see how this leads to
hypothesis tests.

Figure 6.6 illustrates the procedures by which confidence intervals are constructed for a
sample mean (one parameter) and for the intercept and slope of a linear regression with one
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Figure 6.6: The confidence-region construction procedure for (a) sample means and (b-c)
parameters of a linear model. The black dots are the maximum-likelihood estimates, around
which the confidence regions are centered.

predictor. In both cases, a dataset y is obtained, and a fixed procedure is used to construct
boundaries of a confidence region from y. In the case of the sample mean, the “region”
is in one-dimensional space so it is an interval. In the case of a linear regression model,
the region is in two-dimensional space, and looks like an ellipse. The size and shape of the
ellipse are determined by the variance-covariance matrix of the linear predictors, and
are determined using the fact that the joint distribution of the estimated model parameters
is multivariate-normal distributed (Section 3.5). If we collapse the ellipse down to only one
dimension (corresponding to one of the linear model’s parameters), we have a confidence
interval on that parameter; this one-dimensional confidence interval is t distributed with
N − k degrees of freedom (Section B.5), where N is the number of observations and k is the
number of parameters in the linear model.2

We illustrate this in Figure 6.7 for the linear regression model of frequency against word
naming latency.The model is quite certain about the parameter estimates; however, note
that there is a correlation between the parameter estimates. According to the analysis, if we
reran this regression many times by repeatedly drawing data from the same population and
estimating parameters, whenever the resulting intercept (i.e., average predicted RT for the
rarest class of word) is higher, the facilitative effect of written frequency would tend to be
larger, and vice versa. This is intuitively sensible because the most important thing for the
regression is where it passes through the centroid of the data; so that if the intercept drops
a bit, the slope has to rise to compensate.

Perhaps a more interesting example is looking at the confidence region obtained for the
parameters of two predictors. In the literature on word recognition, for example, there
has been some discussion over whether word frequency or word familiarity drives variabil-
ity in average word-recognition time (or whether both have independent effects). Because

2Formally this corresponds to marginalizing over the estimates of the other parameters that you’re col-
lapsing over.
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Figure 6.7: Confidence ellipse for parameters of regression of word naming latency against
written frequency

subjective ratings of word familiarity are strongly correlated with word frequency, it is em-
pirically difficult to disentangle the two. Figure 6.8a shows a scatterplot of word familiarity
against word frequency ratings for 2,197 English nouns and verbs (Spieler and Balota, 1997;
Balota and Spieler, 1998); the empirical correlation is 0.79. The naming study carried out by
Spieler and Balota (1997) was very large, and they obtained naming times for each of these
words from 31 undergraduate native English speakers. A multiple linear regression analysis
with frequency and familiarity as predictors puts 95% confidence intervals for their slopes in
the linear model at [-2.49,-1.02] and [-4.33,-1.96] respectively. Hence we can conclude that
each of frequency and familiarity contribute independently in determining naming time (in-
sofar as the measurements of frequency and familiarity themselves are accurately measured).

However, this was a very large study, and one might reasonably ask what conclusions
one could draw from a much smaller study. The same multiple linear regression based on a
random subsample of 200 of the words from Spieler and Balota’s study gives us confidence
intervals for the effects of word frequency and familiarity on naming time of [-3.67,1.16] and [-
7.26,0.82]. With this smaller dataset, we cannot confidently conclude that either predictor is
independently a determinant of naming time. Yet this negative result conceals an important
conclusion that we can still draw. Figure 6.8 plots confidence regions for the two model
parameters, as well as confidence intervals for each individual parameter, in models of the
full dataset (solid green lines) and the reduced, 200-word dataset (dashed magenta lines).
Although the reduced-dataset confidence region shows that we cannot be confident that
either parameter is negative (i.e. that it has a facilitatory effect on naming time), we can
be quite confident that it is not the case that both parameters are non-negative: the ellipse
does not come close to encompassing the origin. That is, we can be confident that some
combination of word frequency and familiarity has a reliable influence on naming time. We
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Figure 6.8: Confidence region on written word frequency and word familiarity for full dataset
of Spieler and Balota (1997), and reduced subset of 200 items

return to this point in Section 6.5.2 when we cover how to compare models differing by more
than one parameter through the F test.

6.5 Hypothesis testing in multiple linear regression

An extremely common use of linear models is in testing hypotheses regarding whether one
or more predictor variables have a reliable influence on a continuously-distributed response.
Examples of such use in the study of language might include but are not limited to:

• Does a word’s frequency reliably influence how rapidly it is recognized, spoken, or read?

• Are words of different parts of speech recognized, spoken, or read at different rates
above and beyond the effects of word frequency (and perhaps other properties such as
word length)?

• Does the violation of a given syntactic constraint affect a native speaker’s rating of the
felicity of sentences with the violation (as compared to sentences without the violation)?

• Does the context in which a sound is uttered reliably influence one of its phonetic
properties (such as voice-onset time for stops, or format frequency for vowels)?

All of these questions may be addressed within the Neyman-Pearson paradigm frequen-
tist hypothesis-testing paradigm introduced in Section 5.4. Recall that the Neyman-Pearson
paradigm involves specifying a null hypothesis H0 and determining whether to reject it in
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favor of a more general and complex hypothesis HA. In many cases, we are interested in
comparing whether a more complex linear regression is justified by the data over a simpler
regression. Under these circumstances, we can take the simpler model M0 as the null hypoth-
esis, and the more complex model MA as the alternative hypothesis. There are two statistical
tests that you will generally encounter for this purpose: one based on the t statistic (which
we already saw in Section 5.3) and another, the F test, which is based on what is called the
F statistic. However, the former is effectively a special case of the latter, so here we’ll look
at how to use the F statistic for hypothesis testing with linear models; then we’ll briefly
cover the use of the t statistic for hypothesis testing as well.

6.5.1 Decomposition of variance

The F test takes advantage of a beautiful property of linear models to compare M0 and MA:
the decomposition of variance. Recall that the variance of a sample is simply the
sum of the square deviations from the mean:

Var(y) =
∑

j

(yj − ȳ)2 (6.5)

where ȳ is the mean of the sample y. For any model M that predicts values ŷj for the data,
the residual variance or residual sum of squares of M is quantified in exactly the
same way:

RSSM(y) =
∑

j

(yj − ŷj)
2 (6.6)

A beautiful and extraordinarily useful property of linear models is that the sample variance
can be split apart, or decomposed, into (a) the component that is explained by M , and
(b) the component that remains unexplained by M . This can be written as follows (see
Exercise 6.5):

Var(y) =

explained by M︷ ︸︸ ︷∑

j

(yj − ŷj)
2 +

RSSM (y),unexplained︷ ︸︸ ︷∑

j

(ŷj − ȳ)2 (6.7)

Furthermore, if two models are nested (i.e., one is a special case of the other), then the
variance can be futher subdivided among those two models. Figure 6.9 shows the partitioning
of variance for two nested models.

6.5.2 Comparing linear models: the F test statistic

The F test is widely used for comparison of linear models, and forms the foundation for
many analytic techniques including the analysis of variance (ANOVA).
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2

∑
j(yj − ŷAj )

2

∑
j(ŷ
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Figure 6.9: The partitioning of residual variance in linear models. Symbols in the box denote
the variance explained by each model; the sums outside the box quantify the variance in each
combination of sub-boxes.

Recall that our starting assumption in this section was that we had two linear models:
a more general model MA, and a special case M0—that is, for any instance of M0 we can
achieve an instance of MA with the same distribution over Y by setting the parameters
appropriately. In this situation we say that M0 is nested inside MA. Once we have found
maximum-likelihood estimates of M0 and MA, let us denote their predicted values for the
j-th observation as ŷ0j and ŷAj respectively. The sample variance unexplained by M0 and MA

respectively is

∑

j

(ŷj − ŷ0j )
2 (M0) (6.8)

∑

j

(ŷj − ŷAj )
2(MA) (6.9)

so the additional variance explained by MA above and beyond M0 is

∑

j

(ŷj − ŷAj )
2 −

∑

j

(ŷj − ŷ0j )
2 =

∑

j

(ŷAj − ŷ0j )
2 (6.10)

Let us suppose that M0 has k0 parameters, MA has kA parameters, and we have n observa-
tions. It turns out that the quantities in Equations (6.8), (6.9), and (6.10) are distributed
proportional to χ2 random variables with n− k0, n− kA, and kA − k0 degrees of freedom re-
spectively (Section B.4). These quantities are also independent of one another; and, crucially,
if M0 is the true model then the proportionality constants for Equations (6.9) and (6.10) are
the same.
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These facts form the basis for a frequentist test of the null hypothesis H0 : M0 is correct,
based on the F statistic, defined below:

F =

∑
j(ŷ

A
j − ŷ0j )

2/(kA − k0)∑
j(yj − ŷAj )

2/(n− kA)
(6.11)

Under H0, the F statistic follows the F distribution (Section B.6)—which is parameterized
by two degrees of freedom—with (kA− k0, n− kA) degrees of freedom. This follows from the
fact that under H0, we have

∑

j

(ŷAj − ŷ0j )
2/(kA − k0) ∼ Cχ2

kA−k0
;

∑

j

(ŷj − ŷAj )
2/(n− kA) ∼ Cχ2

n−kA

for some proportionality constant C; when the ratio of the two is taken, the two Cs cancel,
leaving us with an F -distributed random variable.

Because of the decomposition of variance, the F statistic can also be written as follows:

F =

[∑
j(yj − ŷ0j )

2 −∑
j(yj − ŷAj )

2
]
/(kA − k0)

[∑
j(yj − ŷAj )

2
]
/(n− kA)

which underscores that the F statistic compares the amount of regularity in the observed
data explained by MA beyond that explained by M0 (the numerator) with the amount of
regularity unexplained by MA (the denominator). The numerator and denominator are often
called mean squares.

Because of the decomposition of variance, the F test can be given a straightforward ge-
ometric interpretation. Take a look at the labels on the boxes in Figure 6.9 and convince
yourself that the sums in the numerator and the denominator of the F statistic correspond re-
spectively to the boxes MA−M0 and Unexplained. Thus, using the F statistic for hypothesis
testing is often referred to as evaluation of the ratio of mean squares.

Because of its importance for frequentist statistical inference in linear models, the F
distribution has been worked out in detail and is accessible in most statistical software
packages.

6.5.3 Model comparison: case study

We can bring the F test to bear in our investigation of the relative contributions of word
frequency and familiarity on word naming latency; we will focus on analysis of the reduced
200-item dataset. First let us consider a test in which the null hypothesis H0 is that only
word frequency has a reliable effect, and the alternative hypothesis HA is that both word
frequency (or “Freq” for short) and familiarity (“Fam”) have reliable effects. H0 corresponds
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to the model RT ∼ N (α + βFreqFreq, σ
2); HA corresponds to the model RT ∼ N (α +

βFreqFreq + βFamFam, σ2). After obtaining maximum-likelihood fits of both models, we can
compute the residual sums of squares

∑
j(ŷj − yj)

2 for each model; these turn out to be
76824.28 for M0 and 75871.58 for MA. M0 has two parameters, MA has three, and we have
200 observations; hence kA − k0 = 1 and N − kA = 197. The F statistic for our hypothesis
test is thus

F =
[76824.28− 75871.58] /1

[75871.58] /197

= 2.47

with (1,197) degrees of freedom. Consulting the cumulative distribution function for the F
statistic we obtain a p-value of 0.12.

We can also apply the F test for comparisons of models differing in multiple parameters,
however. For example, let M ′

0 be a model in which neither word frequency nor familiarity has
an effect on naming time. The residual variance in this model is the entire sample variance,
or 82270.49. For a comparison between M ′

0 and MA we obtain an F statistic of

F =
[82270.49− 75871.58] /2

[75871.58] /197

= 8.31

with (2,197) degrees of freedom. The corresponding p-value is 0.00034, indicating that our
data are extremely unlikely under M ′

0 and that MA is far preferable. Thus, although we
could not adjudicate between word frequency and familiarity with this smaller dataset, we
could say confidently that some combination of the two has a reliable effect on word naming
time.

Another widely used test for the null hypothesis that within a k-parameter model, a
single parameter βi is 0. This hypothesis can be tested through a t-test where the t statistic
is the ratio of the parameter estimate, β̂i to the standard error of the estimate, SE(β̂i). For a
dataset with N observations, this t-test has N−k degrees of freedom. However, a F statistic
with (1,m) has the same distribution as the square of a t statistic with m degrees of freedom.
For this reason, the t-test for linear models can be seen as a special case of the more general
F test; the latter can be applied to compare nested linear models differing in any number of
parameters.

6.6 Analysis of Variance

Recall that we just covered linear models, which are conditional probability distributions of
the form
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P (Y |X) = α + β1X1 + β2X2 + · · ·+ βnXn + ǫ (6.12)

where ǫ ∼ N (0, σ2). We saw how this paradigm can be put to use for modeling the predictive
relationship of continuous variables, such as word frequency, familiarity, and neighborhood
density, on reaction times in word recognition experiments.

In many cases, however, the predictors of interest are not continuous. For example, for
the english dataset in languageR we might be interested in how naming times are influenced
by the type of the initial phoneme of the word. This information is coded by the Frication
variable of the dataset, and has the following categories:

burst the word starts with a burst consonant
frication the word starts with a fricative consonant
long the word starts with a long vowel
short the word starts with a short vowel

It is not obvious how these categories might be meaningfully arranged on the real number
line. Rather, we would simply like to investigate the possibility that the mean naming time
differs as a function of initial phoneme type.

The most widespread technique used to investigate this type of question is the analysis
of variance (often abbreviated ANOVA). Although many books go into painstaking detail
covering different instances of ANOVA, you can gain a firm foundational understanding of
the core part of the method by thinking of it as a special case of multiple linear regression.

6.6.1 Dummy variables

Let us take the example above, where Frication is a categorical predictor. Categorical
predictors are often called factors, and the values they take are often called levels. (This
is also the nomenclature used in R.) In order to allow for the possibility that each level of the
factor could have arbitrarily different effects on mean naming latency, we can create dummy
predictor variables, one per level of the factor:

Level of Frication X1 X2 X3 X4

burst 1 0 0 0
frication 0 1 0 0
long 0 0 1 0
short 0 0 0 1

(Variables such as these which are 0 unless a special condition holds, in which case they are
1, are often referred to as indicator variables). We then construct a standard linear
model with predictors X1 through X4:

Y = α + β1X1 + β2X2 + β3X3 + β4X4 + ǫ (6.13)
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When we combine the dummy predictor variables with the linear model in (9.7), we get the
following equations for each level of Frication:

Level of Frication Linear model
burst Y = α + β1 + ǫ
frication Y = α + β2 + ǫ
long Y = α + β3 + ǫ
short Y = α + β4 + ǫ

This linear model thus allows us to code a different predicted mean (and most-likely predicted
value) for each level of the predictor, by choosing different values of α and βi.

However, it should be clear from the table above that only four distinct means can
be predicted in this linear model—one for each level of Frication. We don’t need five
parameters (one for α and four for the βi) to encode four means; one of the parameters is
redundant. This is problematic when fitting the model because it means that there is no
unique maximum-likelihood estimate.3 To eliminate this redundancy, we arbitrarily choose
one level of the factor as the baseline level, and we don’t introduce a dummy predictor for
the baseline level. If we choose burst as the baseline level,4 then we can eliminate X4, and
make X1, X2, X3 dummy indicator variables for frication, long, and short respectively,
giving us the linear model

Y = α + β1X1 + β2X2 + β3X3 + ǫ (6.14)

where predicted means for the four classes are as follows:5

Level of Frication Predicted mean
burst α
frication α + β1

long α + β2

short α + β3

6.6.2 Analysis of variance as model comparison

Now that we have completed the discussion of using dummy variables to construct a linear
model with categorical predictors (i.e., factors), we shall move on to discussing what analysis

3For example, if α = 0, β1 = β2 = β3 = β4 = 1 is a maximum-likelihood estimate, then α = 1, β1 = β2 =
β3 = β4 = 0 is as well because it encodes exactly the same model.

4By default, R chooses the first level of a factor as the baseline, and the first level of a factor is whatever
level comes first alphabetically unless you specified otherwise when the factor was constructed—see the
levels argument of the function factor() in the documentation.

5This choice of coding for the dummy variables is technically known as the choice of contrast ma-

trix. The choice of contrast matrix described here is referred to as the treatment contrast matrix, or
contr.treatment in R.
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of variance actually does. Consider that we now have two possible models of how word-
initial frication affects naming time. We have the model of Equation (6.14) above, in which
each class of frication predicts a different mean naming time, with noise around the mean
distributed the same way for each class. We might also consider a simpler model in which
frication has no effect on naming time. Such a model looks as follows:

Y = α + ǫ (6.15)

Now look again at Figure 6.9 and think of the simpler model of Equation (6.15) as M0, and
the more complex model of Equation (6.14) as MA. (Actually, the M0 explains no variance
in this case because it just encodes the mean.) Because ANOVA is just a comparison of
linear models, we can perform a hypothesis test between M0 and MA by constructing an
F statistic from the ratio of the amount of variance contained in the boxes MA − M0 and
Unexplained. The simpler model has one parameter and the more complex model has four,
so we use Equation (6.11) with k0 = 1, kA = 4 to construct the F statistic. The MLE of the
single parameter for M0 (aside from the residual noise variance) is the sample mean α̂ = 470,
and the sum of squared residuals in this model is 1032186. For MA with the dummy variable
coding we’ve used, the MLEs are α̂ = 471, β̂1 = 6, β̂2 = −4, and β̂3 = −16; the sum of
squared residuals is 872627. Thus the F statistic for this model comparison is

F (3, 2280) =
(1032186− 872627)/3

872627/2280

= 138.97

This F statistic corresponds to a p-value of 1.09× 10−82, yielding exceedingly clear evidence
that the type of initial segment in a word affects its average naming latency.

6.6.3 Testing for interactions

The english dataset includes average naming latencies not only for college-age speakers but
also for speakers age 60 and over. This degree of age difference turns out to have a huge
effect on naming latency (Figure 6.10):

histogram(~ RTnaming | AgeSubject, english)

Clearly, college-age speakers are faster at naming words than speakers over age 60. We
may be interested in including this information in our model. In Lecture 10 we already saw
how to include both variables in a multiple regression model. Here we will investigate an
additional possibility: that different levels of frication may have different effects on mean
naming latency depending on speaker age. For example, we might think that fricatives,
which our linear model above indicates are the hardest class of word onsets, might be even
harder for elderly speakers than they are for the young. When these types of inter-predictor
contingencies are included in a statistical model they are called interactions.
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Figure 6.10: Histogram of naming latencies for young (ages ∼ 22.6) versus old (ages > 60
speakers)

It is instructive to look explicitly at the linear model that results from introducing in-
teractions between multiple categorical predictors. We will take old as the baseline value of
speaker age, and leave burst as the baseline value of frication. This means that the“baseline”
predictor set involves an old-group speaker naming a burst-initial word, and the intercept
α will express the predicted mean latency for this combination. There are seven other logi-
cally possible combinations of age and frication; thus our full model will have to have seven
dummy indicator variables, each with its own parameter. There are many ways to set up
these dummy variables; we’ll cover perhaps the most straightforward way. In addition to
X{1,2,3} for the non-baseline levels of frication, we add a new variable X4 for the non-baseline
levels of speaker age (young). This set of dummy variables allows us to encode all eight
possible groups, but it doesn’t allow us to estimate separate parameters for all these groups.
To do this, we need to add three more dummy variables, one for each of the non-baseline
frication levels when coupled with the non-baseline age level. This gives us the following
complete set of codings:

Frication Age X1 X2 X3 X4 X5 X6 X7

burst old 0 0 0 0 0 0 0
frication old 1 0 0 0 0 0 0
long old 0 1 0 0 0 0 0
short old 0 0 1 0 0 0 0
burst young 0 0 0 1 0 0 0
frication young 1 0 0 1 1 0 0
long young 0 1 0 1 0 1 0
short young 0 0 1 1 0 0 1

We can test this full model against a strictly additive model that allows for effects of
both age and initial phoneme class, but not for interactions—that is, one with only X{1,2,3,4}.
It is critical to realize that the additive model is a constrained model: five parameters (α
and β1 through β4) cannot be used to encode eight arbitrary condition means within the
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linear framework. The best this M0 can do—the predicted condition means in its MLE—are
compared with the true condition means below:

Predicted in M0

Young Older
Burst 662.23 470.23
Fricative 670.62 478.61
Long vowel 653.09 461.09
Short vowel 647.32 455.32

Actual (and predicted in MA)
Young Older

Burst 661.27 471.19
Fricative 671.76 477.48
Long vowel 647.25 466.93
Short vowel 647.72 454.92

The predicted per-category means in M0 can be recovered from the MLE parameter esti-
mates:

α̂ = 662.23 β̂1 = 8.39 β̂2 = −9.14 β̂3 = −14.91 β̂4 = −192

Recovering the predicted means in M0 from these parameter estimates is left as an exercise
for the reader.

When the MLEs of M0 and MA are compared using the F -test, we find that our F -
statistic turns out to be F (3, 4560) = 2.69, or p = 0.0449. Hence we also have some evidence
that initial segment type has different effects on average naming times for younger and for
older speakers—though this evidence is far less conclusive than that for differences across
initial-segment type among younger speakers.

6.6.4 Repeated Measures ANOVA and Error Stratification

In the foregoing sections we have covered situations where all of the systematicity across
observations can be summarized as deriving from predictors whose effects on the response
are systematic and deterministic; all stochastic, idiosyncratic effects have been assumed
to occur on level of the individual measurement of the response. In our analysis of average
response times for recognition of English words, for example, we considered systematic effects
of word frequency, familiarity, neighborhood density, and (in the case of word naming times)
initial segment.

Yet it is a rare case in the study of language when there are no potential idiosyncratic
effects that are incidental to the true interest of the researcher, yet affect entire groups
of observations, rather than individual observations. As an example, Alexopolou and Keller
(2007) elicited quantitative subjective ratings of sentence acceptability in a study of pronoun
resumption, embedding depth, and syntactic islands. One part of one of their experiments
involved investigating whether there might be an interaction between embedding and the
presence of a resumptive pronoun on sentence acceptability even in cases which are not
syntactic islands (Ross, 1967). That is, among the four syntactic frames below, (1-b) should
be much less acceptable than (1-a), but (1-d) should not be so much less acceptable than
(1-c).

(1) a. Who will we fire ? [unembedded, −resumption]
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b. Who will we evict him? [unembedded, +resumption]
c. Who does Lucy claim we will punish ? [embedded, −resumption]
d. Who does Emily claim we will arrest him? [embedded, +resumption]

As is no doubt evident to the reader, even if we were to find that such a pattern holds for
average acceptability ratings of these four sentences, a skeptic could reasonably object that
the pattern might well result from the choice of words—the lexicalizations—used to fill
in the four syntactic templates. For example, evict is the least frequent of the four critical
verbs above, and it is reasonable to imagine that sentences with less frequent words might
tend to be rated as less acceptable.

Hence we want to ensure that our results generalize across the specific choice of lexical-
izations used in this particular set of four sentences. One way of achieving this would be
to prepare k > 1 instances of syntactic frame, choosing a separate lexicalization randomly
for each of the k instances of each frame (4k lexicalizations total). We might reasonably
assume that the effects of choice of lexicalization on acceptability are normally distributed.
Following our previous examples, we could use the following dummy-variable encodings:

X1 X2 X3

[unembedded, −resumption] 0 0 0
[unembedded, +resumption] 1 0 0
[embedded, −resumption] 0 1 0
[embedded, +resumption] 1 1 1

If ǫL is the stochastic effect of the choice of lexicalization and ǫE is the normally-distributed
error associated with measuring the acceptability of a lexicalized frame, we get the following
linear model:

Y = α + β1X1 + β2X2 + β3X3 + ǫL + ǫE

Typically, we can think of speaker-level stochastic effects and measurement-level stochastic
effects as independent of one another; hence, because the sum of two independent normal
random variables is itself normally distributed (Section 3.5.1), we can just combine these two
stochastic components of this equation:

Y = α + β1X1 + β2X2 + β3X3 + ǫ

so we have a completely standard linear model. We could conduct hypothesis tests for
this model in the same way as we have done previously in this chapter. For example, we
could test the significance of an interaction between embedding and resumption—formally a
comparison between a null-hypothesis model M0 in which β3 = 0 and an alternative model
MA with unconstrained β3—by partitioning variance as in Table 6.1 and conducting an F
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test comparing the variance explained by adding β3 to the model with the residual variance
left unexplained by MA.

By choosing a different set of lexicalizations for each syntactic frame, however, we have
introduced additional noise into our measurements that will only increase the difficulty of
drawing reliable inferences regarding the effects of embedding, resumption, and their po-
tential interaction. It turns out that we can in general do much better, by using the same
lexicalizations for each syntactic frame. This is in fact what Alexopolou and Keller did,
contrasting a total of nine sentence cohorts of the following types:

(2) a. (i) Who will we fire ? [unembedded, −resumption]
(ii) Who will we fire him? [unembedded, +resumption]
(iii) Who does Mary claim we will fire ? [embedded, −resumption]
(iv) Who does Mary claim we will fire him? [embedded, +resumption]

b. (i) Who will we evict ? [unembedded, −resumption]
(ii) Who will we evict him? [unembedded, +resumption]
(iii) Who does Elizabeth claim we will evict ? [embedded, −resumption]
(iv) Who does Elizabeth claim we will evict him? [embedded,

+resumption]
c. . . .

Each cohort corresponds to a single lexicalization; in experimental studies such as these the
more generic term is item is often used instead of lexicalization. This experimental de-
sign is often called within-items because the manipulation of ultimate interest—the choice
of syntactic frame, or the condition—is conducted for each individual item. Analysis of
within-items designs using ANOVA is one type of what is called a repeated-measures

ANOVA, so named because multiple measurements are made for each of the items. The set
of observations obtained for a single item thus constitute a cluster that we hypothesize may
have idiosyncratic properties that systematically affect the response variable, and which need
to be taken into account when we draw statistical inferences regarding the generative process
which gave rise to our data. For this reason, repeated-measures ANOVA is an analytic tech-
nique for what are known as hierarchical models. Hierarchical models are themselves
an extremely rich topic, and we take them up in Chapter 8 in full detail. There is also,
however, a body of analytic techniques which uses the partitioning of variance and F tests
to analyze certain classes of hierarchical models using repeated-measures ANOVA. Because
these techniques are extremely widespread in many literatures in the study of language and
because these techniques do not require the full toolset for dealing with hierarchical models
in general, we cover the repeated-measures ANOVA here. The reader is strongly encouraged,
however, to compare the repeated-measure ANOVA with the analytic techniques introduced
in Chapter 8, which ultimately offer greater overall flexibility and depth of analysis.

Simple random-intercepts repeated-measures ANOVA

Exactly how to conduct repeated-measures ANOVA depends on the precise nature of the
idiosyncratic cluster-level properties assumed. In our current example, the simplest scenario
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would be if each item (lexicalization) contributed the same fixed amount to average per-
ceived acceptability regardless of the condition (syntactic frame) in which the lexicalization
appeared. If we call the contribution of item i to acceptability ai, then our model becomes

Y = α + β1X1 + β2X2 + β3X3 + ai + ǫ

We may consider the ai themselves to be stochastic: most canonically, they may be normally
distributed around 0 with some unknown variance. Happily, the stochasticity in this model
does not affect how we go about assessing the systematic effects—β1 through β3—of ultimate
interest to us. We can partition the variance exactly as before.

6.6.5 Condition-specific random effects and error stratification

More generally, however, we might consider the possibility that idiosyncratic cluster-level
properties themselves interact with the manipulations we intend to carry out. In our case
of embedding and resumption, for example, it could be the case that some of the verbs
we choose might be particularly unnatural embedded in a complement clause, particularly
natural with an overt resumptive-pronoun object, and/or particularly sensitive to specific
combinations of embedding and resumptivity. Such a more general model would thus say
that

Y = α + β1X1 + β2X2 + β3X3 + ai + bi1X1 + bi2X2 + bi3X3 + ǫ

where 〈ai, b1i, b2i, b3i〉 are jointly multivariate-normal with mean zero and some unknown
covariance matrix Σ. 6

With this richer structure of idiosyncratic cluster-level properties, it turns out that we
cannot partition the variance as straightforwardly as depicted in Figure ?? and draw reliable
inferences in hypothesis tests about β1, β2, and β3. It is instructive to step through the
precise reason for this. Suppose that we were to test for the presence of an interaction
between resumption and embedding—that is, to test the null hypothesis M0 : β3 = 0 against
the alternative, more general MA. Even if M0 is correct, in general the fit of MA will account
for more variance than M0 simply because MA is a more expressive model. As in all cases,
the amount of variance that MA fails to explain will depend on the amount of noise at the
level of specific observations (the variance of ǫ). But if M0 is true, the variance explained by
MA beyond M0 will depend not only the amount of observation-level noise but also on the

6Technically, the F -tests covered in this chapter for repeated-measures ANOVA is fully appropriate only
when the covariance matrix Σ is such that all differences between pairs of cluster-specific properties have
equal variance: technically, for all x, y ∈ {a, b1, . . . , bn}, σ2

x + σ2
y − 2σxy is constant. This condition is known

as sphericity. Violation of sphericity can lead to anti-conservativity of F -tests; remedies include corrections
for this anti-conservativity [insert references] as well as adopting hierarchical-model analyses of the type
introduced in Chapter 8.
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amount and nature of cluster-level noise—that is, the variance of bi3 and its correlation with
ai, bi1, and bi2. Exercise 6.7 asks you to demonstrate this effect through simulations.

Fortunately, there does turn out to be a way to test hypotheses in the face of such a
rich structure of (normally-distributed) cluster-level properties: the stratification of

variance. [TODO: summary of how to determine what comparisons to make]
As a first example, let us simply examine the simple effect of adding a level of embedding

to object-extracted cases without resumptive pronouns: Example (1-c) versus (1-c). In these
cases, according to our dummy variable scheme we haveX1 = X3 = 0, giving us the simplified
linear equation:

Y = α + β2X2 + aibi2X2 + ǫ (6.16)

Figure 6.11 demonstrates the stratification of variance. Although everything except the box
labeled “Residual Error” is part of the complete model of Equation (6.16), our F -test for the
presence of a significant effect of embedding will pit the variance explained by embedding
against the variance explained by idiosyncratic subject sensitivities to embedding condition.

Here is code that demonstrates the execution of the repeated-measures ANOVA:

> set.seed(2)

> library(mvtnorm)

> n <- 20

> m <- 20

> beta <- c(0.6,0.2) ## beta[1] corresponds to the intercept; beta[2] corresponds to the

> Sigma.b <- matrix(c(0.3,0,0,0.3),2,2) ## in this case, condition-specific speaker sensitivities

> sigma.e <- 0.3

> df.1 <- expand.grid(embedding=factor(c("Unembedded","Embedded")),lexicalization=facto

> df <- df.1

> for(i in 1:(n-1))

+ df <- rbind(df,df.1)

> B <- rmvnorm(m,mean=c(0,0),sigma=Sigma.b)

> df$y <- with(df,beta[embedding] + B[cbind(lexicalization,(as.numeric(embedding)))] +

> m <- aov(y ~ embedding + Error(lexicalization/embedding),df)

Alexopolou & Keller 2007 data

> library(lme4)

6.6.6 Case study: two-way analysis of variance for self-paced read-
ing

Here we cover a slightly more complex case study: a two-way (so named because we
examine possible effects of two predictors and their potential interaction) ANOVA of word-
by-word reading times (RTs) in a moving-window self-paced reading experiment conducted
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Figure 6.11: Stratification of variance in a simple repeated-measures ANOVA.

by Rohde et al. (2011).7 In addition to the pure mathematical treatment of the ANOVA,
we also cover some preliminary aspects of data analysis. The question under investigation
was whether certain kinds of verbs (implicit causality (IC) verbs) such as “detest”, which
intuitively demand some sort of explanation, can affect readers’ online syntactic attachment
preferences.

(3) a. John detests the children of the musician who is generally arrogant and rude
(ic,low)

b. John detests the children of the musician who are generally arrogant and rude
(ic,high)

c. John babysits the children of the musician who is generally arrogant and rude
(nonIc,low)

d. John babysits the children of the musician who are generally arrogant and rude
(nonIc,high)

We hypothesized that the use of an IC verb should facilitate reading of high-attached
RCs, which are generally found in English to be harder to read than low-attached RCs

7Moving-window self-paced reading involves presenting sentences one word or group of words at a time,
masking previously presented material as new material is revealed, e.g.:

-----------.

The -------.

--- cat ---.

------- sat.

Participants control the pace at which they read through the material by pressing a button to reveal each new
chunk of input; the time between consecutive button presses constitutes the reading time on the pertinent
chunk of input.
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(Cuetos and Mitchell, 1988). The reasoning here is that the IC verbs demand an explana-
tion, and one way of encoding that explanation linguistically is through a relative clause.
In these cases, the most plausible type of explanation will involve a clause in which the
object of the IC verb plays a role, so an RC modifying the IC verb’s object should become
more expected. This stronger expectation may facilitate processing when such an RC is seen
(Levy, 2008).

The stimuli for the experiment consist of 20 quadruplets of sentences of the sort above.
Such a quadruplet is called an experimental item in the language of experimental psychol-
ogy. The four different variants of each item are called the conditions. Since a participant
who sees one of the sentences in a given item is liable to be strongly influenced in her reading
of another sentence in the item, the convention is only to show each item once to a given
participant. To achieve balance, each participant will be shown five items in each condition.

Item
Participant 1 2 3 4 5 . . .

1 ic,high nonIc,high ic,low nonIc,low ic,high . . .
2 nonIc,low ic,high nonIc,high ic,low nonIc,low . . .
3 ic,low nonIc,low ic,high nonIc,high ic,low . . .
4 nonIc,high ic,low nonIc,low ic,high nonIc,high . . .
5 ic,high nonIc,high ic,low nonIc,low ic,high . . .
...

...
...

...
...

...
. . .

The experimental data will be analyzed for effects of verb type and attachment level,
and more crucially for an interaction between these two effects. For this reason, we plan to
conduct a two-way ANOVA.

In self-paced reading, the observable effect of difficulty at a given word often shows up
a word or two downstream, particularly when the word itself is quite short as in this case
(short words are often read very quickly, perhaps because the preliminary cue of word length
suggests that linguistic analysis of the input will be easy, inducing the reader to initiate
the motor activity that will move him/her on to the next word before the difficulty of the
linguistic analysis is noticed). Here we focus on the first word after the disambiguator—
generally in III—often called the first spillover region.

Figure 6.12 provides scatterplots and kernel density estimates (Section 2.11.2) of RT
distributions observed in each condition at this point in the sentence. The kernel density
estimates make it exceedingly clear that these RTs are far from normally distributed: they
are severely right-skewed. ANOVA—in particular repeated-measures ANOVA as we have
here—is robust to this type of departure from normality: the non-normality will not lead to
anti-conservative inferences in frequentist hypothesis tests. However, the presence of a non-
negligible proportion of extremely high values means that the variance of the error is very
high, which leads to a poor signal-to-noise ratio; this is a common problem when analyzing
data derived from distributions heavier-tailed than the normal distribution. One common
means of remedying this issue is adopting some standardized criterion for identifying some
observations as outliers and excluding them from analysis. The practices and reasoning
behind outlier removal will vary by data type. In self-paced reading, for example, one
rationale for outlier removal is that processes unrelated to sentence comprehension can affect
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Figure 6.12: Density plots for reading times at the first spillover region for the experiment
of Rohde et al. (2011)

recorded reaction times (e.g., the participant sneezes and takes a few seconds to recover);
these processes will presumably be independent of the experimental manipulation itself, so if
data that were probably generated by these processes can be identified and removed without
biasing the outcome of data analysis, it can improve signal-to-noise ratio.

Here we’ll adopt a relatively simple approach to outlier removal: binning all our obser-
vations, we determine an upper threshold of ȳ + 4

√
S2 where ȳ is the sample mean and

S2 is the unbiased estimate of the sample variance (Section 4.3.3). That threshold is plot-
ted in Figure 6.12 as a dotted line; and any observations above that threshold are simply
discarded. Note that 12 of the 933 total observations are discarded this way, or 1.3% of
the total; consultation of the normal cumulative density function reveals that only 0.0032%
would be expected if the data were truly normally distributed.

The comparisons to make

In this experiment, two factors characterize each stimulus: a particular individual reads
a particular item that appears with particular verbtype (implicit-causality—IC—or non-
implicit-causality) and attachment level of the relative clause (high or low) manipulations.
verb and attachment have two levels each, so if we had m participants and n items we
would in principle need at least 2 × 2 ×m × n observations to consider a full linear model
with interactions of all possible types. However, because each subject saw each item only
once, we only have m × n observations. Therefore it is not possible to construct the full
model.

For many years dating back to Clark (1973), the standard ANOVA analysis in this situ-
ation has been to construct two separate analyses: one in which the , and one for items. In
the analysis over subjects, we take as our individual data points the mean value of all the
observations in each cell of Subject×Verb×Attachment—that is, we aggregate, or aver-
age, across items. Correspondingly, in the analysis over items, we aggregate across subjects.
We can use the function aggregate() to perform this averaging: aggregate()

with()
sp.1.subj <- with(spillover.1.to.analyze,aggregate(list(rt=rt),
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Subject
Verb Attachment 1 2 3 4 5 . . .

IC
High 280.7 396.1 561.2 339.8 546.1 . . .
Low 256.3 457.8 547.3 408.9 594.1 . . .

nonIC
High 340.9 507.8 786.7 369.8 453.0 . . .
Low 823.7 311.4 590.4 838.3 298.9 . . .

Table 6.1: Repeated-measures (within-subjects) view of item-aggregated data for subjects
ANOVA

Subj

Subj:Attach

Attach

Subj
:

Verb
Verb

Subj:
Verb:
Attach

Verb:Attach

Residual Error

Figure 6.13: The picture for this 2 × 2 ANOVA, where Verb and Attachment are the fixed
effects of interest, and subjects are a random factor

list(subj=subj,verb=verb,attachment=attachment),mean))

sp.1.item <- with(spillover.1.to.analyze,aggregate(list(rt=rt),

list(item=item,verb=verb,attachment=attachment),mean))

The view of the resulting data for the analysis over subjects can be seen in Table 6.1. This
setup is called a within-subjects or repeated-measures design because each subject
participates in each condition—or, in another manner of speaking, we take multiple measure-
ments for each subject. Designs in which, for some predictor factor, each subject participates
in only one condition are called between-subjects designs.
The way we partition the variance for this type of analysis can be seen in Figure 6.13. Because
we have averaged things out so we only have one observation per Subject/Verb/Attachment
combination, there will be no variation in the Residual Error box. Each test for an effect
of a predictor sets of interest (verb, attachment, and verb:attachment) is performed by
comparing the variance explained by the predictor set P with the variance associated with
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arbitrary random interactions between the subject and P . This is equivalent to performing a
model comparison between the following two linear models, where i range over the subjects
and j over the conditions in P :

rtij = α + BiSubji + ǫij (null hypothesis) (6.17)

rtij = α + BiSubji + βjPj + ǫij (alternative hypothesis) (6.18)

(6.19)

There is an added wrinkle here, which is that the Bi are not technically free parameters
but rather are themselves assumed to be random and normally distributed. However, this
difference does not really affect the picture here. (In a couple of weeks, when we get to
mixed-effects models, this difference will become more prominent and we’ll learn how to
handle it in a cleaner and more unified way.)

Fortunately, aov() is smart enough to know to perform all these model comparisons in
the appropriate way, by use of the Error() specification in your model formula. This is done
as follows, for subjects:

> summary(aov(rt ~ verb * attachment

+ Error(subj/(verb *attachment)), sp.1.subj))

Error: subj

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 54 4063007 75241

Error: subj:verb

Df Sum Sq Mean Sq F value Pr(>F)

verb 1 48720 48720 7.0754 0.01027 *

Residuals 54 371834 6886

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Error: subj:attachment

Df Sum Sq Mean Sq F value Pr(>F)

attachment 1 327 327 0.0406 0.841

Residuals 54 434232 8041

Error: subj:verb:attachment

Df Sum Sq Mean Sq F value Pr(>F)

verb:attachment 1 93759 93759 6.8528 0.01146 *

Residuals 54 738819 13682

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
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and for items:

> summary(aov(rt ~ verb * attachment

+ Error(item/(verb *attachment)), sp.1.item))

Error: item

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 19 203631 10717

Error: item:verb

Df Sum Sq Mean Sq F value Pr(>F)

verb 1 21181 21181 3.5482 0.075 .

Residuals 19 113419 5969

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Error: item:attachment

Df Sum Sq Mean Sq F value Pr(>F)

attachment 1 721 721 0.093 0.7637

Residuals 19 147299 7753

Error: item:verb:attachment

Df Sum Sq Mean Sq F value Pr(>F)

verb:attachment 1 38211 38211 5.4335 0.03092 *

Residuals 19 133615 7032

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Fortunately, the by-subjects and by-items analysis yield largely similar results: they
both point towards (a) a significant main effect of verb type; and (b) more interestingly, a
significant interaction between verb type and attachment level. To interpret these, we need
to look at the means of each condition. It is conventional in psychological experimentation
to show the condition means from the aggregated data for the by-subjects analysis:

> with(sp.1.subj,tapply(rt,list(verb),mean))

IC nonIC

452.2940 482.0567

> with(sp.1.subj,tapply(rt,list(verb,attachment),mean))

high low

IC 430.4316 474.1565

nonIC 501.4824 462.6309

The first spillover region was read more quickly in the implicit-causality verb condition than
in the non-IC verb condition. The interaction was a crossover interaction: in the high
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attachment conditions, the first spillover region was read more quickly for IC verbs than for
non-IC verbs; but for the low attachment conditions, reading was faster for non-IC verbs
than for IC verbs.

We interpreted this result to indicate that IC verbs do indeed facilitate processing of
high-attaching RCs, to the extent that this becomes the preferred attachment level.

6.7 Other generalized linear models

Recall that we’ve looked at linear models, which specify a conditional probability density
P (Y |X) of the form

Y = α + β1X1 + · · ·+ βnXn + ǫ (6.20)

Linear models thus assume that the only stochastic part of the data is the normally-distributed
noise ǫ around the predicted mean. Yet many—probably most—types of data do not meet
this assumption at all. These include:

• Continuous data in which noise is not normally distributed;

• Categorical data, where the outcome is one of a number of discrete classes;

• Count data, in which the outcome is restricted to non-negative integers.

By choosing different link and noise functions, you can help ensure that your statistical
model is as faithful a reflection of possible of the major patterns in the data you are interested
in representing. In the remainder of this chapter, we look at two other major classes of GLM:
logit and log-linear models.

6.7.1 Logit models

Suppose we want a GLM that models binomially distributed data from n trials. We will use
a slightly different formulation of the binomial distribution from what that of Chapter 2:
instead of viewing the response as the number of successful trials r, we view the response
as the proportion of successful trials r

n
; call this Y . The mean proportion for binomial

distribution is simply the success parameter π; hence, π is also the predicted mean µ of our
GLM. This gives us enough information to specify precisely the resulting model (from now
on we replace µ with π for simplicity):

P (Y = y; π) =

(
n

yn

)
πny(1− π)n(1−y) (or equivalently, replace µ with π) (6.21)

which is just the binomial distribution from back in Equation 3.8.
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This is the second part of designing a GLM: choosing the distribution over Y , given
the mean µ (Equation 6.1). Having done this means that we have placed ourselves in the
binomial GLM family. The other part of specifying our GLM is choosing a relationship
between the linear predictor η and the mean µ. Unlike the case with the classical linear
model, the identity link function is not a possibility, because η can potentially be any real
number, whereas the mean proportion µ of successes can only vary between 0 and 1. There
are many link functions that can be chosen to make this mapping valid, but here we will use
the most popular link function, the logit transform:8

log
π

1− π
= η (6.22)

or equivalently the inverse logit transform:

π =
eη

1 + eη
(6.23)

Figure 6.14 shows the relationship between η and π induced by the logit transform
When we insert the full form of the linear predictor from Equation (6.1) back in, we

arrive at the final formula for logit models:

π =
eα+β1X1+···+βnXn

1 + eα+β1X1+···+βnXn
(6.24)

Fitting a logit model is also called logistic regression.

6.7.2 Fitting a simple logistic regression model

The most common criterion by which a logistic regression model for a dataset is fitted is
exactly the way that we chose the parameter estimates for a linear regression model: the
method of maximum likelihood. That is, we choose the parameter estimates that give our
dataset the highest likelihood.

We will give a simple example using the dative dataset. The response variable here is
whether the recipient was realized as an NP (i.e., the double-object construction) or as a PP
(i.e., the prepositional object construction). This corresponds to the RealizationOfRecipient
variable in the dataset. There are several options in R for fitting basic logistic regression mod-
els, including glm() in the stats package and lrm() in the Design package. In this case
we will use lrm(). We will start with a simple study of the effect of recipient pronominality
on the dative alternation. Before fitting a model, we examine a contingency table of the
outcomes of the two factors:

8Two other popular link functions for binomial GLMs are the probit link and the complementary

log-log link. See Venables and Ripley (2002, Chapter 7) for more details.
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Figure 6.14: The logit transform

> library(languageR)

> xtabs(~ PronomOfRec + RealizationOfRecipient,dative)

RealizationOfRecipient

PronomOfRec NP PP

nonpronominal 600 629

pronominal 1814 220

So sentences with nonpronominal recipients are realized roughly equally often with DO and
PO constructions; but sentences with pronominal recipients are recognized nearly 90% of the
time with the DO construction. We expect our model to be able to encode these findings.

It is now time to construct the model. To be totally explicit, we will choose ourselves
which realization of the recipient counts as a “success” and which counts as a “failure” (al-
though lrm() will silently make its own decision if given a factor as a response). In addition,
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our predictor variable is a factor, so we need to use dummy-variable encoding; we will satis-
fice with the R default of taking the alphabetically first factor level, nonpronominal, as the
baseline level.

> library(rms)

> response <- ifelse(dative$RealizationOfRecipient=="PP",

+ 1,0) # code PO realization as success, DO as failure

> lrm(response ~ PronomOfRec, dative)

The thing to pay attention to for now is the estimated coefficients for the intercept and
the dummy indicator variable for a pronominal recipient. We can use these coefficients to
determine the values of the linear predictor η and the predicted mean success rate p using
Equations (6.1) and (6.24):

η−− = 0.0472 + (−2.1569)× 0 = 0.0472 (non-pronominal receipient) (6.25)

η+ = 0.0472 + (−2.1569)× 1 = −2.1097 (pronominal recipient) (6.26)

pnonpron =
e0.0472

1 + e0.0472
= 0.512 (6.27)

ppron =
e−2.1097

1 + e−2.1097
= 0.108 (6.28)

When we check these predicted probabilities of PO realization for nonpronominal and pronom-
inal recipients, we see that they are equal to the proportions seen in the corresponding rows
of the cross-tabulation we calculated above: 629

629+600
= 0.518 and 220

220+1814
= 0.108. This is

exactly the expected behavior, because (a) we have two parameters in our model, α and β1,
which is enough to encode an arbitrary predicted mean for each of the cells in our current
representation of the dataset; and (b) as we have seen before (Section 4.3.1), the maximum-
likelihood estimate for a binomial distribution is the relative-frequency estimate—that is,
the observed proportion of successes.

6.7.3 Multiple logistic regression

Just as we were able to perform multiple linear regression for a linear model with multiple
predictors, we can perform multiple logistic regression. Suppose that we want to take into
account pronominality of both recipient and theme. First we conduct a complete cross-
tabulation and get proportions of PO realization for each combination of pronominality
status:apply()

> tab <- xtabs(~ RealizationOfRecipient + PronomOfRec + PronomOfTheme, dative)

> tab

, , PronomOfTheme = nonpronominal
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PronomOfRec

RealizationOfRecipient nonpronominal pronominal

NP 583 1676

PP 512 71

, , PronomOfTheme = pronominal

PronomOfRec

RealizationOfRecipient nonpronominal pronominal

NP 17 138

PP 117 149

> apply(tab,c(2,3),function(x) x[2] / sum(x))

PronomOfTheme

PronomOfRec nonpronominal pronominal

nonpronominal 0.4675799 0.8731343

pronominal 0.0406411 0.5191638

Pronominality of the theme consistently increases the probability of PO realization; pronom-
inality of the recipient consistently increases the probability of DO realization.

We can construct a logit model with independent effects of theme and recipient pronom-
inality as follows:

> library(rms)

> dative.lrm <- lrm(response ~ PronomOfRec + PronomOfTheme, dative)

> dative.lrm

And once again, we can calculate the predicted mean success rates for each of the four
combinations of predictor variables:

Recipient Theme η p̂
nonpron nonpron -0.1644 0.459
pron nonpron -3.0314 0.046

nonpron pron 2.8125 0.943
pron pron -0.0545 0.486

In this case, note the predicted proportions of success are not the same as the observed
proportions in each of the four cells. This is sensible – we cannot fit four arbitrary means
with only three parameters. If we added in an interactive term, we would be able to fit four
arbitrary means, and the resulting predicted proportions would be the observed proportions
for the four different cells.

6.7.4 Transforming predictor variables

***TODO***
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Predictor Coefficient Factor Weight
Multiplicative
effect on odds

Intercept -0.1644 0.4590 0.8484
Pronominal Recipient -2.8670 0.0538 0.0569
Pronominal Theme 2.9769 0.9515 19.627

Table 6.2: Logistic regression coefficients and corresponding factor weights for each predictor
variable in the dative dataset.

6.7.5 Multiplicativity of the odds

Let us consider the case of a dative construction in which both the recipient and theme are
encoded with pronouns. In this situation, both the dummy indicator variables (indicating
that the theme and recipient are pronouns) have a value of 1, and thus the linear predictor
consists of the sum of three terms. From Equation (6.22), we can take the exponent of both
sides and write

p

1− p
= eα+β1+β2 (6.29)

= eαeβ1eβ2 (6.30)

The ratio p
1−p

is the odds of success, and in logit models the effect of any predictor
variable on the response variable is multiplicative in the odds of success. If a predictor has
coefficent β in a logit model, then a unit of that predictor has a multiplicative effect of eβ

on the odds of success.
Unlike the raw coefficient β, the quantity eβ is not linearly symmetric—it falls in the range

(0,∞). However, we can also perform the full reverse logit transform of Equation

(6.23), mapping β to eβ

1+eβ
which ranges between zero and 1, and is linearly symmetric around

0.5. The use of logistic regression with the reverse logit transform has been used in quantita-
tive sociolinguistics since Cedergren and Sankoff (1974) (see also Sankoff and Labov, 1979),
and is still in widespread use in that field. In quantitative sociolinguistics, the use of logistic
regression is often called VARBRUL (variable rule) analysis, and the parameter estimates
are reported in the reverse logit transform, typically being called factor weights.

Tables 6.2 and 6.3 show the relationship between the components of the linear predictor,
the components of the multiplicative odds, and the resulting predictions for each possible
combination of our predictor variables.

6.8 Confidence intervals and model comparison in logit

models

We’ll close our introduction to logistic regression with discussion of confidence intervals and
model comparison.
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Recip. Theme Linear Predictor Multiplicative odds P(PO)
–pron –pron −0.16 0.8484 0.46
+pron –pron −0.16− 2.87 = −3.03 0.85× 0.06 = 0.049 0.046
–pron +pron −0.16 + 2.98 = 2.81 0.85× 19.6 = 16.7 0.94
+pron +pron −0.16− 2.87 + 2.98 = −0.05 0.85× 0.06× 19.63 = 0.947 0.49

Table 6.3: Linear predictor, multiplicative odds, and predicted values for each combination of
recipient and theme pronominality in the dative dataset. In each case, the linear predictor
is the log of the multiplicative odds.

6.8.1 Frequentist Confidence intervals for logit models

When there are a relatively large number of observations in comparison with the number of
parameters estimated, the standardized deviation of the MLE for a logit model parameter θ
is approximately normally distributed:

θ̂ − θ

StdErr(θ̂)
∼ N (0, 1) (approximately) (6.31)

This is called the Wald statistic9. This is very similar to the case where we used the t
statistic for confidence intervals in classic linear regression (Section 6.4; remember that once
the t distribution has a fair number of degrees of freedom, it basically looks like a standard
normal distribution). If we look again at the output of the logit model we fitted in the
previous section, we see the standard error, which allows us to construct confidence intervals
on our model parameters.

Coef S.E. Wald Z P

Intercept -0.1644 0.05999 -2.74 0.0061

PronomOfRec=pronominal -2.8670 0.12278 -23.35 0.0000

PronomOfTheme=pronominal 2.9769 0.15069 19.75 0.0000

Following the exact same logic as in Section 6.4, we find that the 95% confidence interval
for each parameter βi is bounded below by β̂i − 1.96SE(β̂i), and bounded below by β̂i +
1.96SE(β̂i). This gives us the following bounds:

a -0.1673002 0.2762782

b1 -3.1076138 -2.6263766

b2 2.6815861 3.2722645

The Wald statistic can also be used for a frequentist test on the null hypothesis that an
individual model parameter is 0. This is the source of the p-values given for the model
parameters above.

9It is also sometimes called the Wald Z statistic, because of the convention that standard normal variables
are often denoted with a Z, and the Wald statistic is distributed approximately as a standard normal.
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6.8.2 Bayesian confidence intervals for logit models

In order to construct a Bayesian confidence interval for a logit model, we need to choose prior
distributions on the weights α and {βi} that go into the linear predictor (Equation (6.1)),
and then use sampling-based techniques (Section 4.5). As a simple example, let us take the
multiple logistic regression of Section 6.7.3. The model has three parameters; we will express
agnosticism about likely parameter values by using a diffuse prior. Specifically, we choose a
normally-distributed prior with large variance for each parameter:

α ∼ N (0, 10000)

β1 ∼ N (0, 10000)

β2 ∼ N (0, 10000)

With sampling we can recover 95% HPD confidence intervals (Section 5.1) for the parameters:

a -0.1951817 0.2278135

b1 -3.1047508 -2.6440788

b2 2.7211833 3.2962744

There is large agreement between the frequentist and Bayesian confidence intervals in this
case. A different choice of prior would change the HPD confidence intervals, but we have
a lot of data relative to the complexity of the model we’re trying to estimate, so the data
dominates the prior in our case.

6.8.3 Model comparison

Just as in the analysis of variance, we are often interested in conducting tests of the hy-
pothesis that introducing several model parameters simultaneously leads to a better overall
model. In this case, we cannot simply use a single Wald statistic for hypothesis testing.
Instead, the most common approach is to use the likelihood-ratio test, first introduced
in Section 5.4.4. To review, the quantity

G2 = 2 [log LikM1(y)− log LikM0(y)] (6.32)

is approximately distributed as a χ2
k random variable, where k is the difference in the number

of free parameters between M1 and M0.
As an example of using the likelihood ratio test, we will hypothesize a model in which

pronominality of theme and recipient both still have additive effects but that these effects
may vary depending on the modality (spoken versus written) of the dataset. We fit this
model and our modality-independent model using glm(), and use anova() to calculate the
likelihood ratio:
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> m.0 <- glm(response ~ PronomOfRec + PronomOfTheme,dative,family="binomial")

> m.A <- glm(response ~ PronomOfRec*Modality + PronomOfTheme*Modality,dative,family="bi

> anova(m.0,m.A)

We can look up the p-value of this deviance result in the χ2
3 distribution:

> 1-pchisq(9.07,3)

[1] 0.02837453

Thus there is some evidence that we should reject a model that doesn’t include modality-
specific effects of recipient and theme pronominality.

6.8.4 Dealing with symmetric outcomes

In the study of language, there are some types of categorical outcomes that are symmetrical
in a way that can make it difficult to see how to properly assign values to explanatory vari-
ables. Consider, for example, the study of word order in the coordination of like categories.
Suppose we are interested in the joint effect of word frequency and word length on ordering
preferences in word pairs conjoined by and (called, appropriately enough, binomials), and
our observation is the phrase evasive and shifty. The word evasive is longer (has more syl-
lables) than shifty, but it is less frequent as well. How do we characterize these independent
variables, and do we call the outcome a “success” or a “failure”?

Fortunately, we can address this problem by noticing that the central issue is really not
whether evasive and shifty is a success or failure; the central issue is, rather, the pattern
of how the explanatory variables are aligned with observed orderings. We now cover an
example of how to deal with this problem taken from Benor and Levy (2006), a corpus
study of English binomials. We will restrict ourselves to word pairs occurring exactly once
in Benor and Levy’s dataset, and look at the effects of perceptual markedness, weight (in
terms of number of syllables), and word frequency. The covariates in the model are thus
comparative properties—for example, whether one of the words denotes a property that is
more perceptually salient, or which of the words is more frequent (also chanted). We can
code each property Pi as a quantitative variable Xi by arbitrarily choosing an alignment
direction for the property, and giving the binomial a positive value for the Xi if Pi is aligned
with the binomial, a negative value of equal magnitude if Pi is aligned against the binomial,
and zero if Pi is inactive. The logit response variable now serves as a dummy variable—it is
always a “success”. For perceptual markedness, word length, and word frequency we choose
the following alignments:

• Perceptual markedness is positive if the first word in the binomial is more perceptually
salient than the last word;

• Word length (in number of syllables) is positive if the last word has more syllables than
the first word;
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• Word frequency is positive if the first word is more frequent than the last word.

These aligned properties can be thought of as soft (or gradient) constraints in
the sense of Optimality Theory and similar frameworks, with statistical model fitting as a
principled means of investigating whether the constraints tend not to be violated, and how
strong such a tendency may be. A few such observations in the dataset thus coded are:

Word.Pair Percept Freq Syl Response

chanted and chortled 1 1 0 1

real and vibrant 0 -1 -1 1

evasive and shifty 0 1 -1 1

Note that chanted and chortled has a perceptual markedness value of 1, since chortling is
a quieter action; vibrant and real has a response of 0 since it is observed in the opposite
ordering; and the Syl covariate value for evasive and shifty is −1 because evasive has more
syllables than shifty.

It would be nonsensical to use an intercept when fitting a model to this dataset: setting
the intercept arbitrarily high, and the other model parameters to zero, would be the best
fit. If, however, we remove the intercept from the model, the model expresses the tendency
of each covariate to align with the binomial ordering:

> dat <- read.table("../data/binomials_data/single_count_binomials.txt",header=T,fill=T

> summary(glm(Response ~ Percept + Syl + Freq - 1, dat,family="binomial"))$coef

Estimate Std. Error z value Pr(>|z|)

Percept 1.1771339 0.5158658 2.281861 0.022497563

Syl 0.4926385 0.1554392 3.169332 0.001527896

Freq 0.3660976 0.1238079 2.956981 0.003106676

All three constraints have positive coefficients, indicating significant alignment with bino-
mial ordering: the constraints do indeed tend not to be violated. It’s worth noting that
even though perceptual markedness is estimated to be the strongest of the three constraints
(largest coefficient), its standard error is also the largest: this is because the constraint is
active (non-zero) least often in the dataset.

6.9 Log-linear and multinomial logit models

A class of GLM very closely related to logit models is log-linear models. Log-linear
models choose the log as the link function:

l(µ) = log µ = η µ = eη (6.33)

and the Poisson distribution, which ranges over non-negative integers, as the noise function:
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P (Y = y;µ) = e−µµ
y

y!
(y = 0, 1, . . . ) (6.34)

When used to model count data, this type of GLM is often called a Poisson model or
Poisson regression.

In linguistics, the log-linear model is most often used to model probability distributions
over multi-class outcomes. Suppose that for there are M classes of possible outcomes, each
with its own linear predictor ηi and random variable Yi. If we conditionalize on the total
count of all classes being 1, then the only available count outcomes for each class are 0 and
1, with probabilities:

P (Yi = 1;µi = eηi) = eµieηi P (Yi = 0;µi = eηi) = eµi (6.35)

and the joint probability of the single observation falling into class i is

P (Yi = 1, {Yj 6=i} = 0) =
eµieηi

∏
j 6=i e

µj

∑
i′ e

µi′eηi′
∏

j 6=i′ e
µj

=
eηi

∏
j e

µj

∑
i′ e

η
i′

∏
j e

µj

=
eηi

∏
j e

µj

∏
j e

µj
∑

i′ e
η
i′

P (Yi = 1, {Yj 6=i} = 0) =
eηi∑
i′ e

η
i′

(6.36)

When we are thinking of a log-linear model as defining the probability distribution over
which class each observation falls into, it is often useful to define the class-specific success

probabilities πi
def
= P (Yi = 1, {Yj 6=i} = 0). This allows us to think of a log-linear model as

using a multinomial noise distribution (Section 3.4.1).

Expressive subsumption of (multinomial) logit models by log-linear models∗

Basic logit models are used to specify probability distributions over outcomes in two classes
(the “failure” class 0 and the “success” class 1). Log-linear models can be used to specify
probability distributions over outcomes in any number of classes. For a two-class log-linear
model, the success probability for class 1 is (Equation (6.24)):

π1 =
eα1+β1,1X1+···+β1,nXn

eα0+β0,1X1+···+β0,nXn + eα1+β1,1X1+···+β1,nXn
(6.37)

(6.38)
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If we divide both the numerator and denominator by eα0+β0,1X1+···+β0,nXn , we get

π1 =
e(α1−α0)+(β1,1−β0,1)X1+···+(β1,n−β0,n)Xn

1 + e(α1−α0)+(β1,1−β0,1)X1+···+(β1,n−β0,n)Xn
(6.39)

This is significant because the model now has exactly the same form as the logit model
(Equation (6.24), except that we have parameters of the form (α1−α0) and (β1,i−β0,i) rather
than α and βi respectively. This means that log-linear models expressively subsume logit
models: any logit model can also be expressed by some log-linear model. Because of this,
when maximum-likelihood estimation is used to fit a logit model and a log-linear model
with the same set of variables, the resulting models will determine the same probability
distribution over class proportions. There are only three differences:

1. The log-linear model can also predict the total number of observations.

2. The logit model has fewer parameters.

3. When techniques other than MLE (e.g., Bayesian inference marginalizing over model
parameters) are used, the models will generally yield different predictive distributions.

6.10 Log-linear models of phonotactics

We introduce the framework of log-linear or maximum-entropy models by turning to
the linguistic problem of phonotactics. A speaker’s phonotactic knowledge is their
knowledge of what logically possible sound sequences constitute legitimate potential lexical
items in her language. In the probabilistic setting, phonotactic knowledge can be expressed
as a probability distribution over possible sound sequences. A good probabilistic model of
phonotactics assigns low probability to sequences that are not possible lexical items in the
language, and higher probability to sequences that are possible lexical items. A categorical
characterization of sound sequences as being either impossible or possible in the language
could be identified with respective assignment of zero or non-zero probability in the model.
The classic example of such a distinction is that whereas native English speakers judge the
non-word blick [blIk] to be a possible word of English, they judge the non-word bnick [bnIk]
not to be a possible word of English. [citations here] However, probabilistic phonotactic
models have the further advantage of being able to make gradient distinctions between forms
that that are “more” or “less” appropriate as possible lexical items.

Construct a probabilistic phonotactic model entails putting a probability distribution
over the possible sound sequences of the language. There are many approaches that could be
taken to this problem; here we examine two different approaches in the context of modeling
one of the best-studied problems in phonotactics: constrants on of English word onsets—the
consonant sequences with which words begin. For simplicity, we restrict discussion here to
onsets consisting of exactly two segments drawn from a subset of the inventory of English
consonants, namely [f], [v], [s], [z], [sh], [p], [b], [t], [d], [l], and [r]. Table 6.4 presents a list
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of the two-segment word onsets which can be constructed from these segments and which
are found in the Carnegie Mellon Pronouncing Dictionary of English (Weide, 1998). Of the
121 logically possible onsets, only 30 are found. They are highly disparate in frequency, and
most of the rarest (including everything on the right-hand side of the table except for [sf] as
in sphere) are found only in loan words. In the study of phonotactics; there is some question
as to exactly what counts as an “attested” sequence in the lexicon; for present purposes, I
will refer to the twelve most frequent onsets plus [sf] as unambiguously attested.

We begin the problem of estimating a probability distribution over English two-segment
onsets using simple tools from Chapters 2 and 4: multinomial models and relative frequency
estimation. Let us explicitly represent the sequence structure of an English onset x1x2 as a
#Lx1x2#R, where #L represents the left edge of the onset and #R represents the right edge
of the onset. Every two-segment onset can be thought of as a linearly ordered joint event
comprised of the left edge, the first segment, the second segment, and the right edge. We
can use the chain rule to represent this joint event as a product of conditional probabilities:

P (#Lx1x2#R) = P (#L)P (x1|#L)P (x2|#Lx1)P (#R|#Lx1x2) (6.40)

The left edge is obligatory, so that P (#L) = 1; and since we are restricting our attention to
two-segment onsets, the right edge is also obligatory when it occurs, so that P (#R|#Lx1x2) =
1. We can thus rewrite Equation 6.40 as

P (#Lx1x2#R) = P (x1|#L)P (x2|#Lx1) (6.41)

We consider three possible methods for estimating this probability distribution from our
data:

1. Treat each complete onset #Lx1x2#R as a single outcome in a multinomial model,
with 121 possible outcomes; the problem then becomes estimating the parameters of
this single multinomial from our data. As described in Chapter XXX, the maximum
likelihood estimate for multinomials is also the relative frequency estimate, so the
probability assigned to an onset in this model is directly proportional to the onset’s
frequency of occurrence.

With this model it is also useful to note that for any segment x, if the event y immedi-
ately preceding it is not the left edge #L, then y itself is preceded by #L. This means
that P (x2|#Lx1) = P (x2|x1). This allows us to rewrite Equation ??:

P (#Lx1x2#R) = P (x1|#L)P (x2|x1) (6.42)

Hence this model can also be thought of as a bigram model in which the probability
of an event is, given the immediately preceding event, conditionally independent on
everything earlier in the sequence. Note here that if we have N possible segments, we
must fit N + 1 multinomial distributions.
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2. We can introduce the strong independence assumption that the probability of a segment
is entirely independent of its context: P (xi|x1...i−1) = P (xi). This is a unigram model,
giving

P (#Lx1x2#R) = P (x1)P (x2) (6.43)

Here we need to fit only one multinomial distribution.

3. We can introduce the somewhat weaker independence assumption that the probability
of a segment depends on whether it is the first or second segment in the onset, but not
on what other segments occur in the onset.

P (#Lx1x2#R) = P (x1|#L)P (x2|#L ) (6.44)

where indicates the presence of any segment. We might call this a positional unigram
model to emphasize the position-dependence. This model requires that we fit two
multinomial distributions.

Columns 3–5 of Table 6.4 show estimated probabilities for attested onsets in these three
models. Major differences among the models are immediately apparent. Among unam-
biguously attested onsets, [st] is much more probable in the bigram model than in either
unigram model; [tr] and [sf] are much more probable in the unigram model than in the
other two models; and [sp] is much less probable in the positional unigram model (see also
Exercise 6.12).

A substantive claim about the nature of phonotactic knowledge put forth by researchers
including Hayes and Wilson (2007) as well as XXX is that probabilistic models which do
a good job accounting for the distribution of segment sequences in the lexicon should also
be able to accurately predict native-speaker judgments of the acceptability of “nonce” words
(sequences that are not actually words) such as blick and bnick as potential words of the
language. Challenges for this approach become apparent when one examines existing datasets
of native-speaker nonce-word judgments. For example, Scholes (1966) conducted a study of
English onsets in nonce-word positions and uncovered regularities which seem challenging
for the multinomial models we considered above. Among other results, Scholes found the
following differences between onsets in the frequency with which nonce words containing
them were judged acceptable:

(4) [br] > [vr] > [sr], [ml] > [sf] > [zl], [fs] > [zv]

The fact that the unattested onset [ml] leads to greater acceptability than the unambiguously
attested onset [sf] clearly indicates that English phonotactic knowledge involves some sorts of
generalization beyond the raw contents of the lexicon; hence the bigram model of Table 6.4 is
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Segment Freq Punigram Punipos Pbigram Segment Freq Punigram Punipos Pbigram

st 1784 0.0817 0.0498 0.1755 vl 15 0.0011 0.0006 0.0015
br 1500 0.1122 0.112 0.1476 vr 14 0.003 0.0016 0.0014
pr 1494 0.1405 0.1044 0.147 sf 12 0.0395 0.0003 0.0012
tr 1093 0.1555 0.0599 0.1075 sr 10 0.1553 0.154 0.001
fr 819 0.0751 0.0745 0.0806 zl 9 0.0003 0.0003 0.0009
sp 674 0.0738 0.0188 0.0663 zb 4 0.0003 0.0 0.0004
bl 593 0.0428 0.0427 0.0583 sht 4 0.0067 0.0041 0.0004
fl 572 0.0286 0.0284 0.0563 dv 3 0.0002 0.0001 0.0003
pl 458 0.0535 0.0398 0.0451 zv 2 0.0 0.0 0.0002
dr 441 0.0239 0.0239 0.0434 tv 2 0.0016 0.0003 0.0002
sl 379 0.0592 0.0587 0.0373 dz 2 0.0001 0.0 0.0002
shr 155 0.0128 0.0128 0.0152 tl 1 0.0593 0.0228 0.0001
shl 79 0.0049 0.0049 0.0078 shv 1 0.0001 0.0001 0.0001
ts 23 0.0817 0.0003 0.0023 sb 1 0.059 0.0001 0.0001
sv 19 0.0016 0.0008 0.0019 fs 1 0.0395 0.0003 0.0001

Table 6.4: The attested two-segment onsets of English, based on the segments [f], [v], [s], [z],
[sh], [p], [b], [t], [d], [l], and [r], sorted by onset frequency. Probabilities are relative frequency
estimates, rounded to 4 decimal places.

unacceptable. At the same time, however, [br] is clearly preferred to [sr], indicating that both
unigram models are too simplistic. One might consider a mixture model which interpolates
between bigram and unigram models. The difficulty with this approach, however, is that
no simple mixture is obvious that would achieve the preferences necessary. The preference
of [sr] over [sf] would seem to indicate that unigrams should receive considerable weighting;
but the preference of [vr] over [sr] would be undermined by heavy unigram weighting.

To motivate our next development, let us consider specifically the mystery of the relative
acceptability of [vr] and [sr] among onsets that are not unambiguously attested. A key piece
of information we have not yet considered is the phonological substructure of the segments in
question. There are many ways of representing phonological substructure, but one straight-
forward approach for consonants is a representation that decomposes each segment into three
phonological features: its place of articulation, manner of articulation, and voicing

[refs]. The value of each of these features for each consonant used in our current example can
be found in Table 6.5. The set of segments picked out by some conjunction of phonological
features or their exclusion is often called a natural class. For example, among the conso-
nants currently under consideration, the phonological feature [+labial] picks out the natural
class {[p],[b]}; the feature [-stop] picks out {[s],[z],[f],[v],[sh],[r],[l]}; the phonological feature
conjunction [+labiodental,-voiced] picks out the natural class {[f]}; and so forth.

6.10.1 Log-linear models

With multinomial models, it is not obvious how one might take advantage of the featu-
ral decomposition of segments in constructing a probability distribution over the discrete
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Place
Labial Labiodental Alveolar Alveopalatal Velar
[p],[b] [f],[v] [s],[z],[t],[d],[r],[l] [sh] [k],[g]

Manner
Stop Fricative Liquid
[p],[b],[t],[d],[k],[g] [s],[z],[f],[v],[sh] [r],[l]

Voicing
Voiced Unvoiced
[b],[d],[g],[v],[z],[r],[l] [p],[t],[k],[f],[s],[sh]

Table 6.5: Simple phonological decomposition of the consonants used in Table 6.4

set of possible phoneme sequences. We now turn to a modeling framework that allows
such decompositions to be taken into account in modeling such discrete random variables:
the framework of log-linear models. In this framework, which is intimately related to
the logistic-regression models covered previously (see Section XXX), the goal is once again
modeling conditional probability distributions of the form P (Y |X), where Y ranges over a
countable set of response classes {yi}. Unlike the cases covered previously in this chapter,
however, the log-linear framework is relatively agnostic to the representation of X itself.
What is crucial, however, is the presence of a finite set of feature functions fj(X, Y ),
each of which maps every possible paired instance of X and Y to a real number. Taken in
aggregate, the feature functions map each possible response class yi to a feature vector

〈f1(x, yi), f2(x, yi), . . . , fn(x, yi)〉. Finally, each feature function fj has a corresponding pa-
rameter λj. Given a collection of feature functions, corresponding parameter values, and a
value x for the conditioning random variable X, the conditional probability of each class yi
is defined to be:

P (Y = yi|X = x) =
1

Z
exp

[∑

j

λjfj(x, yi)

]
(6.45)

where Z is a normalizing term ensuring that the probability distribution is proper.
In order to translate our phonotactic learning problem into the log-linear framework,

we must identify what serves as the conditioning variable X, the response Y , and what
the feature functions fi are. Since we are putting a probability distribution over logically
possible English onsets, the response must be which onset found in a (possible) lexical item.
The feature functions should correspond to the phonological features identified earlier.10

Finally, since we are only trying to fit a single probability distribution over possible English
onsets that is not dependent on any other information, whatever we take the conditioning
variable X to be, our feature functions will not depend on it; so we can simplify our problem
somewhat so that it involves fitting the distribution P (Y ) using feature functions fj(Y ) with

10Note that the term feature is being used in two different here: on the one hand, as part of a decomposition
of individual phonological segments, on the other hand as a function that will apply to entire onsets and
which is associated with a parameter in the log-linear model. Although phonological features could be used
directly as features in the log-linear model, the space of possible log-linear model features is much richer
than this.
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parameters λj (also called feature weights), with the functional form of the probability
distribution as follows:

P (Y = yi) =
1

Z
exp

[∑

j

λjfj(yi)

]
(6.46)

Simple log-linear models of English onsets

What remains is for us to choose the feature functions for our phonotactic model. This
choice of feature functions determines what generalizations can be directly encoded in our
model. As a first, highly oversimplified model, we will construct exactly one feature function
for each natural class specifiable by a single phonological feature of manner or voicing. This
feature function will return the number of segments in that natural class contained in the
onset. That is,

fj(yi) =





2 if both segments in onset i belong to the j-th natural class;

1 if only one segment in onset i belongs to the j-th natural class;

0 if neither segment in onset i belongs to the j-th natural class.

(6.47)

There are four manner/voicing phonological features for our segment inventory; each can
be negated, giving eight natural classes.11 Each onset is thus mapped to an eight-dimensional
feature vector. In the onset [sr], for example we would have the following counts:

Natural class Matching segments in [sr] Natural class Matching segments in [sr]
[+stop] 0 [-stop] 2
[+fric] 1 [-fric] 1
[+liquid] 1 [-liquid] 1
[+voiced] 1 [-voiced] 1

so that the feature vector for [sr] in this model would be 〈0, 2, 1, 1, 1, 1, 1, 1〉.
What remains is for us to fit the parameter values λ1, . . . , λ8 corresponding to each of

these features. For a simple model like this, in which there are relatively few parameters
(eight) for many outcome classes (121) and many observations (10,164), maximum likelihood
estimation is generally quite reliable. We find the following maximum-likelihood estimates
four our eight feature weights:

[+stop] -0.0712 [-stop] 0.0928
[+fric] -0.5472 [-fric] 0.5012
[+liquid] 0.5837 [-liquid] -0.6679
[+voiced] -0.4713 [-voiced] 0.7404

11We omit the phonological feature of unvoicedness because, since voicing here is a binary distinction,
[+unvoiced] would be equivalent to [-voiced].
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Onset Freq PM1 PM2 PM3A PM3B Onset Freq PM1 PM2 PM3A PM3B

st 1784 0.0097 0.1122 0.1753 0.1587 vl 15 0.0035 0.0007 0.0013 0.0018
br 1500 0.0086 0.1487 0.1473 0.1415 vr 14 0.0035 0.0018 0.0014 0.0034
pr 1494 0.0287 0.1379 0.1468 0.1442 sf 12 0.004 0.0003 0.0009 0.001
tr 1093 0.0287 0.0791 0.1075 0.1033 sr 10 0.0119 0.0915 0.0014 0.0155
fr 819 0.0119 0.0443 0.0802 0.0726 zl 9 0.0035 0.0004 0.0009 0.0017
sp 674 0.0097 0.0423 0.066 0.056 zb 4 0.0009 0.0001 0.0001 0.0001
bl 593 0.0086 0.0567 0.0582 0.0541 sht 4 0.0097 0.0093 0.0003 0.0039
fl 572 0.0119 0.0169 0.0561 0.0454 dv 3 0.0009 0.0001 0.0001 0.0001
pl 458 0.0287 0.0526 0.045 0.046 zv 2 0.0004 0 0.0001 0
dr 441 0.0086 0.0317 0.0432 0.0391 tv 2 0.0029 0.0001 0.0001 0.0002
sl 379 0.0119 0.0349 0.0374 0.0359 dz 2 0.0009 0 0 0.0001
shr 155 0.0119 0.0076 0.0153 0.0143 tl 1 0.0287 0.0301 0.0006 0.0106
shl 79 0.0119 0.0029 0.0077 0.0067 shv 1 0.0012 0.0001 0 0
ts 23 0.0097 0.0005 0.0017 0.0002 sb 1 0.0029 0.0002 0.0002 0.0016
sv 19 0.0012 0.0011 0.0017 0.0002 fs 1 0.004 0.0003 0.0001 0.0005

Table 6.6: Probabilities estimated from four log-linear models for attested English onsets
consisting of pairs from the segment inventory [f], [v], [s], [z], [sh], [p], [b], [t], [d], [l].

Similar to the case in logistic regression, positive feature weights indicates preference for
onsets with large values for the feature in question, and negative feature weights indicate
dispreference for such onsets. The model has learned that stops are slightly dispreferred to
non-stops; fricatives and liquids are strongly preferred to non-fricatives and non-liquids; and
unvoiced consonants are strongly preferred to voiced consonants. A sharper view, however, of
the generalizations made by the model can be seen in Table 6.6, which shows the probabilities
placed by this model on attested onsets. Although there are some things that seem to be
correct about this model’s generalizations—for example, none of the unambiguously attested
onsets are given probability below 0.004—the model makes far too few distinctions, leading
to problems such as the assignment of high probability to [tl], and the assignment of identical
probabilities to [ts] and [st]. This failure should have been expected, however, given that our
feature functions failed to encode any positional information, or to distinguish at all between
certain segments, such as [t] and [p].

We address some of these concerns by moving on to a more complex model, which allows
the following generalizations as feature functions:

• Preferences for particular segments to occur in position 1;

• Preferences for particular segments to occur in position 2;

• Preferences for particular bigrams of natural classes specifiable by a single phonological
feature of either manner or voicing.

The first two types of features give the log-linear model the same generalizational power
as the positional unigram model we covered earlier. The third type of feature, however,
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goes beyond the positional unigram model, and allows the model to make use of abstract
phonological features in generalizing over possible lexical items. Formally speaking, we have
one feature function for each segment in position 1, one feature function for each segment
in position 2, and one feature function for each possible pairing of single-feature natural
classes. This gives us twenty-two possible single-segment feature functions and 8*8=64
possible bigram feature functions, for a total of 86. We will let each serve as an indicator

function mapping those onsets it correctly describes to the value 1, and all other onsets to
the value 0:

fj(yi) =

{
1 if the j-th feature describes yi;

0 otherwise.
(6.48)

As a concrete example of how these feature functions would be applied, let us again
consider the onset [sr]. It satisfies the following descriptions:

• [s] is in position 1 (we represent this feature as s., with . indicating that anything
can appear in position 2)

• [r] is in position 2 (we represent this feature as .r)

• [-liquid][+voice]

• All pairwise combinations of [-liquid],[-stop],[+fric],[-voice] in position 1 with [+liquid],[-
stop],[-fric],[+voice] in position (16 combinations in total)

Thus the feature vector for [sr] would have eighteen entries of 1 and 68 entries of 0. Using
the method of maximum likelihood to estimate values for the 86 parameters of the model, we
find that the features with strongest absolute preferences and dispreferences are as follows:

[-voice][-voice] 5.62962436676025390625
.v 3.64033722877502441406
[-liquid][-stop] 2.91994524002075195312
[-voice][-stop] 2.36018443107604980469
s. 1.81566941738128662109
[-liquid][+liquid] 1.72637474536895751953
.t 1.68454444408416748047
[-stop][-liquid] 1.56158518791198730469
. . .
.b -1.03666257858276367188
z. -1.07121777534484863281
[-liquid][-liquid] -1.20901763439178466797
[-stop][+fric] -1.24043428897857666016
.f -1.30032265186309814453
[-stop][-stop] -1.85031402111053466797
.d -1.97170710563659667969
.sh -3.09503102302551269531
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Brief inspection indicates that most of the model’s strongest preferences involve general-
ization on natural class cooccurences: preference for onsets to involve pairs of unvoiced
segments, dispreference for pairs matching in manner of articulation, and so forth. In ad-
dition, some strong segment-specific positional dispreferences are also found, such as the
preference for initial [s] and dispreference for initial [sh]. Caution is required, however, in
interpreting individual feature weights too simplistically—for example, it is clear from the
lexicon of English that [sh] is dispreferred even more strongly in the second position than in
the first position, yet second-position [sh] feature does not appear in the list of most strongly
dispreferred features. The reason for this is that several other features—including the four
with the largest negative weights—strongly penalize second-position [sh] already. As with
linear and logistic regression models, the proper interpretation of a feature weight is what
effect a change in the associated feature value would have, if all other feature values were
kept constant.

The other way of inspecting the generalizations made by the model is by looking at the
predictive distribution on the response variable itself, as seen in Table 6.6. This model has
a number of clear advantages over our simplest model: it is relatively successful at giving
unambiguously attested onsets higher probability than attested onsets, but at the same time
gives [sr] higher probability than many other onsets, including some that are unambiguously
attested. However, it also has some weaknesses: for example, the probability for [sf] has
dropped below many onsets that are not unambiguously attested, such as [vl].

Overparameterization and regularization

At some level, we might want to allow our model to have specific sensitivity to the frequency
of every possible onset, so that each instance of a given onset x1x2 contributes directly
and idiosyncratically to the probability of other words with that onset; but at the same
time, we clearly want our model to generalize to onsets that do not occur in the English
lexicon as well. Within the maximum-likelihood log-linear framework we have developed
thus far, these two requirements are in conflict with one another, for the following reason.
In order to allow the model sensitivity to the frequency of specific onsets, we would want to
introduce one feature function for each possible onsets, giving us 121 feature functions and
thus 121 parameters to estimate. However, this parameterization allows the encoding of any
probability distribution over the 121 possible response classes. As we saw in Chapter 4, the
maximum-likelihood estimate for a multinomial distribution is just the relative-frequency
estimate. Hence a maximum-likelihood log-linear model with onset-specific feature functions
would simply memorize the relative frequencies of the onsets. Since adding more natural
class-based features to the model can only increase its expressivity, no ML-estimated model
with these 121 features will generalize beyond relative frequencies.

It is possible, however, to learn both onset-specific knoweldge and natural-class-level gen-
eralizations simultaneously within the log-linear framework, however, by moving away from
maximum-likelihood point estimation and instead adopting a Bayesian framework. Recall
that in the Bayesian approach, the posterior probability of the model parameters λ is pro-
portional to the likelihood of the data under λ times the prior probability of λ, which in our
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case works out to:

P (λ|Y ) = P (Y |λ)P (λ) (6.49)

=

[∏

i

1

Z
exp

[∑

j

λjfj(yi)

]]
P (λ) (6.50)

with Z a normalizing factor dependent on λ. The next step is to choose a prior distribution
over the model parameters, P (λ). In principle, any prior could be used; in practice, a
popular choice is a multivariate Gaussian prior distribution (Section 3.5) with center µ and
covariance matrix Σ, so that the prior probability of an N -dimensional parameter vector λ
is

P (λ) =
1√

(2π|Σ|)N
exp

[
(λ− µ)TΣ−1(λ− µ)

2

]
(6.51)

This choice of prior is popular for three reasons: (i) it has an intuitive interpretation as
encoding a bias toward the parameter vector µ that is weak in the vicinity of µ but grows
rapidly stronger with increasing distance from µ; (ii) for log-linear models, the posterior dis-
tribution over λ remains convex with a Gaussian prior; and (iii) Gaussian priors have been
found to work well in allowing fine-grained learning while avoiding overfitting with log-linear
models. The simplest choice of prior is one in which with mean µ = 0 and a diagonal covari-

ance matrix whose nonzero entries are all the same value: Σ =



σ2 . . . 0
...

. . .
...

0 . . . σ2


. Multivariate

Gaussian distributions like this are often called spherical, because surfaces of equal prob-
ability are (hyper-)spheres. With a spherical Gaussian prior, the posterior distribution can
be written as follows:

P (λ|Y ) ∝ P (Y |λ)P (λ) (6.52)

=

[∏

i

1

Z
exp

[∑

j

λjfj(yi)

]]
exp

[∑

j

−λ2
j

2σ2

]
(6.53)

If we shift to log space we get

logP (λ|Y ) ∝

Log-likelihood︷ ︸︸ ︷
∑

i

[
log

1

Z
+
∑

j

λjfj(yi)

]
−

Negative log-prior probability︷ ︸︸ ︷[∑

j

λ2
j

2σ2

]
(6.54)
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Figure 6.15: A multivariate Gaussian prior (µ = 0, σ = 1) for a simple log-linear model with
three possible response classes and two indicator features functions: f1 associated with class
1 and f2 associated with class 2. First panel is model likelihood for class 1–3 frequencies of
7, 4, and 1 respectively; second panel is the prior distribution; third panel is the posterior
distribution.

Note that the log-posterior probability falls off quadratically with the sum of the feature
weights. For this reason, a Gaussian prior is sometimes called a quadratic prior.

The effect of a Gaussian prior of this form can be seen in Figure 6.15: the prior penalizes
deviations from its mode of 0 (a symmetric model in which all outcomes are equally likely),
so that the posterior mode falls in between the MLE and the prior mode.

Let us now turn back to our study of English onsets, ready to apply our Bayesian log-
linear model. We are now in a position to deploy a richer set of feature functions: on top of
the positional single-segment and paired natural-class features we included in the previous
model, we add paired-segment and positional single-natural-class features. This gives us
an inventory of 223 total feature functions; the feature-vector representation for the onset
[sr], for example, would now have the paired-segment feature sr, as well as the positional
single-natural-class features [-stop]., [+fric]., [-liquid]., [-voiced]., .[-stop], .[-fric], .[+liquid],
and .[+voiced].

As is always the case with Bayesian inference, we have a number of choices as to handle the
problems of parameter estimation and prediction. Unlike the case with multinomial models,
however, there are no readily available analytic techniques for dealing with Bayesian log-
linear models, and sampling techniques can be quite computationally intensive. A popular
approach is to use maximum a-posteriori (MAP) estimation to find the set of feature weights
with (near-)maximum posterior probability, and to approximate Bayesian prediction by using
these MAP parameter estimates. In our problem, using a symmetric Gaussian prior centered
around 0 with standard deviation σ = 1, the features with largest and smallest weights in
the MAP estimate are as follows:
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st 3.24827671051025390625
sp 2.78049993515014648438
fl 2.51510095596313476562
ts 2.09755825996398925781
s. 1.87449419498443603516
[-voice][-voice] 1.80559206008911132812
fr 1.80392193794250488281
.v 1.72066390514373779297
. . .
[-stop][+fric] -0.67749273777008056641
[+voice][-voice] -0.70867472887039184570
.d -1.00191879272460937500
shp -1.00633215904235839844
ss -1.12540340423583984375
fp -1.57261526584625244141
.sh -1.64139485359191894531
zr -1.65136361122131347656
ft -1.85411751270294189453
dl -2.24138593673706054688
tl -3.16438293457031250000
sr -4.12058639526367187500

Comparison with the previous model indicates important overall similarities, but it is clear
that the new features are also being used by the model, perhaps most notably in encoding id-
iosyncratic preferences for [st] and dispreferences for [sr] and [sh]. The predictive distribution
of this model, M3A, can be found in Table 6.6. As expected, there is more probability mass on
unambiguously attested onsets in this model than in either previous model, since this model
is able to directly encode idiosyncratic preferences for specific onsets. Additionally, much of
the apparent weakness of M2 has been partly remedied—for example, the probability of [sr]
has dropped below all the other unambiguously attested sequences except for [sf] while the
lower probability of [vr] has stayed about the same.

Strength of the prior and generalization in log-linear models

What is the effect of increasing the strength of the prior distribution, as encoded by decreas-
ing the standard deviation σ of the spherical multivariate Gaussian? There are two key effects
we’ll cover here consideration. The first effect is an overall tendency for the posterior to look
more like the prior, a straightforward and intuitive consequence of the fact that in Bayesian
inference, prior and likelihood stand on equal ground in determining posterior beliefs. There
is a second, more subtle effect that merits attention, however, and which becomes clear from
careful inspection of Equation 6.54. Consider the contribution of an individual feature weight
λj to the posterior probability of the complete parameter vector λ. The choice of λj con-
tributes directly to the log-likelihood once for every observation for which the corresponding
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feature is implicated, but contributes to the prior log-probability only once regardless of how
many observations in which the corresponding feature is implicated. This fact leads has an
important consequence: a stronger prior penalizes feature weights more heavily the sparser
the corresponding feature—that is, the less often that feature is unambiguously implicated
in the data.

We can illustrate this consequence by re-fitting our previous log-linear phonotactic model
using a much stronger prior: a spherical Gaussian distribution with standard deviation
σ = 0.01. The resulting probability distribution over attested onsets is shown in Table 6.6
as model M3B. Compared with M3A (which had σ = 1), there is an overall shift of probabil-
ity mass away from unambiguously attested onsets; this is the first effect described above.
However, the remaining onsets do not all undergo similar increases in probability: the onsets
[sr] and [tl], for example, undergo very large increases, whereas onsets such as [vl] and [zb]
stay about the same. The reason for this is as follows. The more general features—natural-
class and segment unigrams and natural-class bigrams—favor [sr] and [tl]: in our data, [s]
and [t] are common as the first segment of two-segment onsets, [r] and [l] are common as
the second segment of two-segment onsets, and [-voiced][+liquid] is a common natural-class
bigram. The burden of fitting the low empirical frequency of [sr] and [tl] falls on the most
specific features—segment bigrams—but large weights for specific features are disfavored
by the strong prior, so that the resulting predictive probabilities of these onsets rises. In
contrast, [vl] and [zb] are not favored by the more general features, so that their predictive
probability does not rise appreciably with this moderate increase in prior strength.

A word of caution

Finally, a word of caution is necessary in the practical use of MAP estimation techniques
with overparameterized log-linear models: even using Bayesian techniques so that the MAP
estimate is well-defined, the posterior distribution can be very flat in the vicinity of its
optimum, which can make it difficult to be sure how close the obtained solution may be to
the true optimum. In these cases, one would do well to impose stringent convergence criteria
on whatever optimization algorithm is used to search for the MAP estimate.

Log-linear distributions are maximum-entropy distributions

*mention the term maxent, and point out that log-linear models satisfy the maxent property*

6.10.2 Translating between logit models and log-linear models

Although we have demonstrated in Section 6.9 that log-linear models expressively subsume
logit models, translating between the two can be require some care. We go through a brief
example here.

***SAY MORE***

Gabe’s needs doing example.
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> dat <- read.table("../data/needs_doing_data/needs.txt",header=T)

> dat$Response <- ifelse(dat$Response=="ing",1,0)

> dat$Anim1 <- factor(ifelse(dat$Anim=="abst","abst","conc"))

> model.logit <- glm(Response ~ Anim1 + sqrt(Dep.Length), data=dat, family=binomial)

> # data processing to get data in format for log-linear/Poisson model

> dat.for.loglin <- with(dat,as.data.frame(as.table(tapply(Response, list(Anim1=Anim1,Dep.Length=De

> names(dat.for.loglin)[4] <- "x"

> dat.for.loglin$DL <- dat.for.loglin$Dep.Length

> dat.for.loglin$Dep.Length <- as.numeric(as.character(dat.for.loglin$DL))

> dat.for.loglin$Response <- as.numeric(as.character(dat.for.loglin$Response))

> dat.for.loglin$x <- sapply(dat.for.loglin$x, function(x) ifelse(is.na(x), 0, x))

> model.loglin <- glm(x ~ Anim1*DL + Response + Response:(Anim1 + sqrt(Dep.Length)),data=dat.fo

> summary(model.loglin)$coef[c(32,62,63),]

Estimate Std. Error z value Pr(>|z|)

Response -0.2950173 0.11070848 -2.664812 7.703144e-03

Anim1conc:Response 1.3333414 0.14315638 9.313880 1.232457e-20

Response:sqrt(Dep.Length) -0.6048434 0.06369311 -9.496215 2.176582e-21

> summary(model.logit)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.2950173 0.11070848 -2.664812 7.703141e-03

Anim1conc 1.3333414 0.14315636 9.313881 1.232446e-20

sqrt(Dep.Length) -0.6048434 0.06369308 -9.496218 2.176519e-21

What we see here is that the “effect of the response variable category” in the log-linear
model corresponds to the intercept in the logit model; and the interactions of response with
animacy and dependency length in the log-linear model correspond to the animacy and
dependency length effects in the logit model. Of course, the logit model is far more efficient
to fit; it involved only three parameters, whereas the log-linear model required sixty-three.

***WHAT ABOUT MODELS WHERE WE HAVE NO BASELINE CLASS BUT ALSO
DON’T NEED ALL THOSE EXTRA PARAMETERS TO MODEL THE COUNTS?***

...

6.11 Guide to different kinds of log-linear models

Because we have covered several types of log-linear models in this chapter, it is useful to
take a moment to carefully consider the relationship among them. A diagram making these
relationships explicit is given in Figure 6.16. This section briefly describes these relation-
ships. For brevity, we have used dot-product notation instead of summation notation: model
parameters and feature-function outcomes are both denoted with vectors λ and f(x, yi), so
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Two-class logistic

P (yi = 1|x) = eλi·f i(x)

1 + eλi·f i(x)

Poisson regression

P (ci = n) ∝ enλ·f(yi)/n!

Asymmetric multi-class logit
model with baseline class y0

P (yi|x) ∝
{
eλi·f(x) yi 6= y0

1 yi = y0

Unconditional log-linear

P (yi) ∝ eλ·f(yi)

Symmetric multi-class logit

P (yi|x) ∝ eλi·f(x)

General conditional log-linear

P (yi|x) ∝ eλ·f(x,yi)

f ignores
conditioning
variable x

Predict only
event pro-
portions, not
total counts

f ignores response
class yi; different
parameters for each
response class

Choose a baseline
class y0 for which
all parameters λ0

are effectively zero

Only two response
classes, “failure”
and “success”

Figure 6.16: A guide to converting between different types of log-linear models

that the weighted sums
∑

j λjfj(x, yi) we have seen previously can be succinctly expressed
as dot products λ · f(x, yi).

In the bottom-right corner of Figure 6.16 is the general conditional log-linear model we
covered in Section XXX. In this model, there is a collection of feature functions fj each
of which maps an input x paired with a response class yi to a real number. Each feature
function fj has an associated parameter weight λj. In the general conditional log-linear
model, no further constraints are placed on the nature of these feature functions.

It is a common modeling decision, however, to assume that there should effectively be a
single set of feature functions shared identically by all possible response classes. As an exam-
ple, consider the problem of relativizer choice for non-subject extracted relative clauses with
animate head nouns, such as in the actress you mentioned. In modeling this problem with
conditional distributions P (Relativizer|Context), one might consider three possible response
classes: that, who(m), and relativizer omission. To examine the effect of frequency of the
head noun (here, actress), we might want to come up with a single numerical encoding (say,
log of Brown-corpus frequency) which is associated with a different feature function for each
response class. Thus we would have three feature functions f1,2,3, each of which is defined as
follows:
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fj(x, yi) =

{
Log head-noun frequency j = i

0 otherwise

An equivalent approach, however, would be to say that there is only one feature function
f1 which always returns log head-noun frequency, but has a different parameter λ1i for
each response class. Taking this approach moves us to the lower-left corner of Figure 6.16:
symmetric multi-class logistic regression. This category of model is more restrictive than
the general conditional log-linear model: the latter can express probability distributions
unavailable to the former, by using feature functions that are active for more than one
response class, or by using feature functions active for one response class which have no
matching feature function for another response class.

Some readers may have noticed that the symmetric multi-class logit model has more
parameters than it needs. Let us identify one of the N response classes y0 as the baseline

class. Then for an input x, we can the probability of any outcome yi is as follows:

P (yi|x) =
eλif(x)

eλ0f(x) + eλ1f(x) + · · ·+ eλNf(x)
(6.55)

Let us now divide both the top and bottom of this fraction by eλ0f(x):

P (yi|x) =
eλif(x) 1

eλ0f(x)

[eλ0f(x) + eλ1f(x) + · · ·+ eλNf(x)] 1
eλ0f(x)

(6.56)

=
e[λi−λ0]f(x)

e[λ0−λ0]f(x) + e[λ1−λ0]f(x) + · · ·+ e[λN−λ0]f(x)
(6.57)

But λi − λ0 = 0, so e[λ0−λ0]f(x) = 1. If we now define λ′
i ≡ λi − λ0, we have:

P (yi|x) =
eλ

′

if(x)

1 + eλ
′

1f(x) + · · ·+ eλ
′

Nf(x)
(6.58)

This is a new expression of the same model, but with fewer parameters. Expressing things in
this way leads us to the middle-left model in Figure 6.16. This is an asymmetric multiclass
logit model in that we had to distinguish one class as the“baseline”, but it is just as expressive
as the symmetric multiclass logit model: any probability distribution that can be represented
with one can be represented with the other. Therefore, any predictive inferences made
using maximum-likelihood estimation techniques will be the same for the two approaches.
Other techniques—such as Bayesian MAP parameter estimation or Bayesian prediction while
“integrating out”—may lead to different results, however, due to the sensitivity of the prior
to the structure of model parameterization.

Cases of this model where there are only two possible outcome classes are traditional
two-class logit models (top left corner of Figure 6.16), which we covered in detail in Section
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XXX. This is the type of log-linear model that the majority of readers are likely to have
encountered first.

Returning to the general conditional log-linear case in the bottom-right corner of Fig-
ure 6.16, another option is to omit any sensitivity of feature functions to the input x. This
is equivalent to throwing out the conditioning-variable part of the model altogether, and is
sensible in cases such as our modeling of phonotactic knowledge (Section XXX), where sim-
ply wanted to infer a single probability distribution over English two-segment onsets. This
decision takes us to the middle-right cell in Figure 6.16, unconditional log-linear models.

Finally, the unconditional log-linear model that we have here is closely related to an-
other type of generalized linear model: Poisson regression. The key difference between
unconditional log-linear models as we have described them here and Poisson regression is
as follows: whereas our models have placed multinomial distributions over a set of possi-
ble response classes, the goal of Poisson regression is to put a probability distribution over
counts of observed events in each possible response class. The two models are intimately
related: if we take a fitted Poisson-regression model and use it to compute the joint proba-
bility distribution over counts in response class subject to the constraint that the total count
of all response classes is 1, we get the same probability distribution that would be obtained
using an unconditional log-linear model with the same parameters (Exercise 6.18). Although
Poisson regression is popular in statistical modeling in general, we have not covered it here;
it does turn up in some work on language modeling the frequencies of event counts in large
corpora (e.g., Baayen, 2001).

6.12 Feed-forward neural networks

XXX

6.13 Further reading

There are many places to go for reading more about generalized linear models and logistic
regression in particular. The classic comprehensive reference on generalized linear models
is McCullagh and Nelder (1989). For GLMs on categorical data, Agresti (2002) and the
more introductory Agresti (2007) are highly recommended. For more information specific to
the use of GLMs and logistic regression in R, Venables and Ripley (2002, Section 7), Harrell
(2001, Chapters 10–12), and Maindonald and Braun (2007, Section 8.2) are all good places
to look.

Scheffé (1959) and Bock (1975) are comprehensive references for traditional ANOVA
(including repeated-measures).
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6.14 Notes and references

There are many good implementations of log-linear/maximum-entropy models publicly avail-
able; one that is simple to use from the command line, flexible, and fast is MegaM (Daumé and Marcu,
2006).

• Mention L1 prior in addition to L2 prior.

6.15 Exercises

Exercise 6.1: Linear regression

1. The elp dataset contains naming-time and lexical-decision time data by college-age
native speakers for 2197 English words from a datset collected by Balota and Spieler
(1998), along with a number of properties of each word. (This dataset is a slightly
cleaned-up version of the english dataset provided by the languageR package; Baayen,
2008.) Use linear regression to assess the relationship between reaction time neigh-

borhood density (defined as the number of words of English differing from the target
word by only a single-letter edit). Is higher neighborhood density associated with faster
or slower reaction times? Introduce written word (log-)frequency as a control variable.
Does the direction of the neighborhood-density effect change? Is it a reliable effect
(that is, what is its level of statistical significance)? Finally, is there an interaction
between neighborhood density and word frequency in their effects on reaction time?

Carry out this analysis for both word-naming and lexical-decision recognition times.
In both cases, write a careful interpretation of your findings, describing not only what
you found but what it might imply regarding how word recognition works. Construct
visualizations of the main effects, and also of any interactions you find. If you find any
qualitative differences in the way that the two predictors (and their interaction) affect
reaction times, describe them carefully, and speculate why these differences might exist.

2. The dataset nonwordsLexdec presents average reaction times for 39 non-word letter
sequences of English in a primed lexical decision experiment by Bicknell et al. (2010).
The prime preceding the non-word always was a word, so trials were of the form dish–
kess, otter–peme, and so forth. The dataset also contains neighborhood densities for
each of the non-words, and word log-frequencies for the primes. Use linear regression
to assess the relationship between neighborhood density and lexical-decision reaction
time, controlling for prime log-frequency. Is the relationship between neighborhood
density and reaction time the same as for the english dataset? Is the relationship
reliable? Why do you see the results you see?

Exercise 6.2: Linear regression
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The durationsGe dataset has as dependent variable the length of the Dutch prefix ge- in
seconds. Use linear regression to investigate which of the following predictors have significant
effects on prefix length:

• Word frequency

• Speaker sex

• Speech rate

Make sure to account for the possibility of interactions between the predictors. In addition,
for word frequency and speech rate, use data visualization and loess() to get an intuition
for whether to transform the predictors before putting them in the regression. (Hint: to get
rid of rows in a data frame with NA’s in them, the function is.na() is useful.)

Exercise 6.3: Analysis of variance
We talked about the idea of using a log-transformation on response variables such as

reaction times to make them look more normal and hence be more faithful to the assumptions
of linear models. Now suppose you are conducting a two-way ANOVA and are interested
in the possibility of an interaction between the two factors. Your data are reaction times
and look more normal when log-transformed. What are the potential consequences of log-
transforming your response variable for investigating whether there is an interaction between
your two predictors of interest? Hint: try constructing a set of four condition means for a
two-by-two that reflect an additive pattern, and then look at the pattern when you take the
log of each cell.

Exercise 6.4: Linear regression
Compare the residualization and multiple linear regression approaches. Imagine an un-

derlying model of reading time of words in sentences in which the negative logs of raw word
frequency (Flog) and contextual predictability (Plog) both play a role in determining the av-
erage reading time (RT , measured in milliseconds) of a given word. Take as the model of
average reading time

RT = 300− 50Flog − 10Plog + ǫ

ǫ ∼ N (0, 40)

and suppose that Flog and Plog are generated from a multivariate normal distribution centered
at (−4,−4) with variance-covariance matrix ( 0.7 0.5

0.5 1.2 ). In this case where predictability and
frequency are positively correlated, is your intuition that residualization or multiple linear
regression will have greater statistical power in detecting the effect of predictability? (That
is, on average which approach will yield a higher proportion of successful detections of a
significance effect of predictability?) Test your intuitions by comparing residualization versus
multiple linear regression approaches for detecting the effect of Plog. Generate 1000 sample
datasets, each of size 200. Which approach has more statistical power in detecting the effect
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of predictability? Hint: You can automatically extract a p-value from the t-statistic for a
regression model parameter by looking at the fourth component of the summary() of an lm

object (the result of summary() is a list), which is an array. For example:

> lexdec.lm <- lm(RT ~ Frequency, lexdec)

> summary(lexdec.lm)[[4]]

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.58877844 0.022295932 295.514824 0.000000e+00

Frequency -0.04287181 0.004532505 -9.458744 1.026564e-20

> summary(lexdec.lm)[[4]][2,4]

[1] 1.026564e-20

Exercise 6.5: Decomposition of variance
Prove Equation 6.7.

Exercise 6.6: F tests and t statistics
With a randomly-selected 200-sample subset of the Spieler and Balota (1997) dataset,

replicate the model comparisons reported in Section 6.5.2 and XXX

Exercise 6.7: Repeated measures and stratification of error
In English, the best-studied phonetic property distinguishing unvoiced stops ([p],[t],[k])

from voiced stops ([b],[d],[g]) is voice onset time (VOT): the time (typically measured
in milliseconds) between (a) the acoustic burst corresponding to release of the stoppage of
airflow in the vocal tract and (b) the onset of vibration of the vocal folds in the following
sound (Liberman et al., 1958; Lisker and Abramson, 1967). Among other manipulations and
measurements, Cho and Keating (2009) measured VOT for the first [t] in the invented name
“Tebabet” (intended pronunciation [tEb@bEt]) in utterance-initial versus utterance-medial
position, when the name was stressed:

(5) a. Tebabet fed them [Utterance-initial]
b. One deaf Tebabet [Utterance-medial]

Multiple native English speakers participated in this study, and Cho and Keating recorded
several utterances of each sentence for each speaker. Hence this experiment involves a
repeated-measures design. If we assume that different speakers may have individual id-
iosyncracies for the utterance-initial versus utterance-medial contrast, then we get the linear
model

Y = α + βX + ai + biX + ǫ

where X is the contrast between utterance-initial and utterance-medial position; ai and bi
are the idiosyncracies of speaker i, distributed multivariate-normal around 0 with covariance
matrix Σ; and ǫ is utterance-specific noise, also normally distributed around 0 with variance
σ2.
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1. Demonstrate that applying a traditional (not repeated-measures) ANOVA according to
Figure 6.9 for a repeated-measures study, in which we test a null-hypothesis modelM0 :
β = 0 against an alternative-hypothesis model MA with unconstrained β by comparing
the variance explained by MA over M0 with the residual variance unexplained by MA,
will in general lead to anti-conservative inference. That is: assume β = 0; choose
values of α, Σ, and σ2, the number of speakers m > 1 and utterances per speaker
n > 1; randomly generate N datasets using this model; analyze each dataset using a
non-repeated-measures procedure; and report the proportion of models in which the
null hypothesis would be rejected by the criterion p < 0.05.

2. Now demonstrate that the stratification-of-error procedure introduced in Section 6.6.5
avoids anti-conservative inference, through repeated generation of simulated data as in
the first part of this problem.

Exercise 6.8: Outlier removal

Does outlier removal of the type introduced in Section 6.6.6 lead to anti-conservative
inferences regarding differences between experimental conditions? Use simulations and/or
mathematical analysis to support your claim. What if the criteria for outlier removal are
determined separately for each experimental condition, instead of uniformly across conditions
as done in Section 6.6.6?

Exercise 6.9: Analysis of variance.

Perform by-subjects and by-items repeated-measures ANOVA analyses of the second
spillover region (RC_VERB+2) the Rohde et al. (2011) self-paced reading dataset. Try the
results both with and without applying outlier removal; a typical outlier-removal criterion
would be to discard observations more than either three or four standard deviations above
the mean, with “mean” and “standard deviation” determined using only observations from
the specific region being analyzed. How, if at all, does outlier removal change the results?
Why do you think this is the case?

Exercise 6.10: The t-test versus Bayesian model comparison

Consider data that is generated from two normal distributions, with means µ1 = 1 and
µ2 = 2.5, and with common noise σǫ = 5. Let’s look at the power of the frequentist t-test
versus a Bayesian model comparison in choosing between hypotheses H0 in which the two
distributions have the same mean, versus H1 in which the two distributions have different
means. Assume that our observations Y consist of 250 points from each distribution. For
the Bayesian model comparison, use the specifications

µ1 ∼ N (0, σµ)

µ2 − µ1 ∼ N (0, σµ)

σǫ ∼ U(1, 100)
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and the prior distribution P (H0) = P (H1) = 1/2. Using JAGS or similar sampling-based
Bayesian inference software, plot the proportion of trials in which the posterior proability of
H0 is less then 0.05: P (H0|Y ) < 0.05, as a function of σµ. Explain the pattern you see in
intuitive terms.

Exercise 6.11: Logistic regression

In analyzing the dative dataset [Section 6.7] we found in a logit model with linear
predictor

RealizationOfRecipient ~ PronomOfRec + PronomOfTheme

that pronominality of recipient and theme had similar-sized but opposite effects (in logit
space) on the probability of use of the prepositional-object construction. We tentatively
interpreted this result as consistent with the idea that there is a general “pronouns like to
be shifted left” constraint that operates with equal strength on recipients and themes.

1. The model above (call itM1) has three free parameters. Define a new predictor variable
that (a) is a function of the two variables PronomOfRec and PronomOfTheme; and (b)
allows us to simplify the model above into a new model with only two free parameters.

2. Fit the model (call it M2) to the dative dataset. How do the resulting parameter
estimates compare to those of M1?

3. Your new model M2 should be nested inside M1 (that is, it should be a special case
of M1). Explain this nesting—specifically, explain what special conditions imposed on
M1 result in equivalence to M2. This nesting makes it possible to conduct a likelihood-
ratio test between M1 and M2. Do this and report the p-value for the test. Does M2

oversimplify the data compared with M1?

Exercise 6.12

Use your knowledge of the English lexicon to explain why, in Table 6.4, [ts] and [sr] are
so much more probable in the unigram model than in the other models, [st] is so much more
probable in the bigram model than in the other models, and [tr] is so much less probable in
the positional unigram model than in the other models.

Exercise 6.13

In Section ??, the log-linear model of English onsets didn’t include any conditioning
information X. What conditioning information X might you include in a richer model of
English onset phonotactics?

Exercise 6.14

Of the phonotactic models introduced in Section 6.10, which is the best predictive model
with respect to the distribution of English onsets (as opposed to prediction of native speaker
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non-word acceptability judgments)? Assess the cross-validated log-likelihood achieved by
each model using ten-fold cross-validation.

Exercise 6.15

Consider the following frequency counts for the part of speech of the first word in each
sentence of the parsed Brown corpus:

(Pro)noun 9192
Verb 904
Coordinator 1199
Number 237
(Pre-)Determiner 3427
Adverb 1846
Preposition or Complementizer 2418
wh-word 658
Adjective 433
Using a log-linear model with exactly one indicator feature function for each part of

speech, demonstrate for yourself that the maximum-likelihood predictive distribution is sim-
ply the relative frequency estimate. Then introduce a Gaussian prior to your model. Plot the
KL divergence from the MAP-estimated predictive distribution to the maximum-likelihood
distribution as a function of the standard deviation of the prior.

Exercise 6.16

How would you obtain confidence regions for parameter estimates in a Bayesian log-
linear model? After reading Appendix ??, define and implement a Metropolis algorithm
for sampling from the posterior distribution of a log-linear model with a Gaussian prior on
the parameter estimates. Use this algorithm to generate confidence intervals for the feature
weights in the models of Section 6.10.1. Which feature weights does the model have the
most certainty about, and how should these features be interpreted? [HINT: you will save a
lot of time if you use standard gradient-descent software to find the MAP-estimated feature
weights and use these weights to initialize your sampling algorithm.]

Exercise 6.17

The file word_suffixes contains frequency counts from CELEX (Baayen et al., 1995)
for all suffixes of English word lemmas constructible from 17 English phonemes which are of
length 2 or less.

• Define a small set of feature functions (no more than in the neighborhood of 20) on the
basis of generalizations you see in the data and write a script to automatically extract
the outputs of these feature functions for each form in the frequency database.

• Fit a maximum-likelihood log-linear model from this output. Inspect the feature
weights and the predictive distribution. What conclusions can you draw from the
results?
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• Introduce a Gaussian prior and fit a new log-linear model using MAP estimation. How
do the feature weighs and the predictive distribution change?

• Based on any limitations you may see from the results of your first model, add new
feature functions, refit the model, and discuss the changes you see between the simpler
and more complex models.

Exercise 6.18
Use Bayes’ Rule to show that when a fitted Poisson distribution with parameters λ is

used to compute the probability distribution over counts in each response class subject to the
constraint that the total count over all response classes is equal to 1, the resulting distribution
is equivalent to that obtained by an unconditional log-linear model with the same parameters
(see Figure 6.16).

Exercise 6.19: Symmetric versus baseline-class log-linear models and priors on
the weights

Consider a simple model of the dative alternation, where the response variable Y is
whether the recipient precedes or follows the theme, and the only predictor variable X is
whether the recipient is pronominal. If we treat this as a symmetric, two-class problem we
define the classes y1 as recipient-first and y2 as theme-first;

> ### part 3: no prior penalty on intercept, but penalty on all else

> library(rms)

> dat <- data.frame(x=rep(c("pro","pro","notPro","notPro"),c(8,2,2,8)),y=rep(c("NP","PP

> m <- lrm(y~x,dat,penalty=1)

> predict(m,dat,type="fitted")

1 2 3 4 5 6 7 8

0.2896893 0.2896893 0.2896893 0.2896893 0.2896893 0.2896893 0.2896893 0.2896893

9 10 11 12 13 14 15 16

0.2896893 0.2896893 0.7103107 0.7103107 0.7103107 0.7103107 0.7103107 0.7103107

17 18 19 20

0.7103107 0.7103107 0.7103107 0.7103107

Exercise 6.20: Interactions in a linear model
In the English Lexicon Project, data were collected from both younger participants (22.6±

5 y.o.) and older participants (73.4± 3 y.o.). For the word naming data you have availalbe
from this project, analyze the effect of subject age (as a categorical variable: young vs. old)
and its possible interaction with age of acquisition. Do younger participants name words
faster or slower overall than older participants do? What is the effect of a word’s age of
acquisition on its naming latency? Is this effect any different for younger participants than
for older participants? If so, how? If you see a significant difference, speculate on why the
difference you see might exist.
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Chapter 8

Hierarchical Models

In the (generalized) linear models we’ve looked at so far, we’ve assumed that the observa-
tions are independent of each other given the predictor variables. However, there are many
situations in which that type of independence does not hold. One major type of situation
violating these independence assumptions is cluster-level attributes: when observa-
tions belong to different clusters and each cluster has its own properties (different response
mean, different sensitivity to each predictor). We’ll now cover hierarchical (also called
multi-level and, in some cases mixed-effects) models, which are designed to handle
this type of mutual dependence among datapoints. Common instances in which hierarchical
models can be used include:

• Observations related to linguistic behavior are clustered at the level of the speaker, and
speaker-specific attributes might include different baseline reading rates, differential
sensitive to construction difficulty, or preference for one construction over another;

• Different sentences or even words may have idiosyncratic differences in their ease of
understanding or production, and while we may not be able to model these differences,
we may be able model the fact that there is incidental variation at the sentence or
word level;

• Education-related observations (e.g., vocabulary size) of students have multiple levels
of clustering: multiple measurements may be taken from a given student, multiple
students may be observed from a class taught by a given teacher, multiple teachers
may teach at the same school, multiple schools may be in the same city, and so forth.

This chapter introduces hierarchical models, building on the mathematical tools you have
acquired throughout the book. This chapter makes considerably heavier use of Bayesian-
style thinking and techniques than the previous chapter; this would be a good time to review
marginalization (Section 3.2), Bayesian prediction and parameter estimation (Section 4.4),
approximate posterior inference (Section 4.5), and confidence intervals (Chapter 5).
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θ

y1 y2 · · · yn

(a) A non-hierarchical model

θ

Σb

b1 b2 · · · bm

y11 · · · y1n1 y21 · · · y2n2 · · · ym1 · · · ymnm

(b) A simple hierarchical model, in which observations are grouped
into m clusters

Figure 8.1: Non-hierarchical and hierarchical models

8.1 Introduction

The core idea behind the hierarchical model is illustrated in Figure 8.1. Figure 8.1a depicts
the type of probabilistic model that we have spent most of our time with thus far: a model
family has parameters θ, which determine a probability distribution over outcomes, and
a set of observations y arises as a collection of independent draws from this distribution.
Figure 8.1b illustrates the simplest type of hierarchical model: observations fall into a number
of clusters, and the distribution over outcomes is determined jointly by (i) parameters θ
shared across clusters, and (ii) parameters b which are shared among observations within
a cluster, but may be different across clusters. Crucially, there is a second probability
distribution, parameterized by Σb, over the cluster-specific parameters b themselves. In
Figure 8.1b, there are m clusters, and for each cluster i there have been ni observations
yi1, . . . , yini

made. All else being equal, we can expect that observations within a single
cluster will tend to look more like each other than like observations in other clusters.

Let us consider a simple case in which the distribution from which the observations yij
are drawn is characterized by just a few parameters—for example, they may be normally
distributed, in which case the parameters are the mean and the variance. One natural type
of clustering would be for each cluster to have its own mean µi but for all the clusters to
have the same variance σ2

y . In the terminology of Figure 8.1b, we would classify the µi as
cluster-specific parameters (in the b nodes) and the variance σ2

y as a shared parameter (in
the θ node). In order to complete this probabilistic model, we would need to specify the
distribution over the cluster-specific µi. We might make this distribution normal as well,
which requires two parameters of its own: a global mean µ and variance σ2

b (these would live
in the Σb node). We can write this specification compactly as follows:

µi ∼ N (µ, σ2
b )

yij ∼ N (µi, σ
2
y) (8.1)

Equivalently, we could consider the cluster-specific parameters to be deviations from the
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overall mean µ. In this approach, we would consider µ as a shared θ parameter, and the
mean of the deviations would be 0. We can compactly specify this version of the model as:

bi ∼ N (0, σ2
b )

µi = µ+ bi

yij ∼ N (µi, σ
2
y) (8.2)

The specifications in Equations 8.1 and 8.2 describe exactly the same family of proba-
bilistic models. The advantage of the former specification is that it is more compact. The
advantage of the latter specification is that the cluster-specific parameters are more directly
interpretable as deviations “above” or “below” the overall average µ. In addition, the latter
specification leads to a nice connection with our discussion of linear models in Section 6.2.
We can describe the same model as follows:

yij = µ+ bi︸︷︷︸
∼N (0,σ2

b
)

+ ǫij︸︷︷︸
∼N (0,σ2

y)

(8.3)

That is, an individual observation yij is the sum of the overall mean µ, a normally-distributed
cluster-level deviation bi, and a normally-distributed observation-level deviation ǫij.

Let us now consider a concrete example with slightly greater complexity. Suppose that
a phonetician is interested in studying the distribution of the pronunciation of the vowel
[A], recruits six native speakers of American English, and records each speaker once a week
for fifteen weeks. In each case, the phonetician computes and records the F1 and F2 for-
mants of the pronounced syllable. Now, no two recordings will be exactly alike, but different
individuals will tend to pronounce the syllable in different ways—that is, there is both within-
individual and between-individual variation in F1 formant from recording to recording. Let
us assume that inter-speaker (cluster-level) variation and inter-trial (observation-level) vari-
ation are both multivariate-normal. If we denote the 〈F1,F2〉 value for the jth recording of
speaker i as yij, then we could write our model as follows:

bi ∼ N (0,Σb)

µi = µ+ bi

yij ∼ N (µi,Σy) (8.4)

where 0 is the vector 〈0, 0〉.
The only difference between the models in Equations 8.2 and 8.4 is that whereas the for-

mer is univariate, the latter is multivariate: bi is distributed around zero according to some
covariance matrix Σb, and the yij are distributed around µi according to another covariance
matrix Σy. Both the univariate and multivariate models (Equations 8.2 and 8.4) have pre-
cisely the structure of Figure 8.1b, with µ and Σy being the shared parameters θ. For the
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Figure 8.4: Simulated for-
mant data for six speakers.
Speaker-specific means µ +
bi are given as filled circles.

moment, to estimate the model parameters we use the simple expedient of using the sample
mean and covariance of speaker-averages of adult-male data due to Peterson and Barney
(1952) (shown in Figure 8.2) to estimate µ, and Σb, and the covariance of deviations from
speaker means (shown in Figure 8.3) to estimate Σy. Figure 8.4 gives sample data generated
from this model. The individual speakers correspond to clusters of trial-level observations.
Note how there is considerable intra-cluster variation but the variation between clusters is
at least as large.

8.2 Parameter estimation in hierarchical models

The previous section outlines what is essentially the complete probabilistic theory of hier-
archical models. However, the problems of statistical inference within hierarchical models
require more discussion. Before we dive into these issues, however, it is worthwhile to in-
troduce a more succinct graphical representation of hierarchical models than that used in
Figure 8.1b. Figure 8.5a is a representation of non-hierarchical models, as in Figure 8.1a,
where the individual observations yi have been collapsed into a single node y. The box
labeled “n” surrounding the y node indicates that n independent events are generated at
this node; the labeled box is called a plate. Likewise, Figure 8.5b is a representation of
the class of simple hierarchical models shown in Figure 8.1b, with both individual obser-
vations yij and class-specific parameters bi compressed into single nodes. The outer plate
indicates that m independent events are generated at the b node; the inner plate (embedded
in the outer plate) indicates that for the i-th of these m events, ni sub-events are generated.
Each sub-event has a “cluster identity” label—the node labeled i, which allows us to track
which cluster each observation falls into—and the nodes b, θ, and i jointly determine the
distribution over the outcome at the y node for this sub-event.

In light of this picture, let us consider the problem of parameter estimation for a case
such as the formant measurements of the previous section. We know our observations y,
and we also know the cluster identity variable i—that is, which individual produced each
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Figure 8.5: A more succinct representation of the models in Figure 8.1

observation. We do not know the shared model parameters θ the parameters Σb governing
cross-speaker variability, or the speaker-specific variations bi themselves. Upon reflection,
however, it should become clear that the primary goal of the study is to learn θ and Σb, not
bi. Yet the bi stand in the way of estimating Σb. It might seem like a good idea to first
construct point estimates of bi and then use these estimates directly to estimate Σb, but this
approach throws away valuable information (our uncertainty about the true values of the bi,
which we should take into account). How can we make inferences about our parameters of
interest in a principled way?

The answer is actually quite simple: whatever technique of parameter estimation we
choose, we should marginalize over the cluster-specific bi. This leads us to two basic ap-
proaches to parameter estimation for hierarchical models:

1. Construct point estimates of model parameters (Σ̂b and/or θ̂) using the principle of
maximum likelihood. There are actually two different maximum-likelihood approaches
that have widespread currency. The first is to simultaneously choose Σ̂b and θ̂ to
maximize the likelihood, marginal over b:

Lik(Σb,θ;y) =

∫

b

P (y|θ, b, i)P (b|Σb) db (8.5)

We will follow common practice in simply calling this approach“Maximum Likelihood”
(ML) estimation. The second approach, called Restricted Maximum Likelihood

(REML), is perhaps most easily understood as placing an (improper) uniform distribu-
tion over the shared model parameters θ and marginalizing over them (Harville, 1974),
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so that we select only Σ̂b according to the likelihood

Lik(Σb;y) =

∫

b,θ

P (y|θ, b, i)P (b|Σb) db dθ (8.6)

On the REML approach, the parameters θ are of secondary interest, but one would
estimate them as

argmax
θ

P (y|θ, Σ̂bREML, i) =

∫

b

P (y|θ, b, i)P (b|Σ̂bREML) db

For practical purposes, maximum-likelihood and restricted maximum-likelihood esti-
mation often give results that are quite similar to one another when there are relatively
few free parameters in θ compared with the number in b (Dempster et al., 1981). We
will return to the ML/REML distinction in Section 8.3.2.

2. Use Bayesian inference: introduce prior distributions over θ and Σb, and compute the
(approximate) posterior distribution over θ and Σb. Since the introduction of priors
means that θ and Σb are themselves drawn from some distribution, this is actually
a shift to a slightly more complex hierarchical model, shown in Figure 8.5d. Σθ and
ΣΣb

, chosen by the researcher, parameterize the priors over θ and Σb respectively. Via
Bayes’ rule, the posterior distributions of interest can be written as follows:

P (Σb,θ|y) ∝
∫

b

P (y|θ, b)P (b|Σb, i)P (θ|Σθ)P (Σb|ΣΣb
) db (8.7)

Note that the posterior distribution looks very similar to the unnormalized likelihood
of Equation (8.5) above. The only difference is, as always, the presence of the prior
probability P (θ|Σθ)P (Σb|ΣΣb

) in the posterior distribution. It’s worth recalling at
this point that if the prior distribution is chosen to be uniform, then the maximum-
likelihood estimate is also the Bayesian maximum a-posteriori (MAP) estimate.

We’ll now illustrate each of these approaches with reference to actual formant data from
recordings of adult male American speakers’ pronunciations of [A] by Peterson and Barney
(1952). The F1 data are plotted in Figure 8.6.

8.2.1 Point estimation based on maximum likelihood

We illustrate the point estimation approach by treating the F1 and F2 formats separately.1

For each of the formants, we assume the model of Equation (8.2): that the speaker-specific
deviations from the grand mean are normally distributed, and that trial-specific deviations
are also normally distributed. We reiterate that there are three parameters to be estimated

1The R package lme4 is the state of the art in likelihood-based point estimation for a wide variety of
hierarchical models, and we use it here.
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in each model: the overall mean µ, the inter-speaker variance Σb, and the intra-speaker,
inter-trial variance Σy. The maximum-likelihood estimates for these parameters can be seen
in the output of each model fit:

F1 F2
µ 630.6 1191.9
σb 43.1 100.8
σy 16.9 40.1

In this case, there is considerably more inter-speaker variation than intra-speaker variation.
Eyeballing Figure 8.6 and comparing it with the parameter estimates above, we can see that
the overall mean µ is right at the grand mean of all the observations (this has to occur because
the dataset is balanced in terms of cluster size), and that nearly all of the observations lie
within two cluster-level standard deviations (i.e. σb) of the grand mean.

Conditional estimates of cluster-specific parameters

In the point-estimation approach, we have focused on the parameters of interest—θ and Σb—
while maintaining our ignorance about b by marginalizing over it. Nevertheless, in many
cases we may be interested in recovering information about b from our model. For example,
although the ultimate point of the phonetic study above was to estimate inter-speaker and
intra-speaker variation in the pronunciation of [A], we might also be peripherally interested in
making inferences about the average pronunciation behavior of the specific individuals who
participated in our study. Formally, the point estimates of θ and Σb determine a conditional
probability distribution over b. The mode of this distribution is called the best linear

unbiased predictor (BLUP) b̂:

b̂
def
= argmax

b
P (b|θ̂, Σ̂b,y)

The F1 BLUPs for speakers in the current example are plotted as magenta circles in Fig-
ure 8.7.

Shrinkage

Another way of estimating speaker-specific averages would simply be to take mean recorded
F1 frequency for each speaker. But these two approaches lead to different inferences. Fig-
ure 8.7 shows the deviation of each speaker’s mean recorded F1 frequency from the grand
mean as black squares; recall that the conditional estimate b̂ are magenta circles. Notice
that the conditional modes are systematically closer to zero than the means of the raw trials;
this effect is more dramatic for speakers with larger deviations. This happens because the
finite variance of b in the hierarchical model penalizes large deviations from the grand mean
µ. This effect is called shrinkage and is ubiquitous in hierarchical models.
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Figure 8.7: Conditional estimates of speaker-
specific mean F1 frequencies, and shrinkage

8.2.2 Bayesian posterior inference in hierarchical models

We can compare the point estimates (with standard errors) that we obtained in Section 8.2.1
with posterior estimates obtained using Bayesian inference. We specify the hierarchical model
as follows:

µ ∼ N (0, 105)

log σb ∼ U(−100, 100)

log σy ∼ U(−100, 100)

bi ∼ N (0, σ2
b)

µi = µ+ bi

yij ∼ N (µi, σ
2
y) (8.8)

This is exactly the same model as in Equation 8.2, with the addition of three extra lines
at the top specifying prior distributions over the overall mean µ, inter-speaker variability
σb, and intra-speaker variability σy. There are two important points regarding this model
specification. The first is that we are using a normal distribution with very large variance as a
prior on the grand mean µ. The normal distribution is conjugate (Section 4.4.3) to the mean
of a normal distribution, which has computational advantages; the large variance means that
the prior is relatively uninformative, placing little constraint on our inferences about likely
values of µ. The second point is how we are defining the priors on the variance parameters
σb and σy. Although the inverse chi-squared distribution (Section B.4) is conjugate to the
variance parameter of a normal distribution, this distribution does not lend itself well to an
uninformative specification. As described earlier in Section 4.5, placing a uniform distribution
over the log of the standard deviation allows our prior to be uninformative in a “scale-free”
sense.2

Using the sampling techniques described in Section 4.5, we can obtain approximate
highest-posterior density confidence intervals and conditional modes (the latter being ap-

2Good discussion of practical choices for priors on variance parameters can be found in Gelman et al.
(2004, Appendix C).
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Figure 8.8: Output of MCMC sampling on hierarchical model parameters

proximated by a very narrow HPD interval), and plot estimates of the posterior (Figure 8.8).
For F1 formants, these 95% HPD intervals and posterior modes are:

lower bound upper bound posterior mode
µ 615.7 648.7 629.4
σb 36 57.4 43.3
σy 13.8 21.9 16.4

The posterior simulations are in broad agreement with the point estimates and standard
errors obtained in Section 8.2.1. We leave obtaining similar results for F2 as Exercise 8.4.

8.2.3 Multivariate responses

One shortcoming of the analysis of the previous two sections is that F1 and F2 formants
were analyzed separately. Correlations between F1 and F2 frequency are captured at neither
the inter-speaker nor the intra-speaker level. However, there is a hint of such a correlation
in the Figure 8.3. This raises the question of whether such a correlation is reliable at either
level. We can address this question directly within a hierarchical model by using bivariate
representations of y and b. We’ll illustrate this type of analysis in a Bayesian framework.
The model specification looks similar to the univariate case given in Equation 8.8, but we are
using different prior distributions because our normal distributions of interest are multivariate
(even though they are still written as N ):
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bi ∼ N (0,Σb)

µi = µ+ bi

yij ∼ N (µi,Σy)

µ ∼ N
(
0,

[
105 0
0 105

])

Σb ∼ IW
([

105 0
0 105

]
, 2
)

Σy ∼ IW
([

105 0
0 105

]
, 2
)

The symbol IW stands for the inverse Wishart distribution, which is a widely-used prior
distribution for covariance matrices; the large diagonal entries in the matrix parameterizing
it signal uninformativity, and the zero off-diagonal entries signal that there is no particular
prior expectation towards correlation between F1 and F2 deviations. The inverse Wishart
distribution is described more completely in Section B.7.

There are eight distinct parameters in our model over which we would like to make
inferences: two µ parameters, three Σb parameters, and three Σy parameters (recall from
Section 3.5 that Σb and Σy have the form [ σ11 σ12

σ21 σ22 ] but that σ12 = σ21). Using BUGS once
more we obtain the following 95% HPD confidence intervals from the posterior distribution:

lower bound higher bound posterior mode
µ 〈612.4, 1148.8〉 〈641.8, 1226.3〉 〈628.4, 1190.7〉

Σb

[
34.4 −0.43
−0.43 75.8

] [
54.8 0.3
0.3 133.4

] [
42.5 −0.03
−0.03 98.8

]

Σy

[
13.6 −0.06
−0.06 31.5

] [
22.4 0.53
0.53 52.5

] [
17.1 0.29
0.29 39.7

]

Of particular interest are the inferences about correlations between F1 and F2 formants,
which are the most compelling reason to do multivariate analysis in the first place. In the
above analysis, the posterior mode suggests a negative F1-F2 correlation at the inter-speaker
level, but positive correlation at the intra-speaker level. However, the confidence intervals
on these correlations show that this suggestion is far from conclusive.

It is instructive to compare this analysis to a more straightforward analysis of F1-F2
correlation in which inter-speaker correlation is estimated by calculating speaker means and
computing a correlation coefficient on these means, and intra-speaker correlation is estimated
obtained by simply subtracting out the speaker-specific mean from each observation and then
calculating a correlation coefficient on the resulting residuals. For inter-speaker variation,
it gives an empirical correlation coefficient of r = −0.01, with a 95% confidence interval
of [−0.35, 0.34]; for intra-speaker variation, it gives an empirical correlation coefficient of
r = 0.24, with a 95% confidence interval of [−0.002, 0.46].3 Although this approach also
leads to the conclusion that there is no reliable F1-F2 correlation at either the inter-speaker

3This confidence interval is derived by using the transform z = 1
2 log

1+r
1−r

; the resulting z is approximately
normally distributed (Cohen et al., 2003, p. 45), and so a confidence interval based on the normal distribution
can be calculated as described in Section 5.3.
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or intra-speaker level, these confidence intervals indicate considerably more certainty in the
true correlation than the Bayesian HPD intervals suggest, and the p-value for correlation at
the intra-speaker level is very close to significant at 0.052. A key point here is that this latter
approach based on empirical speaker means doesn’t take into account the uncertainty about
true speaker means, and thus leads to conclusions about inter-speaker variation of greater
certainty than may be warranted. The Bayesian HPD interval takes this uncertainty into
account, and is thus more agnostic about the true correlation.

8.3 Hierarchical linear models

Now we’ll move on from hierarchical models of the form in Equation 8.3 to conditional
models. Thus we’ll be estimating distributions of the form

P (Y |X, i) (8.9)

where X are the covariates (there can be many of them) and i are the cluster identities.
Figure 8.9 illustrates this type of model. The only change from Figure 8.5b is the addition of
the covariatesX as a separate node in the graph. Once again, the primary targets of inference
are typically θ and Σ, and we’d want to marginalize over b in making our inferences about
them.

We’ll start with a study of hierarchical linear models. Assume that we have covariates
X1, . . . , XM on which we want to condition Y . We can express the j-th outcome in the i-th
cluster as

yij = α + bi0 + (β1 + bi1)X1 + · · ·+ (βM + biM)XM + ǫ (8.10)

where ǫ is, as before, normally distributed. This equation means that every cluster i has a
cluster-specific intercept α+ bi0 and a slope parameter βk+ bik that determines the contribu-
tion of covariate Xk to the mean outcome. In the notation of Figure 8.9, the parameters α
and {βk}, along with the variability σy governing ǫ, are θ parameters, shared across clusters,
whereas the bik parameters are specific to cluster i. Figure 8.10 shows a slightly more nuanced
picture illustrating how the predicted mean mediates the influence of covariates and cluster
identity on the outcome; here, only α and {βk} are β parameters. Equation 8.10 describes
the most general case, where all predictors have both shared parameters and cluster-specific
parameters. However, the models can be constrained such that some predictors have only
shared parameters and some others have only cluster-specific parameters.

8.3.1 Fitting and drawing inferences from a hierarchical linear
model: practice

We’ll illustrate the utility of hierarchical linear models with a simple instance in which the
covariates are categorical. Stanford (2008) investigated variability in the low lexical tone
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Figure 8.10: A structure more specific to
hierarchical linear models, where the in-
fluence of cluster identity i and covariates
X on the outcome y is only on the pre-
dicted mean µ. The shared parameters θ
from Figure 8.9 are explicitly represented
here as β and σy.

contour of Sui, a minority language in Southwest China. The Sui practice clan exogamy:
a wife and husband must originate from different clans, and the wife immigrates to the
husband’s village. Both Northern and Southern Sui clan dialects have six tones, but they
have different low-tone (Tone 1) pitch contours. Figure 8.11 illustrates the mean contours for
five of the six Sui tones, along with sample tone contours taken from individual recordings of
one southern Sui and one northern Sui speaker (who lived in their home village). According
to Stanford (2008), the difference in this tone contour is audible but subtle, and the Sui do
not mention it as a hallmark of the tone differences between northern and southern clan
dialects. Stanford investigated two questions:

1. whether this tone contour can be reliably measured; and

2. whether immigrant Sui speakers adopt the lexical tone contour of their husband’s clan,
or keep their original tone contour.

We begin with question 1. Stanford observed that in tone 1, from the temporal midway
point of each tone to the end, the mean tone contour is fairly straight, but it tends to rise for
Southern speakers whereas it stays flat for Northern speakers (Figure 8.11a). Therefore one
difference between northern and southern tone 1 contour may be characterizable by the slope
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Figure 8.11: Sui tone contours

(in the sense of linear regression) of the tone contour in this part of the syllable. Figure 8.12
plots the distribution of tone contour slopes for each individual trial for Northern-origin and
Southern-origin speakers. There is an apparent trend for Northern speakers to have lower
slopes. However, there is also an apparent trend for different speakers of each origin to have
idiosyncratically different slopes. We could deal with this nesting structure through analysis
of variance with speaker as a random factor (Section 6.6), but the data are unbalanced, which
is not ideal for analysis of variance. Lack of balance presents no fundamental difficulty for a
hierarchical linear model, however.

In our first model of this dataset we include (i) effects on all observations of speaker
origin, northward migration, and southward migration; (ii) speaker-specific idiosyncracies in
average tone contour; and, of course, (iii) trial-level variability in tone contour. This linear
model is thus specified as follows:

yij = α + β1SO + β2MN + β3MS + bi︸︷︷︸
∼N (0,σ2

b
)

+ ǫij︸︷︷︸
∼N (0,σ2

y)

(8.11)

where SO is speaker origin (valued 1 for southern origin and 0 for northern origin), MN
is migration north and MS migration south (each 1 if the speaker has migrated in that
direction, 0 otherwise), and b is a normally-distributed speaker-level slope deviation dis-
tributed as N (0, σb). The data to which the model is fitted are shown in Figure 8.12. A
maximum-likelihood fit of the parameters for this model is given in Table 8.1. For the shared
model parameters (what are often called the “fixed effects” in the “mixed-effects” parlance),
considering for the moment only the parameter estimates (and ignoring the standard errors
and t statistics) we see that in the maximum-likelihood fit southern origin and northward
migration are associated with more sharply upward-sloping tone contour, as visualized in
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Figure 8.12: Distribution of slopes for speakers originating northern and southern clans.
Southward and northward migrants are plotted in green squares and magenta circles respec-
tively.

Figure 8.11, and southward migration is associated with slightly more downward-sloping
tone contour. As far as the parameter σb governing inter-speaker variability is concerned,
note that its MLE is slightly larger than that of trial-level variability σy and that both these
standard deviations are less than half the size of the effect of speaker origin, suggesting that
while inter-speaker variability is considerable, the difference between northern-origin and
southern-origin speakers is large even compared to this.

8.3.2 Hypothesis testing in hierarchical linear models

Of course, it would also be desirable to measure our certainty in the presence of the ef-
fects we just described from reading off the maximum-likelihood estimates in Table 8.1.
We begin with the question of how can we assess the contribution of inter-speaker vari-
ability in this model. In a frequentist paradigm this can be done via model comparison
between models fitted with and without inter-speaker variability, using the likelihood ratio
test (Section 5.4.4). REML-fitted likelihoods are generally considered preferable to ML-
fitted likelihoods for this purpose (e.g., Morrell, 1998), but in general the p-values obtained
by the likelihood-ratio test for models differing in the number of parameters governing inter-
cluster variability (“random-effects” structure, or Σb) are conservative (Stram and Lee,
1994; Pinheiro and Bates, 2000; Baayen et al., 2008), meaning that the true p-value will
generally be smaller (i.e. more significant) than the p-value obtained by consulting the χ2

distribution. Conservativity is good in the sense that an obtained significant p-value can be
trusted, but dangerous in the sense that a large (i.e. insignificant) p-value is not necessarily
grounds to exclude inter-cluster variability from the model. Whether it is a better idea to err
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β̂ML SE(β̂ML) tML β̂REML SE(β̂REML) tREML

σb 3.35 3.81
σy 3.07 3.07
Intercept -0.72 0.47 -1.53 -0.72 0.5 -1.44
SO 7.21 0.83 8.67 7.21 0.88 8.17
MN 2.38 1.44 1.65 2.38 1.53 1.56
MS -0.82 0.94 -0.87 -0.82 1 -0.82

Table 8.1: Shared parameter estimates (β̂), standard errors (SE(β̂)), and t statistics (defined

as β̂

SE(β̂)
) for the Sui tone model defined in Equation (8.11). Note that standard errors are

not appropriate for estimates of σb or σy, as these are not normally distributed.

on the side of including or excluding parameters for inter-cluster variability when in doubt
will depend on the precise goals of one’s modeling, and we will have more to say about it in
Section XXX.

To illustrate this type of hypothesis test on cluster-level parameters, we construct a “null
hypothesis” version of our original Sui tone model from Equation (8.11) differing only in the
absence of idiosyncratic speaker-level variability b:

yij = α + β1SO + β2MN + β3MS + ǫij︸︷︷︸
∼N (0,σ2

y)

(8.12)

and we can call this new model M0 and the original model M1. The log-likelihood of the
REML fit ofM0 turns out to be -2403.8 whereas the log-likelihood forM1 is -2306.2. Consult-
ing twice the difference of these log-likelihoods against the χ2

1 distribution, we find that the
improvement of M1 over M0 is extremely unlikely under M0 (p ≪ 0.001). Broadly consistent
with the visual picture in Figure 8.12 and with the results in Table 8.1, there is extremely
strong evidence that speakers vary idiosyncratically in their average tone 1 contours, above
and beyond the other sources of cross-speaker variability in the model (origin and migration).

We now move to the question of hypothesis testing involving shared model parameters
(“fixed effects” structure, or θ). Perhaps surprisingly, how to test for significance of an ef-
fect of a shared model parameter is a matter of some current controversy. In principle, one
could use the likelihood ratio test to compare a more complex model with a simpler model.
However, it has been argued that the likelihood ratio test will lead to anti-conservative

p-values (i.e. the true p-value is less significant than the p-value obtained by consulting the χ2

distribution) for comparison of models with the same cluster-level parameters but different
shared parameters (Pinheiro and Bates, 2000, pp. 87–92).4 This leaves two approaches cur-
rently in vogue. On the first approach, a single model is fitted with the method of maximum

4As a caveat, it is not clear to this author that the anti-conservativity involved is appreciable unless the
number of total parameters in the model is quite large relative to the number of observations, which quite
often is not the case for linguistic datasets.

Roger Levy – Probabilistic Models in the Study of Language draft, November 6, 2012 189



likelihood, and for the shared parameter of interest, the parameter estimate and its standard
error are used to obtain a p-value based on the t statistic, just as in standard linear regres-
sion (Section 6.4; for testing multiple parameters simultaneously, an F -test is used). This
approach itself carries a degree of controversy involving how many degrees of freedom the
relevant t distribution should be assumed to have. As a rule of thumb, however, if there are
many more observations than model parameters, the t distribution is generally taken to be
approximated by the standard normal distribution (see also Section B.5). This is illustrated
in Table 8.1, which gives the MLEs, standard errors, and resulting t statistics for our four
parameters of interest. Recall that the standard normal distribution has just over 95% of its
probability mass in the interval [-2,2] (e.g., Section 5.3), so that finding |t| > 2 is roughly a
p < 0.05 result. Thus we conclude from the ML fit.

The second approach currently in vogue is to use Bayesian inference and bypass the classi-
cal hypothesis testing paradigm altogether. Instead, one can estimate a Bayesian confidence
region (Section 5.1) on the shared parameters θ, by sampling from the posterior distribution
over θ using Markov Chain Monte Carlo (MCMC) sampling as discussed in Section 4.5,
earlier in this chapter, and in Appendix ??. Here we illustrate this approach by sampling
from the posterior in Figure 8.10 over P (β|y, Σ̂b, σ̂y), performed by the lme4 package and
giving us the following 95% HPD confidence intervals and posterior modes:

lower bound upper bound posterior mode
α -1.56 0.17 -1.32
SO 5.72 8.58 7.45
MN -0.06 5.05 2.46
MS -2.36 1.06 -0.89

On the Bayesian interpretation, we can be over 95% certain that the true parameter estimate
for the effect of being from the south (with respect to the reference level of clan origin, the
north) is positive. It has recently become popular in the psycholinguistics literature to call
the largest value q such that 1 − q

2
of the posterior probability mass on a parameter θ lies

on one side of zero a ”MCMC-based p-value” for θ (Baayen, 2008). Although this value q is
certainly a useful heuristic for assessing the strength of the evidence supporting a meaningful
role for θ in the model, it is also worth keeping in mind that this value q is NOT a p-value
in the traditional Neyman-Pearson paradigm sense of the term.

Simultaneous assessment of significance of multiple parameters

We now turn to another question: whether migration into a new clan has a reliable effect
on tone 1 slope. If it did, then the theoretically sensible prediction would be that migration
of a southern-origin woman to the north should tend to lower the slope, and migration of
a northern woman to the south should tend to raise the slope. To test this possibility, we
can consult model M1, whose parameters associated with variables MN and MS encode
this effect. Looking at Table 8.1, we see that both coefficients associated with migration
are consistent with the theoretical prediction. There is considerable uncertainty about each
parameter (as indicated by the t-value), but what we would really like to do is to assess the
overall explanatory benefit accrued by introducing them together. The conceptually simplest
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way to do this is to use the F statistic from model comparison between M1 and a simpler
model M ′

0 in which effects of MN and MS are absent. Computing an F -test between these
two models we obtain an F statistic of 1.743. In order to evaluate statistical significance,
we need to choose which F distribution should serve as the reference distribution, but as
noted earlier, there is some controversy as to how many degrees of freedom to use in the
denominator for such an F statistic. However, we can play the devil’s advocate momentarily
and ask how much evidence would exist for an effect of migration in the most optimistic
interpretation. The maximum degrees of freedom for the F statistic denominator is the
number of observations minus the number of parameters in the full model, or 887. The
cumulative distribution function for F2,887 at 1.743 is 0.824, hence the best-case p-value is
0.176, and the overall effect is thus marginal at best.

8.3.3 Heteroscedasticity across clusters

One noteworthy thing about Figure 8.12 is that some speakers clearly have more inter-
trial variability than others (compare, for example, speakers 15 and 11). This presence of
inter-cluster differences in residual variability is called heteroscedasticity. (The lack
of heteroscedasticity—when residual intra-cluster variability is the same for all clusters—is
called homoscedasticity.) Although the differences are not particularly severe in this
case, we can still investigate whether they affect our inferences by incorporating them into
our model. Conceptually speaking, this is a minor change to the structure of the model as
depicted in Figure 8.9: the residual variance σy moves from being a shared θ parameter to
being a cluster-specific b parameter. We present a Bayesian analysis (once again because
methods for point-estimation are not readily available), with the following model:

α, β{1,2,3} ∼ N (0, 105)

µi = α + β1SO + β2MN + β3MS + bi

bi ∼ N (0, σb)

yij ∼ N (µi, σy,i)

log σb ∼ U(−100, 100)

log σy,i ∼ U(−100, 100)

Approximate 95% HPD confidence intervals and posterior modes obtained from sampling
look as follows:

lower bound upper bound posterior mode
α -1.68 -0.12 -1.04
SO 5.82 8.65 6.78
MN -2.81 0.95 -1.41
MS -1.09 4.92 2.88

Comparing these results with the point-estimate results obtained in the previous section, we
see that failing to account for heteroscedasticity doesn’t qualitatively change the conclusions
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of the model: there is still a strong association of clan origin with tone 1 slope, and there
are no reliable effects of migration. Once again, similar inferences from multiple model
specifications should strengthen your confidence in the conclusions obtained.

8.3.4 Multiple clusters per observation

One of the most exciting new developments in hierarchical modeling has been improvement in
the computational treatment of cases where there are multiple classes of cluster to which each
observation belongs. Consider the typical psycholinguistics experiment in speech perception
or language comprehension, where each observation is derived from a particular participant
reading or listening to a particular experimental stimulus which appears in a certain form. For
example, the self-paced reading experiment of Rohde et al. (2011), described in Section 6.6.6
involved 58 subjects each reading 20 sentences (items), where each sentence could appear
in any of four possible forms. The sample sentence is repeated below:

(1) John {detests/babysits} the children of the musician who {is/are} generally arrogant
and rude.

where there are two experimentally manipulated predictors: the type of verb used (implicit
causality (IC) or non-IC), and the level of relative-clause attachment (high or low). This
corresponds to a more complex hierarchical model structure, shown in Figure 8.13. In this
figure, there are two cluster identity nodes i and j; the subject-specific effects for the i-th
subject are denoted by bS,i, and the item-specific effects for the j-th item are denoted by
bI,j. This type of model is conceptually no different than the simpler hierarchical models
we have dealt with so far. We illustrate by replicating the analysis of variance performed
in Section 6.6.6 using a hierarchical linear model. Because the interaction between RC
attachment level and verb type is of major interest to us, it is critical to us that we use an
appropriate contrast coding (Section ??), using predictors V to represent verb type, with
values 0.5 and −0.5 for IC and non-IC verb types, and A to represent attachment level,
with values 0.5 and −0.5 for high and low attachment. We will allow different subject- and
item-specific effects for each of the four possible conditions C. The hierarchical model can
be compactly written as follows:

bS,i ∼ N (0,ΣbS)

bI,j ∼ N (0,ΣbI )

µij = α + βV V + βA A+ βV A V A+ bS,iC + bI,jC

yijk ∼ N (µij, σy) (8.13)

We’ll start by using point estimation of the model parameters using (unrestricted) max-
imum likelihood. There is a considerable amount of detail in the resulting model so we
present the complete printed representation of the fitted model from R:

Linear mixed model fit by maximum likelihood

Formula: rt ~ V * A + ((C - 1) | subj) + ((C - 1) | item)
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Figure 8.13: A conditional hierarchical model for probability distributions of the form
P (Y |X, i, j), with observations cross-classified into two classes of clusters. The two graph-
ical models are equivalent; in Figure 8.13a plates are non-overlapping and cluster identity
variables are explicitly represented, whereas in Figure 8.13b cluster plates are overlapping,
the observation plate is nested in both, and cluster identity variables are implicit

Data: d

AIC BIC logLik deviance REMLdev

12527 12648 -6239 12477 12446

Random effects:

Groups Name Variance Std.Dev. Corr

subj CIC high 11971.19 109.413

CIC low 18983.98 137.782 0.909

CnonIC high 23272.40 152.553 0.883 0.998

CnonIC low 16473.41 128.349 0.988 0.963 0.946

item CIC high 657.90 25.650

CIC low 563.35 23.735 1.000

CnonIC high 6062.73 77.864 0.271 0.271

CnonIC low 3873.88 62.241 0.991 0.991 0.399

Residual 38502.59 196.221

Number of obs: 919, groups: subj, 55; item, 20
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ΣbS =




109.41 0.91 0.88 0.99
0.91 137.78 1 0.96
0.88 1 152.55 0.95
0.99 0.96 0.95 128.35


 ΣbI =




25.65 1 0.27 0.99
1 23.73 0.27 0.99

0.27 0.27 77.86 0.4
0.99 0.99 0.4 62.24




Parameter Associated Predictor β̂ML SE[β̂]ML tML

α Intercept 470.48 20.6 22.84
βV Verb type (Implicit Causality=0.5, not=−0.5) -33.71 16.78 -2.01
βA Relative clause (RC) attachment (high=0.5, not=−0.5) -0.42 15.69 -0.03
βV A Verb type/RC attachment interaction -85.31 35 -2.44

Table 8.2: Cross-classified cluster (experimental participant and item) hierarchical linear
model for Rohde et al. (2011) self-paced reading study. For ease of interpretation, ΣbS and
ΣbI are presented with standard deviations on the diagonal entries and correlation coefficients
on the non-diagonal entries.

Fixed effects:

Estimate Std. Error t value

(Intercept) 470.4823 20.6029 22.836

V -33.7094 16.7787 -2.009

A -0.4173 15.6899 -0.027

V:A -85.3055 34.9994 -2.437

The negative estimates for βV and βA indicate that the IC-verb and high-attachment condi-
tions respectively are associated with faster reading time at this region, though the effect of
attachment level is very small. V A is positive in the IC/high and non-IC/low conditions, so
the negative estimate for βV A indicates that reading times at this region are faster in these
two conditions.

We now turn to assessment of statistical significance. Once again resorting to our rule of
thumb that with many more observations than estimated parameters (13 versus 919 in our
case), the t statistic is distributed approximately as the standard normal, we see that the
hierarchical analysis leads us to the same conclusions as the ANOVA of Section 6.6.6: there
is a reliable interaction between verb type and RC attachment level in reading times at the
first spillover region (generally in Example I). Importantly, this result is now obtained from
a single hypothesis test rather than from separate by-subjects and by-items tests as has been
the tradition in psycholinguistics for the past three decades.5

5Single hypothesis tests can also be done with separate by-subjects and by-items ANOVAs using the
min-F test introduced by Clark (1973), this test is quite conservative and in practice is very rarely used.
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Interpreting model parameter estimates

The ability to do a single hypothesis test when observations belong to multiple cross-cutting
clusters is an advantage of the hierarchical analysis approach. However, where the hierarchi-
cal approach really shines is in obtaining a single model that can be inspected, interpreted,
and used. From the subject-level variance parameters, we can see that there is much more
intersubjective variation in reading speed for each condition (the subject-intercept standard
deviations range from 111 to 154) than there is inter-item variability (standard deviations
between 26 and 81). The residual trial-level variability is larger than both the subject-
and item-level variability put together. Beyond this, however, there is something else worth
noticing. The correlations between subject-level parameters for each condition are extremely
high. That is, when a subject reads slowly in one condition, he or she reads slowly in all
conditions. The correlations between item-level parameters are also high, except that there
is much lower correlation between the implicit-causality, high-attachment condition and the
rest of the conditions. This result could be illuminating if item-level parameter estimates
were extracted and compared with the experimental materials themselves.

Turning to the shared parameters (“fixed effects”), we see that there is an overall 34-
millisecond speed advantage for the implicit-causality verbs at this point, but no real overall
effect of attachment level. Above and beyond these main effects, there is a large (85-ms)
advantage for high-attaching RCs after IC verbs over low-attaching RCs after non-IC verbs.
These estimates comport fairly well with those derived from the per-condition means ob-
tained in Section 6.6.6, but the estimates obtained here put inter-subject and inter-item
variation on equal footing, and are obtained automatically as part of the model-fitting pro-
cess.

Fully Bayesian analysis

We can try a similar analysis using fully Bayesian techniques rather than the point estimate.
We’ll present a slightly simpler model in which the speaker- and item-specific variations do
not depend on condition; this simpler type of model is often called a model with random
subject- and item-specific intercepts in the literature. A Bayesian version of the more complex
model of the previous section is left to the reader (see Exercise 8.8). Here is the model
specification:
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α, β{1,2,3} ∼ N (0, 105)

log σbS ∼ U(−100, 100)

log σbI ∼ U(−100, 100)

log σby ∼ U(−100, 100)

bS,i ∼ N (0, σbS)

bI,j ∼ N (0, σbI )

µij = α + β1 V + β2 A+ β3 V A+ bS,i + bI,j

yijk ∼ N (µij, σy)

Note the close resemblance to the previous model specification in Equation 8.13; the two
differences are the addition of the top four lines representing priors over the shared parameters
α and β{1,2,3}, and the simplified bS,i and bI,j since we only have subject- and item-specific
intercepts now.

Sampling from the posterior gives us the following 95% HPD confidence intervals and
posterior modes for the effects of V , A, and the interaction V A:

lower bound upper bound posterior mode
V -56.87 -1.43 -41.75
A -26.34 23.79 -5.69
V A -136.52 -20.65 -96.3

Once again, there is broad agreement between the point estimates obtained earlier in this
section and the Bayesian HPD confidence intervals. Most notably, there is (a) strong evidence
of an overall trend toward faster reading in this region for the IC verbs; and (b) even stronger
evidence for an interaction between IC verb type and attachment level. One should believe
an apparent trend in the data more strongly if the same trend is confirmed across multiple
statistical analyses, as is the case here.

8.4 Hierarchical generalized linear models

We now shift from linear models to the broader case of generalized linear models, focusing
on logit models since they (along with linear models) are the most widely used GLM in the
study of language. We move from generalized linear models (GLMs) to hierarchical GLMs
by adding a stochastic component to the linear predictor (c.f. Equation 6.1):

η = α + (β1 + bi1)X1 + · · ·+ (βn + bin)Xn (8.14)

and assume that the cluster-specific parameters b themselves follow some distribution pa-
rameterized by Σb.

We then follow the rest of the strategy laid out in Section 6.1 for constructing a GLM:
choosing a link function η = l(µ), and then choosing a function for noise around µ.
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8.4.1 Hierarchical logit models

In a hierarchical logit model, we simply embed the stochastic linear predictor in the binomial
error function (recall that in this case, the predicted mean µ corresponds to the binomial
parameter π):

P (y;µ) =

(
n

yn

)
µyn(1− µ)(1−y)n (Binomial error distribution) (8.15)

log
µ

1− µ
= η (Logit link) (8.16)

µ =
eη

1 + eη
(Inverse logit function) (8.17)

8.4.2 Fitting and interpreting hierarchical logit models

As with hierarchical linear models, the likelihood function for a multi-level logit model must
marginalize over the cluster-level parameters b (Equation 8.5). We can take either the
maximum-likelihood approach or a Bayesian approach. Unlike the case with hierarchical
linear models, however, the likelihood of the data P (y|θ,Σb) (marginalizing over cluster-
level parameters b) cannot be evaluated exactly and thus the MLE must be approximated
(Bates, 2007, Section 9). The tool of choice for approximate maximum-likelihood estimation
is once again the lme4 package in R.6

8.4.3 An example

We return to the dataset of Bresnan et al. (2007), illustrated by the alternation

(2) Susan gave toys to the children. (PP realization of recipient)

(3) Susan gave the children toys. (NP realization of recipient)

To illustrate the approach, we construct a model with the length, animacy, discourse ac-
cessibility, pronominality, and definiteness of both the recipient and theme arguments as
predictors, and with verb as a random effect. We use log-transformed length predictors (see
Section 6.7.4 for discussion).

Defining the model

We arbitrarily denote length, animacy, discourse status, pronominality, and definiteness of
the theme with the variables LT , AT , ST , PT , DT respectively, and those properties of the

6The recommended approximations to maximum likelihood are Laplacian approximation (see, e.g.,
Robert and Casella (2004, Section 3.4)) and adaptive Gaussian quadrature; the former is available in lme4

and the recommended default, but the latter isn’t (yet).
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β̂ SE(β̂) z
σb 2.33
Intercept 2.32 0.66 3.51
log Recipient Length 1.31 0.15 8.64
log Theme Length -1.17 0.11 -10.97
Recipient Animacy 2.14 0.25 8.43
Theme Animacy -0.92 0.5 -1.85
Recipient Discourse Status 1.33 0.21 6.44
Theme Discourse Status -1.76 0.27 -6.49
Recipient Pronominality -1.54 0.23 -6.71
Theme Pronominality 2.2 0.26 8.37
Recipient Definiteness 0.8 0.2 3.97
Theme Definiteness -1.09 0.2 -5.49

Figure 8.14: Point estimate for a hierarchical logit model of the dative alternation

recipient as LR, AR, SR, PR, DR.
7 We can now write our hierarchical model as follows:

bi ∼ N(0, σb)

ηi = α + βLT
LT + βAT

AT + βST
ST + βPT

PT + βDT
DT

+ βLR
LR + βAR

AR + βSR
SR + βPR

PR + βDR
DR + bi

πi =
eηi

1 + eηi
yij ∼ Binom(1, πi) (8.18)

(Note that we could equally specify the last line as a Bernoulli distribution: yij ∼ Bern(π).)
We arbitrarily consider prepositional-object (PO) realization of the recipient as the “success-
ful” outcome (with which positive contributions to the linear predictor η will be associated).
Approximate maximum-likelihood estimation gives us the following parameter estimates:

The fixed-effect coefficients, standard errors, and Wald z-values can be interpreted as normal
in a logistic regression (Section 6.7.1). It is important to note that there is considerable
variance in verb-specific preferences for PO versus DO realizations. The scale of the random
effect is that of the linear predictor, and if we consult the logistic curve we can see that a
standard deviation of 2.33 means that it would be quite typical for the magnitude of this
random effect to be the difference between a PO response probability of 0.1 and 0.5.

We now turn our attention to the shared model parameters. The following properties are
associated with PO outcomes:

7To simplify model interpretation, I have reduced the tripartite distinction of Bresnan et al. of discourse
status as given, accessible, and new into a binary distinction of given versus new, with accessible being
lumped together with new.
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• Longer recipients

• Inanimate recipients

• Discourse-new recipients

• Non-pronominal recipients

• Indefinite recipients

• Shorter themes

• Animate themes

• Discourse-old themes

• Pronominal themes

• Definite themes
There is a clear trend here: those properties of the theme that favor PO outcomes are the
reverse of those properties that favor DO outcomes. This raises the linguistically interesting
possibility that there is a unified set of principles that applies to word ordering preferences in
the English postverbal domain and which is sensitive to high-level properties of constituents
such as length, discourse status, and so forth, but not to specific combinations of these
properties with the grammatical functions of the constituents. This possibility is followed
up on in Exercise 8.10.

Inferences on cluster-specific parameters

Because of this considerable variance of the effect of verb, it is worth considering the infer-
ences that we can make regarding verb-specific contributions to the linear predictor. One
way of doing this would be to look at the conditional modes of the distribution on verb-
specific effects b, that is to say the BLUPs (Section 8.2.1). There is a disadvantage to this
approach, however: there is no easy way to assess our degree of confidence in the conditional
modes. Another option is to use a fully Bayesian approach and plot posterior modes (of
P (b|y,Σσb

,Σθ), which is different from the BLUPs) along with confidence intervals. This
is the approach taken in Figure 8.15, using uniform priors on all the shared parameters as
well as on log σb. On the labels axis, each verb is followed by its support: the number of
instances in which it appears in the dative dataset. For most verbs, we do not have enough
information to tell whether it truly has a preference (within the model specification) toward
one realization or the other. However, we do have reliable inferences some verbs: for the
most part, those with large support and/or with posterior modes far from 0.8 We can see
that tell, teach, charge, and show are strongly biased toward the double-object construction,
whereas loan, bring, sell, and take are biased toward the prepositional-object construction.

These results are theoretically interesting because the dative alternation has been at the
crux of a multifaceted debate that includes:

• whether the alternation is meaning-invariant;

• if it is not meaning-invariant, whether the alternants are best handled via constructional
or lexicalist models;

8This is not the whole story, however: comparing deny with promise, the former has both larger support
and a more extreme posterior mode, but it is the latter that has an HPD confidence interval that is closer
to not including 0.
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Figure 8.15: Verb-specific preferences in analysis of the dative dataset. 95% HPD confidence
intervals are plotted on each preference. Verbs for which the 95% HPD interval is entirely
on one side of the origin have their bars plotted in magenta.

• whether verb-specific preferences observable in terms of raw frequency truly have their
locus at the verb, or can be explained away by other properties of the individual clauses
at issue.

Because verb-specific preferences in this model play such a strong role despite the fact that
many other factors are controlled for, we are on better footing to reject the alternative raised
by the third bullet above that verb-specific preferences can be entirely explained away by
other properties of the individual clauses. Of course, it is always possible that there are
other explanatory factors correlated with verb identity that will completely explain away
verb-specific preferences; but this is the nature of any type of scientific explanation. (This
is also a situation where controlled, designed experiments can play an important role by
eliminating the correlations between predictors.)

8.4.4 Model comparison & hypothesis testing

The framework for hypothesis testing in hierarchical generalized linear models is similar
overall to that for hierarchical linear models as described in Section 8.3.2. For model com-
parisons involving the same shared-parameter structure but nested cluster-specific parameter
structures, likelihood-ratio tests are conservative. For the assessment of the significance of
a single shared parameter estimate β̂i against the null hypothesis that βi = 0, the Wald
z-statistic (Section 6.8.1), which is approximately standard-normal distributed under the
null hypothesis, can be used. In Figure 8.14, for example, the z-statistic for log of recipient
length is 1.31

0.15
= 8.64, which is extremely unlikely under the null hypothesis.

To simultaneously assess the significance of the contribution of more than one shared
parameter to a model, a likelihood-ratio test is most appropriate. Once again, however, in
hierarchical models this test may be anti-conservative, as described in Section 8.3.2, so cau-
tion should be used in interpreting apparently significant results. As an example of how this
test can be useful, however, let us consider an alternative model of the dative alternation in
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which the tripartite discourse status of recipients and themes into given, accessible, and new
(Collins, 1995). This difference introduces two new parameters into the model. Twice the
difference in the log-likelihoods of the original and the updated model is 3.93; the cumulative
distribution function for χ2

2 at this point is 0.86, giving us a best-case p-value of 0.14, so we
can safely state that we don’t have sufficient evidence to adopt the tripartite distinction over
the bipartite given/new distinction used earlier.

8.4.5 Assessing the overall performance of a hierarchical logit model

We conclude the chapter with a brief discussion of assessing overall performance of hierarchi-
cal logit models. As with any probabilistic model, the data likelihood is an essential measure
of model quality, and different candidate models can be compared by assessing the likelihood
they assign to a dataset. Cross-validated or held-out likelihood can be used to alleviate con-
cerns about overfitting (Section 2.11.5). It is also useful to visualize the model’s performance
by plotting predictions against empirical data. When assessing the fit of a model whose re-
sponse is continuous, a plot of the residuals is always useful. This is not a sensible strategy
for assessing the fit of a model whose response is categorical. Something that is often done
instead is to plot predicted probability against observed proportion for some binning of the
data. This is shown in Figure 8.16 for 20 evenly-spaced bins on the x-axis, with the point
representing each bin of size proportionate to the number of observations summarized in
that point. There is a substantial amount of information in this plot: the model is quite
certain about the expected outcome for most observations, and the worst-outlying bins are
between predicted probability of 0.7 and 0.8, but contain relatively little data. Producing
this visualization could be followed up by examining those examples to see if they contain
any important patterns not captured in the model. Probability-proportion plots can also be
constructed using cross-validation (Exercise 8.13).

8.5 Further Reading

Hierarchical models are an area of tremendous activity in statistics and artificial intelligence.
There is good theoretical coverage (and some examples) of hierarchical generalized linear
models in Agresti (2002, Chapter 12). Pinheiro and Bates (2000) is an important book on
theory and practice for linear and non-linear hierarchical models from the frequentist per-
spective. There is also a bit of R-specific coverage in Venables and Ripley (2002, Section
10.4) which is useful to read as a set of applied examples, but the code they present uses
penalized quasi-likelihood estimation and this is outdated by lme4. A more recent and com-
prehensive text for hierarchical regression models is Gelman and Hill (2007), which focuses
the Bayesian perspective but is practically oriented, and includes coverage of both lme4 and
BUGS. At the time of writing, this is probably the single best place to turn to when learning
the practicalities of working with hierarchical models for the analysis of complex datasets.
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Figure 8.16: The fit between predicted probabilities and observed proportions for each 5%
of predicted probability for our model

8.6 Exercises

Exercise 8.1: Defining a hierarchical model

The F1 formant levels of children’s vowels from Peterson & Barney’s dataset tend not
to be normally distributed, but are often right-skewed (Figure 8.17). Define a hierarchical
probabilistic model of F1 formant values for the vowel [a] in which the speaker-specific
variation component bi are log-normally distributed—that is, if log bi = xi, then the xi are
normally distributed with some mean and standard deviation. Write the hierarchical model
in the style of Equation 8.2. Choose parameters for your model by hand that generate data
that looks qualitatively like that of Figure 8.17.

Exercise 8.2: Restricted maximum likelihood and testing “fixed effects”
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Figure 8.17: Density plots of children’s F1 formant recordings from Peterson & Barney

In Section 8.3.2 I stated that one should not use ordinary (unrestricted) maximum likeli-
hood, not REML, in frequentist test on models differing in what is often called “fixed-effects”
structure (i.e., models differing only in the shared parameters θ). Can you think of any
reasons why REML comparisons would not be a good idea for this purpose?

Exercise 8.3: Shrinkage

Consider the simple point estimate hierarchical model of [A] first-formant (F1) data from
Peterson and Barney (1952) obtained in Section 8.2.1. In this model, calculate the joint log-

likelihood of b̂ and y—that is, of speaker-specific averages and trial-specific observations—
using as b̂ (i) the average recorded F1 frequency for each speaker, and (ii) the conditional
modes, or BLUPs, obtained from the hierarchical model. Is the joint log-likelihood higher in
(i) or (ii)?

Exercise 8.4

Replicate the posterior inference procedure in Section 8.2.2 for F2 formant frequencies
from Peterson and Barney (1952).

Exercise 8.5: Priors on σy

In Section 8.2.2, we used a prior that was locally uniform on the log of the variance
parameter σy. Another alternative would be to use a prior that was locally uniform on σy

itself. Check to see how much of a difference, if any, this alternative would have on posterior
inference over µ and Σb. (You probably will want to do several simulations for each type of
model to get a sense of how much variation there is over samples in each case.

Exercise 8.6: Hierarchical Bayesian linear models

Use R and BUGS together to replicate the analysis of Section 8.3.2, but with homoscedas-
tic intra-cluster variation. Do the Bayesian confidence intervals on effects of northward
migration, southward migration, and clan origin look similar to those obtained using point
estimation?

Exercise 8.7: Hypothesis testing for random effects
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Using the method of maximum likelihood via lmer(), together with the likelihood-ratio
test, conduct a hypothesis test for the implicit-causality data of Section 8.3.4 on whether
subject- and item-specific effects of experimental condition (as opposed to just subject-
and item-specific intercepts) significantly improve the likelihood of a hierarchical model.
That is, build a model where the only cluster-specific parameters are by-subject and by-
item intercepts, and compare its log-likelihood to the full model in which all experimental
conditions interact. What are your conclusions?

Exercise 8.8: Hierarchical Bayesian linear models with crossed effects
Replicate the fully Bayesian analysis presented in Section 8.3.4, but with condition-

specific inter-subject and inter-item variation. Write down the complete model specification,
implement it with JAGS, and compare the resulting inferences about model parameters
with those from the point-estimate analysis and from the simpler Bayesian model. Be sure
to consider both inferences about shared parameters and about the parameters governing
cross-cluster variation!

Exercise 8.9: Transforms of quantitative predictors in mixed-effect models
Re-run the dative.glmm regression from Section 8.4.3, but use raw constituent lengths

rather than log-transformed lengths. Compute cross-validated likelihoods (Section 2.11.5) to
compare the performance of this model and of the original model? Which approach yields
higher log-likelihood?

Exercise 8.10: Simplifying a model based on linguistic principles and model
comparison

Define a simpler version of the model in Section 8.4.3 in which the effects of each of con-
stituent length, animacy, discourse status, pronominality, and definiteness must be equal and
opposite for recipients versus themes. Fit the model using approximate maximum-likelihood
estimation, and compare it to the original model using the likelihood ratio test. Can you
safely conclude that the effects of these factors truly are equal and opposite? (Hint: the eas-
iest way to construct the simpler model is to define new quantitative predictors that express
the summed influence of the property from both recipient and theme; see Exercise 6.11. Also
keep in mind that the likelihood-ratio test can be anti-conservative for shared (“fixed-effect”)
parameters in hierarchical models.)

Exercise 8.11: Mixed-effects logit models and magnitudes of parameter estimates
Unlike with mixed-effects linear models, accounting for a cluster-level variable in a mixed-

effects logit model can systematically change the magnitude of the parameter estimates for
fixed effects. (Warning: this may be a pretty hard problem.)

1. Re-run the dative.glmm regression from Section 8.4.3 as a standard logistic regression
model, completely omitting the random effect of verb, but replacing it with a fixed
effect of the verb’s Semantic Class). Do the magnitudes of most of the fixed-effect
coefficients (intercept excluded) increase or decrease? Can you think of any reason why
this would happen?
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2. Test your intuitions by constructing a simple population with two clusters (call the
factor Cluster with levels C1,C2) and a single two-level fixed effect (call the factor
Treatment with levels A,B). Assume the underlying model involves the following linear
predictor:

η = −1 + 2X + bZ

where X is a dummy indicator variable that is active when treatment level is B, Z is
the cluster variable, and b is 1 for cluster 1 and -1 for cluster 2. Generate a dataset
consisting of the following cell counts:

C1 C2
A 250 250
B 250 250

using a logit model, and fit (1) a standard logistic regression with only Treatment as
a fixed effect, and (2) a mixed-effects logistic regression. How does the estimation of
the fixed effect change between models (1) and (2)?

3. Repeat your controlled experiment from (b) above, except this time use linear models
(classic and mixed-effects) where the noise has standard deviation 1. Does the same
change in the estimated effect of Treatment occur as in the logit model?

Exercise 8.12: Different priors on verb-specific effects

1. Use kernel density estimation to estimate the posterior density of the BLUPs for verbs
in the dative alternation from the hierarchical logit model of Section 8.4.3. Plot this
estimated density, and overlay on it a normal density with mean 0 and standard devia-
tion σ̂b. Do the BLUPs look like they follow this normal distribution? Choose another
distribution for b in this model and implement it in BUGS. (Be forewarned that this is
conceptually relatively simple but computationally rather intensive; loading the model
and sampling from the posterior are likely to take several minutes or hours even on a
new processor.) Plot the posterior inferences on b as in Figure 8.15 and compare them
to the results of the original model. Are the results considerably different?

Exercise 8.13: Cross-validated likelihood and probability-proportion plot
Reconstruct Figure 8.16 using ten-fold cross-validation to obtain predicted probabilities.

Does the resulting fit look better? Worse? Also compare the cross-validated likelihood to
the original model’s likelihood. Does the model seem substantially overfit?
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Chapter 9

Dimensionality Reduction and Latent
Variable Models

9.1 Gaussian mixture models

As a case study to motivate our first latent-variables model, we consider the problem of how
infants learn the phonological categories of their native language. There is ample evidence
that phonological-category learning involves a combination of both innate bias and experi-
ence. There are some phonetic distinctions which cannot be reliably identified by adult native
speakers of languages that lack them (e.g., alveolar [d] versus retroflex [ã] for English speak-
ers, or [r] versus [l] for Japanese speakers; Werker and Tees, 1984; Kuhl et al., 2006, inter
alia), suggesting the power of innate bias. Likewise, it has more recently become clear that
there are some phonetic distinctions which cannot be reliably identified by younger infants
but which can be reliably identified not only by adult native speakers of languages which
possess the distinction but also by older infants being raised in those language environments
(e.g., syllable-initial [n] versus [N] in Filipino language environments; citealpnarayan-etal:
Explicit models of phonological category learning could potentially be of considerable value
in gaining insight into how such learning takes place across languages.

An appreciation for some of the challenges inherent in the phonological category learn-
ing problem can be appreciated by considering inter-speaker variation in the realization
of different categories. Figure 9.1 presents sample data drawn from multivariate Gaussian
approximations of the realization of the vowels [i], [I], [e], [E] (as in beet, bit, bait, and bet
respectively), for two native Canadian English speakers, plotted by their F1 and F2 formants
as well as vowel durations respectively. To minimize gross inter-speaker variation, each di-
mension has been standardized according to the speaker’s overall distributions in these three
dimensions. Two difficulties stand out in this graph. First, whereas the first speaker has
clear separation among the four vowels, the separation for the second speaker is much less
clear; it is really essential to take F1 into account even to separate [E] from the other three
vowels, and the separation among the remaining three vowels is poor. Second, the distinc-
tions among the vowels are not entirely robust across speakers: for example, whereas for the

207



Scatter Plot Matrix

F10

1

2 0 1 2

−2

−1

0

−2 −1 0

F20

2

4
0 2 4

−4

−2

0

−4 −2 0

Duration
2

4 2 4

−2

0

−2 0

S1

F10

1

2 0 1 2

−2

−1

0

−2 −1 0

F20

2

4
0 2 4

−4

−2

0

−4 −2 0

Duration
2

4 2 4

−2

0

−2 0

S2

e
E
i
I

Figure 9.1: F1 frequency, F2 frequency, and duration of vowels [i],[I],[e],[E] for two speakers
of English. Each of the three variables is standardized for each speaker.

first speaker [e] tends to have lower F2 than [I], for the second speaker it is [I] that tends to
have lower F2 than [e]. Figure 9.2 shows samples from all four vowels mixed across nineteen
speakers of English.

We will formalize the learning problem faced by the infant as follows: given a set of
observations in a multidimensional phonetic space, draw inferences about (i) the proper
grouping of the observations into categories; and (ii) the underlying abstract representations
of those categories (e.g., what new observations drawn from each category are likely to look
like). Every possible grouping of observations y into categories represents a partition Π
of the observations y; let us denote the parameters determining the categories’ underlying
representations as θ. In probabilistic terms, our learning problem is to infer the probability
distribution

P (Π,θ|y) (9.1)

from which we could recover the two marginal probability distributions of interest:

P (Π|y) (the distribution over partitions given the data; and) (9.2)

P (θ|y) (the distribution over category properties given the data.) (9.3)

To complete the formalization of the learning problem, we need to specify the represen-
tations θ of the underlying categories, as well as a method for inferring the two probability
distributions above. For the present problem, we will assume that each phonological cate-
gory consists of a multivariate Gaussian distribution in the three-dimensional space of F1
frequency, F2 frequency, and vowel duration; hence the representations are the means µ and
covariance matrices Σ of multivariate normal distributions (see Section 3.5). This specifica-
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Figure 9.2: F1 frequency, F2 frequency, and duration of vowels [i],[I],[e],[E], mixed from 19
speakers of English.

tion of category representations gives us the beginning of a generative model of our obser-
vations: each observation is drawn independently from the Gaussian distribution associated
with one underlying category.

Thus far, the model is formally identical to the models examined in Chapter 6, where
the category i to which each observation belongs could be treated as a categorical predictor
variable, and our model specification is of the conditional probability distribution P (Y |i).
The crucial difference, however, is that in the present setting, the category identity of each
observation is unknown—it is a latent variable which needs to be inferred. This means
that the current specification is incomplete: it does not give us a probability distribution
over possible observations in phonetic space. To complete the generative model, we need
to specify the multinomial probabilities φ that an observation will be drawn from each
underlying category. This gives us the following generative model:

i ∼ Multinom(φ) (9.4)

y ∼ N (µi,Σi) (9.5)

In the probabilistic setting, the complete underlying properties to be inferred are thus
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Figure 9.4: The generative mixture of Gaussians in one dimension. Model parameters are:
φ1 = 0.35, µ1 = 0, σ1 = 1, µ2 = 4, σ2 = 2.

θ = 〈φ,µ,Σ〉. This model is known as a mixture of Gaussians, since the observa-
tions are drawn from some mixture of individually Gaussian distributions. An illustration
of this generative model in one dimension is given in Figure 9.4, with the Gaussian mixture
components drawn above the observations. At the bottom of the graph is one sample from
this Gaussian mixture in which the underlying categories are distinguished; at the top of the
graph is another sample in which the underlying categories are not distinguished. The rela-
tively simple supervised problem would be to infer the means and variances of the Gaussian
mixture components from the category-distinguished sample at the bottom of the graph; the
much harder unsupervised problem is to infer these means and variances—and potentially
the number of mixture components!—from the category-undistinguished sample at the top
of the graph. The graphical model corresponding to this unsupervised learning problem is
given in Figure 9.3a.
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9.1.1 Inference for Gaussian mixture models

Let us temporarily set aside the problem of inferring the number of underlying categories and
treat it as solved (we will return to this problem in Chapter ??). Even so, we are faced with a
challenging problem. If there are n observations andm categories, then there aremn logically
possible partitions, and it turns out that there is no way to get around this exponentially
large number of partitions to find exact solutions for the two probabilities of interest, given
in Equations (9.2) and (9.3). Furthermore, it isn’t even possible to try obtaining a point
estimate of Equation (9.3) through hill-climbing on a continuous surface, as we did with (for
example) log-linear models in Chapter 6, because the partitions are discrete.

Additionally, there is a subtle but important property of the mixture-of-Gaussians prob-
lem that makes pure maximum-likelihood techniques deeply problematic. Consider a par-
tition in which one category contains exactly one observation (in the case of Figure 9.4,
for example, for the sample on the top of the graph let the rightmost point belong to one
category, and let all other points belong to the other category). Now let the mean of that
category be the observation itself. As the variance of that category approaches zero, the
likelihood of that observation from that category approaches infinity (this is a case of the
bias in the maximum-likelihood estimate of the variance, which we saw in Section 4.3.2).
Therefore, any “maximum-likelihood” solution to this problem will involve categories which
are centered around single observations and which have zero variance.1

This, therefore, is a very clear case where we need to inject prior knowledge in order to
learn anything meaningful about category inventories at all. At a minimum, it is essential
that this prior knowledge enforces the constraint that category variances approaching zero
are forbidden. This requirement makes the Bayesian framework especially appealing: the
constraint on category variances can be formalized by letting the prior probability of each
category’s parameters go to zero as the category variance itself goes to zero. Within the
Bayesian framework, we can use sampling techniques to approximate the posterior distribu-
tions of interest in Equations (9.2) and (9.3).

A first Gaussian mixture model

We begin by simplifying the problem in assuming that category probabilities φ are known
and equal: φ1 = φ2 = φ3 = φ4 = 1

4
. These category probabilities serve as a uniform prior

distribution over partitions. However, we still need to put priors over the individual category
means µ and covariances Σ in order to draw inferences about them. As always, there are
many choices here; for convenience, we choose priors that are widely used for Bayesian
learning of normal distributions with unknown mean and variance. This prior is specified in
two parts, P (Σ) and P (µ|Σ):

1Purely likelihood-based methods for Gaussian mixture models, such as methods using the Expectation-
Maximization (EM) algorithm, are indeed often seen, but they only yield non-trivial solutions (ones in which
more than one cluster has at least two observations) by getting trapped in local optima.
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Σi ∼ IW(Σ0, ν)

µi|Σ ∼ N (µ0,Σi/A)

where A is a scaling parameter and, as in Chapter 8, IW signifies the inverse Wishart distri-
bution (Appendix B). This formulation may seem complex at first glance, but it is actually
fairly straightforward. The first line states that the prior distribution on the covariance ma-
trix is centered around some matrix Σ0 which is treated as if it had been estimated from ν
samples. The second line states that the prior distribution on the mean is normal and cen-
tered around µ0, with covariance matrix proportional (by some factor 1/A) to the covariance
matrix Σi for observations. Placing dependence of the prior for the mean on the prior for
the covariance matrix may seem counter-intuitive, but there are two good reasons to do it.
First, this prior is conjugate to the likelihood of observed data within the cluster.2 Second,
according to this prior, any indication that there is low variability across observations (Σi

small) is also an indication that we can estimate the mean with relatively high certainty
(Σi/A small). This is exactly the way that the variance and mean are related in inferences
from observed data: when observed data are broadly distributed, we estimate the variance
to be large and have low certainty about the mean, but observed data are tightly distributed,
we estimate the variance to be small and have high certainty about the mean.

Figure 9.5 is a visualization of this conjugate joint prior distribution over Σ and µ for
univariate data (so that Σ can be represented as a scalar, σ). Note that this distribution
drops off rapidly to zero near σ = 0.

Sampling from the posterior distribution

With this setup, it is straightforward to use Gibbs sampling (a type of Markov-chain Monte
Carlo technique; see Section XXX) to draw samples from the joint posterior distribution
P (Π,θ|y), and to use these samples as the basis for any inferences we wish to make. Gibbs
sampling here can be taken as alternating between sampling of a partition given model pa-
rameters from P (Π|θ,y) and sampling of model parameters given a partition from P (θ|Π,y).
Because observations are conditionally independent of one another given model parameters
(see Figure 9.3b), sampling a partition simply involves sampling a category i for each in-
stance yj conditioned on model parameters from P (i|yj,θ), which can be rewritten using
Bayes’ rule as

P (i|yj,θ) =
P (yj|i,θ)∑
i P (yj|i,θ)

(9.6)

In our case, computing the numerator and each term of the sum in the denominator simply
involves looking up the appropriate normal probability density. As regards P (θ|Π,y), since
the prior is conjugate to the likelihood of the observations given the partition, we can sample

2***Reference Gelman et al. for better treatment of this conjugacy.
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Figure 9.5: The joint distribution over component variances and means for a 1-dimensional
Gaussian mixture model

the model parameters easily, first drawing a covariance matrix and then drawing a mean
given the covariance matrix.

Evaluating samples from the posterior density on partitions and category pa-
rameters

Each Gibbs sample contains an estimate of both the model parameters and of the partition.
The question now arises of how to use these samples, and how to assess the overall quality of
the posterior distribution. In terms of assessing model parameters, it is not really appropriate
in principle to average across samples because our problem is permutation invariant in
the categories: if we took one set of model parameters θ fit and then permuted the category
labels to get another set of parameters θ′, there would no reason to prefer one or the other.
For this reason, it is common simply to get a sense of the posterior distribution over model
parameters by inspecting a single sample (or by inspecting a small number of samples indi-
vidually). In Figure 9.6, we have taken the last of 1000 samples and plotted its characteristic
ellipses alongside the “true” characteristic ellipses for the four categories’ Gaussian distribu-
tions (to be precise, the bias-corrected maximum-likelihood estimated Gaussians based on
true category membership of our observations). Overall, the unsupervised model has done
quite a good job of finding categories that turn out to match the underlying categories fairly
well.

We now turn to evaluating the the quality of the partitions themselves. This task is made
a bit tricky by the fact that there are no deep principles available to map categories learned
by our model to “true” categories given in the data. That is, suppose that we draw a sample
partition from the model which puts observations y1, y2, and y3 in category 1, and observa-
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Figure 9.6: Categories inferred through unsupervised learning (solid lines) compared with the
categories estimated from the same data with known categories via bias-corrected maximum
likelihood (dotted lines)

tions y4 and y5 in category 2; but that underlyingly, y1 and y2 are instances of the vowel [i],
and y3, y4, and y5 are instances of the vowel [I]. How accurate is the partition? A common
approach is to choose the mapping from model categories to true categories that maximizes
the proportion of correctly assigned observations, and use this proportion as a measure of
model performance; in our toy example, we would assign category 1 to [i] and category 2
to [I], and assess model performance at 80%. This approach has the disadvantage that the
number of possible mappings increases exponentially with the number of true and learned
categories, and greedy algorithms must be used to approximate the best mapping. Addi-
tionally, the mapping approach can become both conceptually and practically problematic
when the number of latent categories is not equal to the number of true categories.3

Here we cover two other methods of assessing model performance in assignment of cat-
egories to partitions. The first method is purely visual: for a single sample partition, we
construct a confusion table between true and guessed categories. Such a confusion table
is in Figure 9.7a. In this table, each column is a model category and each row is a true vowel.
The size of the square in each cell indicates the proportion of the guessed category that ac-
tually belongs to the true category. In this case, the model has some trouble distinguishing
[i] from [e], but otherwise does a good job in distinguishing among the vowels. The corre-
sponding confusion table for a supervised version of the model can be seen in Figure 9.7b; it
is very clean.

The last method we cover here is assessing how well the model performs on average at
the decision of whether two randomly drawn observations fall in the same category. This
method is free of the matching-accuracy measure’s need for a greedy cluster-assignment

3For example, one has to choose whether to impose a one-to-one constraint on the mapping between
latent and true categories. When there are fewer true categories than there are latent categories, imposing a
one-to-one constraint penalizes the model for making use of its full category inventory. On the other hand,
if a one-to-one constraint is not imposed, then in the logical extreme case when the model has as many
categories as it has observations, it is guaranteed to be assessed perfect accuracy!
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Figure 9.7: Confusion tables in the four-vowel unsupervised learning model.

algorithm, but has similar problems to matching accuracy when the number of categories in
the model is not equal to the number of true categories. Like the matching-accuracy measure
and unlike the confusion-matrix approach, the same-category measure can take advantage
of averaging across multiple samples. In our case, drawing 1000 observation pairs without
replacement from our dataset and averaging over every tenth sample from among the final
100 samples gives us a same-category measure of 0.752. The same measure can be applied
to the supervised model, with a performance here of 0.852. In our case, a baseline measure
using random-category assignment would have performance of 0.752 + 0.252 = 0.625: there
is a 75% chance that the observations willl be randomly drawn from different categories
and the random category-assigner will assign different categories, and a 25% chance that
the observations will be randomly drawn from the same category and the random assigner
will assign the same category. Thus we can see that by this measure that the unsupervised
learning model has learned enough to discriminate with accuracy far greater than chance
whether two observations belong to the same category, but (unsurprisingly) has not reached
the performance of the supervised learner.

9.1.2 Learning mixture probabilities

The simulation we set up was made artificially easy by the equal representation of all four
vowels in our learning data, together with our hard prior constraint that category proba-
bilities φi be identical. In real learning scenarios, underlying categories occur with different
frequencies—for example, [I] occurs more frequently in spoken American English than the
other vowels here [add ref]. In principle, one might suppose that these category frequen-
cies might not be learned initially; once the categories themselves have been learned and
become accurately identifiable in the linguistic input, their frequencies can be estimated rel-
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atively trivially. On the other hand, it is also possible that categories and their frequencies
are learned simultaneously—indeed, this approach might facilitate learning of the categories
themselves.

In our current framework, this approach would entail that inferences about the multino-
mial category probabilities φ are drawn together with inferences about possible partitions Π
and category structure parameters θ. It is straightforward to accommodate this additional
aspect of inference within the Bayesian framework, putting a prior on φ, as in Figure 9.3c.
A natural prior to use is the Dirichlet distribution, as it is conjugate to the multinomial
(Sections XXX and B.8):

φ ∼ D(Σφ)

This combines with the other probability distributions we have used earlier:

Σi ∼ IW(Σ0, ν)

µi|Σ ∼ N (µ0,Σi/A)

i ∼ Multinom(φ)

y ∼ N (µi,Σi)

to form our complete model. As discussed [elsewhere], the Dirichlet parameters Σφ are a vec-
tor of “pseudocounts”, with larger total summed pseudocounts indicating higher confidence
in the underlying probability. For our four-category Dirichlet prior, we use Σφ = 〈4, 4, 4, 4〉,
giving us a prior on category probabilities biased toward but not enforcing a uniform distri-
bution. As before, we can use Gibbs sampling to draw from the posterior distribution over
category probabilities; this is easy because of the conjugacy of the Dirichlet distribution to
the multinomial distribution, which gives us an analytic form for P (φ|Σφ,Π).

We evaluate the performance of this model by changing the probability of each vowel
based loosely the frequencies in American English, but exaggerating the skew across vowels to
emphasize the consequences for learning. We assign [e] a probability of 0.04, [E] a probability
of 0.05, [i] a probability of a probability of 0.29, and [I] a probability of 0.62 respectively. The
inability to learn category frequencies becomes an especially prominent issue with smaller
samples (see Exercise ?? for more on this), so we give only 30 per speaker, distributed
according to the probabilities just given. Results from the final of 1000 Gibbs samples are
plotted in Figure 9.8. The learning problem has become much more difficult, due both to
the smaller amount of data provided and to the less-constrained model space. Nevertheless,
there are clear signs that the model has learned the qualitative structure of the four vowel
categories.

These results can be contrasted with those obtained when our previous model—in which
φi were constrained to be equiprobable—is applied to these same data. The results from the
final of 1000 Gibbs samples are shown in Figure 9.9. This model has also made some progress
in the learning of category structure; there is a crucial difference, however, in that there is
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Figure 9.8: Learning category probabilities too.
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Figure 9.9: Inferences in the skewed category-frequency case without the ability to learn
category probability.

much heavier overlap across categories in the F1 and F2 dimensions. The difference in the
results of the two models becomes more apparent when confusion matrices are constructed,
as in Figure 9.10. The category-frequency learner clearly has trouble distinguishing between
[e] and [i], but it has succeeded in learning a three-way distinction between [e]/[i], [E], and
[I], and it has learned that [I] is the most frequent category. The fixed-category-frequency
learner, on the other hand, has not as clearly learned the difference between [E] and [I], and
underlying [I] observations are scattered widely across its four latent categories. ***Same-
different performance: catfreqlearn: 0.627; fixed: 0.625

9.2 Latent Dirichlet Allocation and Topic Models

Another prominent dimension of language where the acquisition of latent structure is widely
considered to be of great importance is word meaning. The sheer rate of word learning in
native speakers is staggering: current estimates are that American native English speakers
know an average of 40–100,000 words by age 17, and are thus learning new words at a rate
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Figure 9.10: Confusion matrices in the skewed category-frequency case with and without the
ability to learn category frequencies

of somewhere around ten a day (Nagy and Anderson, 1984; Landauer, 1986; Bloom, 2001).
Researchers such as Landauer and Dumais (1997) have argued that most of the learning of
word meanings must be implicit, since there is relatively little explicit instruction about the
meanings of new words in classrooms, children’s and young adults’ reading materials, or in
daily conversational interaction. The strong implication is that native speakers are able to
construct sufficiently constraining representations of the possible meanings that an unknown
word may have on the basis of the context (both linguistic and extra-linguistic) in which
it appears to greatly facilitate learning of the unknown word’s meaning. Investigation into
the nature of these constraining representations of context has been an area of considerable
interest in linguistics, cognitive science, and natural language processing.

One of the most extensively developed lines of research in this area has treated the repre-
sentation of linguistic context with the use of vector spaces. On the most straightforward
interpretation of this approach, linguistic meaning can be thought of as a continuous multi-
dimensional semantic space populated by words meanings, each of which can be represented
by a real-valued vector. The implications for how word learning could be facilitated by such
representations are clear: if the learner is ultimately exposed to N words but the underly-
ing vector space is of dimension T ≪ N , the majority of the learning task may simply be
learning the underlying vector space, which could be accomplished by exposure to a much
smaller number of words N ′ on the order of T ; after learning the vector space, fitting in the
meanings of the remaining N −N ′ words would be a much easier task.

Although it seems fairly clear that vector spaces are far from adequate as a complete
model of word meaning—they leave unaddressed important qualitative facets of lexical se-
mantics such as argument structure, aspect, distinctions between different types of antonymy,
scalarity of adjectives, and so forth—they have proven quite popular as a research tool, in
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no small part because formal methods for inferring vector-space meaning representations
have been able to draw upon well-developed statistical techniques. Here, we cover two of
the leading approaches to learning vector-space representations of word meaning: Latent

Semantic Analysis (LSA; Landauer and Dumais, 1997) and Latent Dirichlet Allo-

cation (LDA, also known as topics models; Blei et al., 2003; Griffiths and Steyvers, 2004;
Griffiths et al., 2007). Viewed from the framework we have been pursuing in this textbook,
LSA can be seen as a pure likelihood-based model based on assumptions of underlying nor-
mally distributed observations; LDA as most commonly practiced can be seen as a Bayesian
model based on assumptions of multinomial-distributed observations. Both can be seen as
instances of dimensionality-reduction techniques, where a lossless representation of the
distribution of N word types across D documents is compressed down to a lossy representa-
tion in T ≪ N dimensions of word meaning. We cover LSA in Section XXX; here we cover
LDA.

9.2.1 Formal specification

Formally, an LDA model involves the following components:

• A fixed vocabulary V of words;

• A set of T topics;

• For the i-th topic zi, a multinomial distribution with parameters φi over all words in
the vocabulary;

• For each document d, a multinomial distribution with parameters θd over the topics—
this distribution can be called the topic mixture for d;

• A distribution over topic mixtures, generally taken to be a Dirichlet distribution with
parameters σθ;

• Some distribution ζ over the number of words contained in a document.

The generative process for each document d is as follows: first, the number of words in d is
drawn from ζ. Then, each word is generated by first sampling a topic zj from θd, and then
sampling a word wj from φj. This process is used independently for each document. LDA as
a graphical model is shown in Figure 9.11a. In the notation we’ve been using for specifying
the individual component probability distributions in the graphical model, we have

θ ∼ D(σθ)

zi|θ ∼ Multinom(θ)

wi|zi, φ ∼ Multinom(φi)
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Figure 9.11: Latent Dirichlet Allocation as a generative model of words in documents

At this point, careful comparison with Figure ?? is worthwhile. LDA is a hierarchical
model in which the individual observations (words) are grouped into clusters (documents),
and each cluster has specific properties that are drawn from some overall distribution govern-
ing inter-cluster variability. Additionally, in LDA, as with hierarchical models in Figure ??,
some parameters are shared across all clusters. The key difference in the structure of an LDA
model as compared with the hierarchical models covered in Chapter 8 is that in LDA, the
influence of the document-specific parameters θ is mediated completely through the assign-
ment of topic identity for each word. That is, document-specific properties θ are conditionally
independent of word identity given topic identity and the topic-specific word distributions
φ. In the hierarchical models of Chapter 8, in contrast, cluster-specific properties directly
affected the probability distribution on the response.

4

• state distr’s used for LDA

• comment on what’s done and what else might be considered

9.2.2 An LDA example

4The tradition within the topic models literature is to use a slightly different nomenclature for cluster pa-
rameters and distribution on cluster identities, but we’ll stick with the current nomenclature for consistency.
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We live in a dog eat dog world

The dog was chasing the cat

It was raining cat s and dog s

The cat and the dog were both on the mat

On Sunday the moon will pass before the sun

It is more dangerous to study the sun than it is to study the moon

Figure 9.12: A small synthetic corpus for use in inspecting LDA results. Note that for
expository purposes, cats and dogs have been separated out into their constituent morphemes

Figure 9.12 depicts a small, artificial six-“document” corpus constructed for purposes of
illustrating the behavior of LDA, and describing how to inspect the results of a model run.
The salient feature of this dataset will be immediately obvious upon inspection: the words
dog and cat have very strong co-occurrence within a given document, as do the words sun and
moon. Thus a question of interest will be whether LDA can pick up on these associations
by placing dog and cat in one topic and sun and moon in another. Another question of
interest is what is done with the remaining words, which have varying degrees of correlation
of co-occurrence with the four words listed above.

To fully define a Bayesian LDA model for this dataset we must: (i) pick a number of
topics T , (ii) pick a prior over document-specific topic multinomials σθ, and (iii) pick a prior
over topic-specific word multinomials σφ. We choose the following values:

T = 2

σθ = 〈1, 1〉
σφ = 〈0.1, 0.1〉

Here we defer the question of discovery of number of topics for later discussion and simply
assume there to be two topics. As we will describe in greater detail later on, it is important
for σφ to be a sparse distribution, but there is a bit more flexibility in the choice of σθ.

Given a set of observed documents D with words w, the exact posterior distributions
on any subset of document-specific topic distributions θ, topic-specific word distributions φ,
and on topic assignments z are intractable. However, there are a number of methods that
have been developed to approximate and/or draw samples from the posterior distribution.
For example, Griffiths and Steyvers (2004) developed a Gibbs sampling Markov technique to
sample over the topic assignments z, marginalizing over θ and φ. A topic assignment for our
example is illustrated in Figure 9.13, with all the words in one topic rendered in lowercase
and all the words in the other topic in CAPITALS. Here we see intuitive behavior from the
model: it grouped all instances of cat and dog into a single topic, and all instances of sun
and moon into a single topic. Note, however, that the topic assignments for the other words
in the dataset are much more heterogeneous. In general, the prior distributions one chooses
will have a powerful impact on the clusterings discovered in LDA. In the example thus far,
we placed a uniform distribution on document-specific topic multinomials, and the sample
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WE LIVE in a DOG eat DOG world

THE DOG WAS CHASING THE CAT

IT WAS RAINING CAT S AND DOG S

the CAT AND the DOG WERE both on the mat

on sunday the moon WILL pass before the sun

it is more dangerous to study the sun than it

Figure 9.13: Results of a topic model run with T = 2, σφ = 〈0.1, 0.1〉, and σθ = 〈1, 1〉
we live in a dog eat dog world

the dog was chasing the cat

it was raining cat s and dog s

the cat and the dog were both on the mat

ON SUNDAY THE MOON WILL PASS BEFORE THE SUN

IT IS MORE DANGEROUS TO STUDY THE SUN THAN IT

Figure 9.14: Results of a topic model run with a sparser document-topic prior: T = 2,
σφ = 〈0.1, 0.1〉, and σθ = 〈0.01, 0.01〉

reflects use of both relatively uniform distributions (documents 1 and 4) and more skewed
distributions (documents 2, 3, 5, and 6). If we change the prior to favor more skewed topic
multinomials—say σθ = 〈0.01, 0.01〉, closer to requiring “one topic per document”—we see
that the model is guided by the cat/dog↔sun/moon structure of the dataset to cluster the
documents (Figure 9.14).

Although the precise quantitative results of LDA applied to a corpus depend on the choice
of prior, there are some broad qualitative generalizations that can be made regarding the
type of clusterings of words into topics. One way of illustrating these generalizations is to
consider the probability that two word tokens are assigned the same topic.

[TODO: add results of LDA with more topics on larger-scale document col-
lection]

The posterior on topic-word and document-topic multinomials

Based on a sample of topic assignments z from the posterior distribution P (z|w, σθ, σφ),
one can approximate the document-specific topic distributions and topic-specific word dis-
tributions by treating the sampled topic assignments as observed. Let us suppose that
σθ = 〈α1, α2, . . . , αT 〉 and σφ = 〈β1, β2, . . . , βV 〉. Due to Dirichlet-multinomial conjugacy, if
document i has Ni words of which mj are assigned to topic j, we have

P (θ|w, σθ, σφ) ≈ D(α1 +m1, α2 +m2, . . . , αT +mT ) (9.7)

and if mjk instances of word k are assigned to topic j, we have

P (φj|w, σθ, σφ) ≈ D(β1 +mj1, β2 +mj2, . . . , βV +mjT ). (9.8)
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(b) Varying σθ with σφ=0.1

Figure 9.15: The probability that two word tokens will be grouped into the same topic as a
function of σφ and σθ

(See also Exercises ?? and ??.)

9.2.3 Collapsed Gibbs Sampling

The techniques available for inspecting the posterior distribution over partitions (topic as-
signments) (z), document-specific topic mixtures (θ), and topic-specific word distributions
(φ) in Latent Dirichlet Allocation provide a particularly clear example of how efficiencies
in Bayesian inference for relatively complex graphical models can sometimes be found with
appropriate choices of prior distribution. Consulting Figure 9.11b, we see that nodes in the
graph which are either observed or set by researchers are σφ, σθ, and w. In a typical Gibbs
sampling approach, we would alternate between sampling values at the φ, θ, and z nodes
from the appropriate conditional probability distributions. Due to the use of Dirichlet dis-
tributions as priors and their conjugacy to the multinomial, all the distributions in question
for the LDA Gibbs sampler turn out to be either multinomial or Dirichlet, this approach is
perfectly feasible.

However, it turns out to be possible to do even better than this. Let us imagine that we
know topics for all the words in our dataset except for the jth word of the ith document,
which we can call wij. We can denote this set of topic assignments as z−ij . The distribution
on the topic for that word, zij, conditional on z−ij can be written using Bayes’ rule as follows:
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P (zij|w, z−ij, σθ, σφ) =
P (wij|z,w−ij, σθ, σφ)P (zij|w−ij, z−ij, σθ, σφ)

P (wij|z−ij,w−ij, σθ, σφ)
(9.9)

Let us ignore the denominator (which is just a normalizing constant) and focus on the
numerator. Inspecting Figure 9.11b, we can see that the first term (the likelihood of wij given
its topic assignment zij) is conditionally independent of θ and σθ, since the only connection
between these nodes and wij is strictly downstream in the graph and goes through zij, which
is being conditioned on (see Chapter C). However, wij is not independent of φ, which we do
not know. In this case, we need to marginalize:

P (wij|z,w−ij, σφ) =

∫

φ

P (wij|z,w−ij, φ)P (φ|z, σφ,w−ij) dφ (9.10)

Recall that φ is a set of multinomial parameters—one multinomial for each topic. Since we
are concerned only with the probability of a word generated from topic zij , we can ignore all
the multinomial parameters except for those associated with this topic. Now, there are only
two sources of information regarding these multinomial parameters: (i) the prior, and (ii)
the words that have been observed to be emitted from topic zij . This prior is Dirichlet and
the likelihood is multinomial, so that the predictive distribution over wij is a Dirichlet-

multinomial model (Section B.8; compare with the beta-binomial model introduced in
Section 4.4.2). For each word in the lexicon w, let the prior parameter for this word be
denoted as σφ(w) and the number of observations of w to which topic zij has been assigned
in the current sample as c(w). The Dirichlet-multinomial model gives a simple analytic form
for the marginal probability of wij:

P (wij|z,w−ij, σφ) =
σφ(w) + c(w)∑
w′ σφ(w′) + c(w′)

That is, we can marginalize over the parameters φ instead of sampling from them.
If we look at the second term of the numerator in Equation (9.9), we can see that it

can also be expressed as a marginalization over document-specific multinomial parameters
θ, with several conditioning variables being irrelevant:

P (zij|w−ij, z−ij , σθ, σφ) =

∫

θ

P (zij|θ)P (θ|z−ij, σθ) dθ

In the same way as before, the first term in this integral—the likelihood—is multinomial,
and the second term—the prior—is Dirichlet, giving us a Dirichlet-multinomial predictive
distribution. If for each topic z we denote its prior parameter as σθ(z) and the number of
words within document i that in the current sample have been assigned to z as ci(z), this
predictive distribution has a simple form:
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P (zij|w−ij, z−ij, σθ, σφ) =
σθ(w) + ci(w)∑
z′ σθ(z′) + ci(z′)

Combining the two expressions we get

P (wij|z,w−ij, σφ) ∝
(σφ(w) + c(w)) (σθ(w) + ci(w))

(
∑

w′ σφ(w′) + c(w′)) (
∑

z′ σθ(z′) + ci(z′))

which eliminates the need to sample any multinomial parameters whatsoever. This technique
of marginalizing over some latent variables in a Gibbs sampler is known as the collapsed

Gibbs sampler, because the samples collapse (marginalize) over some of the nodes in the
graphical model. The collapsed Gibbs sampler is generally more efficient than the corre-
sponding uncollapsed Gibbs sampler (Liu, 1994)

9.3 Further Reading

There is an enormous literature on Gaussian mixture modeling in many fields; within lan-
guage it has seen the most use in automated speech recognition Jurafsky and Martin (2008,
Chapter 9). Specific applications to problems of language acquisition include Vallabha et al.
(2007) and Feldman et al. (2009).

Topics models were introduced by (Blei et al., 2003; see also Griffiths and Steyvers, 2004)
and have seen widespread applications and variants since then.
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Appendix A

Mathematics notation and review

This appendix gives brief coverage of the mathematical notation and concepts that you’ll
encounter in this book. In the space of a few pages it is of course impossible to do justice
to topics such as integration and matrix algebra. Readers interested in strengthening their
fundamentals in these areas are encouraged to consult XXX [calculus] and Healy (2000).

A.1 Sets ({},∪,∩, ∅)
The notation {a, b, c} should be read as “the set containing the elements a, b, and c”. With
sets, it’s sometimes a convention that lower-case letters are used as names for elements, and
upper-case letters as names for sets, though this is a weak convention (after all, sets can
contain anything—even other sets!).

A∪B is read as “the union of A and B”, and its value is the set containing exactly those
elements that are present in A, in B, or in both.

A ∩ B is read as “the intersection of A and B”, and its value is the set containing only
those elements present in both A and B.

∅, or equivalently {}, denotes the empty set—the set containing nothing. Note that
{∅} isn’t the empty set—it’s the set containing only the empty set, and since it contains
something, it isn’t empty!

[introduce set complementation if necessary]

A.1.1 Countability of sets

[briefly describe]

A.2 Summation (
∑

)

Many times we’ll want to express a complex sum of systematically related parts, such as
1 + 1

2
+ 1

3
+ 1

4
+ 1

5
or x1 + x2 + x3 + x4 + x5, more compactly. We use summation notation

for this:
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5∑

i=1

1

i
= 1 +

1

2
+

1

3
+

1

4
+

1

5

5∑

i=1

xi = x1 + x2 + x3 + x4 + x5

In these cases, i is sometimes called an index variable, linking the range of the sum (1
to 5 in both of these cases) to its contents. Sums can be nested:

2∑

i=1

2∑

j=1

xij = x11 + x12 + x21 + x22

3∑

i=1

i∑

j=1

xij = x11 + x21 + x22 + x31 + x32 + x33

Sums can also be infinite:

∞∑

i=1

1

i2
=

1

12
+

1

22
+

1

32
+ . . .

Frequently, the range of the sum can be understood from context, and will be left out; or
we want to be vague about the precise range of the sum. For example, suppose that there
are n variables, x1 through xn. In order to say that the sum of all n variables is equal to 1,
we might simply write

∑

i

xi = 1

A.3 Product of a sequence (
∏
)

Just as we often want to express a complex sum of systematically related parts, we often
want to express a product of systematically related parts as well. We use product notation
to do this:

5∏

i=1

1

i
= 1× 1

2
× 1

3
× 1

4
× 1

5

5∏

i=1

xi = x1x2x3x4x5

Usage of product notation is completely analogous to summation notation as described in
Section A.2.

A.4 ”Cases” notation ({)
Some types of equations, especially those describing probability functions, are often best
expressed in the form of one or more conditional statements. As an example, consider a
six-sided die that is weighted such that when it is rolled, 50% of the time the outcome is
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a six, with the other five outcomes all being equally likely (i.e. 10% each). If we define a
discrete random variable X representing the outcome of a roll of this die, then the clearest
way of specifying the probability mass function for X is by splitting up the real numbers
into three groups, such that all numbers in a given group are equally probable: (a) 6 has
probability 0.5; (b) 1, 2, 3, 4, and 5 each have probability 0.1; (c) all other numbers have
probability zero. Groupings of this type are often expressed using “cases” notation in an
equation, with each of the cases expressed on a different row:

P (X = x) =





0.5 x = 6

0.1 x ∈ {1, 2, 3, 4, 5}
0 otherwise

A.5 Logarithms and exponents

The log in base b of a number x is expressed as logbx; when no base is given, as in logx,
the base should be assumed to be the mathematical constant e. The expression exp[x] is
equivalent to the expression ex. Among other things, logarithms are useful in probability
theory because they allow one to translate between sums and products:

∑
i log xi = log

∏
i xi.

Derivatives of logarithmic and exponential functions are as follows:

d

dx
logb x =

1

x log b
d

dx
yx = yx log y

A.6 Integration (
∫
)

Sums are always over countable (finite or countably infinite) sets. The analogue over a
continuum is integration. Correspondingly, you need to know a bit about integration in
order to understand continuous random variables. In particular, a basic grasp of integration
is essential to understanding how Bayesian statistical inference works.

One simple view of integration is as computing “area under the curve”. In the case of
integrating a function f over some range [a, b] of a one-dimensional variable x in which
f(x) > 0, this view is literally correct. Imagine plotting the curve f(x) against x, extending
straight lines from points a and b on the x-axis up to the curve, and then laying the plot
down on a table. The area on the table enclosed on four sides by the curve, the x-axis, and
the two additional straight lines is the integral

∫ b

a

f(x) dx
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Figure A.1: Integration

This is depicted graphically in Figure A.1a.

The situation is perhaps slightly less intuitive, but really no more complicated, when f(x)
crosses the x-axis. In this case, area under the x-axis counts as “negative” area. An example
is given in Figure A.1b; the function here is f(x) = 1

2
(2.5− x). Since the area of a triangle

with height h and length l is lh
2
, we can compute the integral in this case by subtracting the

area of the smaller triangle from the larger triangle:

∫ 3

1

f(x) dx =
1.5× 0.75

2
− 0.5× 0.25

2
= 0.5

Integration also generalizes to multiple dimensions. For instance, the integral of a function
f over an area in two dimensions x and y, where f(x, y) > 0, can be thought of as the volume
enclosed by projecting the area’s boundary from the x, y plane up to the f(x, y) surface. A
specific example is depicted in Figure A.1c, where the area in this case is the square bounded
by 1/4 and 3/4 in both the x and y directions.

∫ 3
4

1
4

∫ 3
4

1
4

f(x, y) dx dy

An integral can also be over the entire range of a variable or set of variables. For
instance, one would write an integral over the entire range of x as

∫∞
−∞ f(x) dx. Finally, in

this book and in the literature on probabilistic inference you will see the abbreviated notation∫
θ
f(θ) dθ, where θ is typically an ensemble (collection) of variables. In this book, the proper

interpretation of this notation is as the integral over the entire range of all variables in the
ensemble θ.
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A.6.1 Analytic integration tricks

Computing an integral analytically means finding an exact form for the value of the
integral. There are entire books devoted to analytic integration, but for the contents of this
book you’ll get pretty far with just a few tricks.

1. Multiplication by constants. The integral of a function times a constant C is the
product of the constant and the integral of the function:

∫ b

a

Cf(x) dx = C

∫ b

a

f(x) dx

2. Sum rule. The integral of a sum is the sum of the integrals of the parts:

∫ b

a

[f(x) + g(x)] dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx

3. Expressing one integral as the difference between two other integrals: For
c < a, b,

∫ b

a

f(x) dx =

∫ b

c

f(x) dx−
∫ a

c

f(x) dx

This is an extremely important technique when asking whether the outcome of a con-
tinuous random variable falls within a range [a,b], because it allows you to answer
this question in terms of cumulative distribution functions (Section 2.6); in these cases
you’ll choose c = −∞.

4. Polynomials. For any n 6= −1:

∫ b

a

xn dx =
1

n+ 1
(bn+1 − an+1)

And the special case for n = −1 is:

∫ b

a

x−1 dx = log b− log a

Note that this generalization holds for n = 0, so that integration of a constant is easy:

∫ b

a

C dx = C(b− a)
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5. Normalizing constants. If the function inside an integral looks the same as the
probability density function for a known probability distribution, then its value is
related to normalizing constant of the probability distribution. [Examples: normal
distribution; beta distribution; others?] For example, consider the integral

∫ ∞

−∞
exp

[
−x2

18

]
dx

This may look hopelessly complicated, but by comparison with Equation 2.21 in Sec-
tion 2.10 you will see that it looks just like the probability density function of a nor-
mally distributed random variable with mean µ = 0 and variance σ2 = 9, except that
it doesn’t have the normalizing constant 1√

2πσ2
. In order to determine the value of this

integral, we can start by noting that any probability density function integrates to 1:

∫ ∞

−∞

1√
2πσ2

exp

[
−(x− µ)2

2σ2

]
dx = 1

Substituting in µ = 0, σ2 = 9 we get

∫ ∞

−∞

1√
18π

exp

[
−x2

18

]
dx = 1

By the rule of multiplication by constants we get

1√
18π

∫ ∞

−∞
exp

[
−x2

18

]
dx = 1

or equivalently

∫ ∞

−∞
exp

[
−x2

18

]
dx =

√
18π

giving us the solution to the original problem.

A.6.2 Numeric integration

The alternative to analytic integration is numeric integration, which means approximating
the value of an integral by explicit numeric computation. There are many ways to do
this—one common way is by breaking up the range of integration into many small pieces,
approximating the size of each piece, and summing the approximate sizes. A graphical

Roger Levy – Probabilistic Models in the Study of Language draft, November 6, 2012 232



x

p(
x)

a b

Figure A.2: Numeric integration

example of how this might be done is shown in Figure A.2, where each piece of the area
under the curve is approximated as a rectangle whose height is the average of the distances
from the x-axis to the curve at the left and right edges of the rectangle. There are many
techniques for numeric integration, and we shall have occasional use for some of them in this
book.

A.7 Precedence (≺)

The ≺ operator is used occasionally in this book to denote linear precedence. In the
syntax of English, for example, the information that “a verb phrase (VP) can consist of a
verb (V) followed by a noun phrase (NP) object” is most often written as:
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V → V NP

This statement combines two pieces of information: (1) a VP can be comprised of a V and an
NP; and (2) in the VP, the V should precede the NP. In a syntactic tradition stemming from
Generalized Phrase Structure Grammar (Gazdar et al., 1985), these pieces of information
can be separated:

(1)V → V, NP (2)V ≺ NP

where V,NP means “the unordered set of categories V and NP”, and V ≺ NP reads as “V
precedes NP”.

A.8 Combinatorics (
(
n
r

)
)

The notation
(
n
r

)
is read as “n choose r” and is defined as the number of possible ways of

selecting r elements from a larger collection of n elements, allowing each element to be chosen
a maximum of once and ignoring order of selection. The following equality holds generally:

(
n

r

)
=

n!

r!(n− r)!
(A.1)

The solution to the closely related problem of creating m classes from n elements by selecting
ri for the i-th class and discarding the leftover elements is written as

(
n

r1...rm

)
and its value is

(
n

r1 . . . rm

)
=

n!

r1! . . . rm!
(A.2)

Terms of this form appear in this book in the binomial and multinomial probability mass
functions, and as normalizing constant for the beta and Dirichlet distributions.

A.9 Basic matrix algebra

There are a number of situations in probabilistic modeling—many of which are covered in this
book—where the computations needing to be performed can be simplified, both conceptually
and notationally, by casting them in terms of matrix operations. A matrix X of dimensions
m × n is a set of mn entries arranged rectangularly into m rows and n columns, with its
entries indexed as xij:
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X =




x11 x12 . . . x1n

x21 x21 . . . x2n
...

...
. . .

...
xm1 xm1 . . . xmn




For example, the matrix A =

[
3 4 −1
0 −2 2

]
has values a11 = 3, a12 = 4, a13 = −1, a21 = 0,

a22 = −2, and a23 = 2. For a matrix X, the entry xij is often called the i, j-th entry of X.
If a matrix has the same number of rows and columns, it is often called a square matrix.

Square matrices are often divided into the diagonal entries {xii} and the off-diagonal

entries {xij} where i 6= j. A matrix of dimension m× 1—that is, a single-column matrix—is
often called a vector.

Symmetric matrices: a square matrix A is symmetric if AT = A. For example, the
matrix



10 −1 4
−1 3 2
4 2 5




is symmetric. You will generally encounter symmetric matrices in this book as variance-
covariance matrices (e.g., of the multivariate normal distribution, Section 3.5). Note that a

symmetric n × n matrix has n(n+1)
2

“free” entries—one can choose the entries on and above
the diagonal, but the entries below the diagonal are fully determined by the entries above it.

Diagonal and Identity matrices: For a square matrix X, the entries xii—that is,
when the column and row numbers are the same—are called the diagonal entries. A
square matrix whose non-diagonal entries are all zero is called a diagonal matrix. A
diagonal matrix of size n× n whose diagonal entries are all 1 is called the size-n identity

matrix. Hence A below is a diagonal matrix, and B below is the size-3 identity matrix.

A =



3 0 0
0 −2 0
0 0 1


 B =



1 0 0
0 1 0
0 0 1




The n× n identity matrix is sometimes notated as In; when the dimension is clear from
context, sometimes the simpler notation I is used.

Transposition: For any matrix X of dimension m × n, the transpose of X, or XT,
is an n ×m-dimensional matrix such that the i, j-th entry of XT is the j, i-th entry of X.
For the matrix A above, for example, we have

AT =




3 0
4 −2
−1 2


 (A.3)
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Addition: Matrices of like dimension can be added. IfX and Y are bothm×nmatrices,
then X + Y is the m× n matrix whose i, j-th entry is xij + yij . For example,




3 0
4 −2
−1 2


+



−1 −1
0 2
5 5


 =



2 −1
4 0
4 7


 (A.4)

Multiplication: If X is an l × m matrix and Y is an m × n matrix, then X and Y

can be multiplied together; the resulting matrix XY is an l ×m matrix. If Z = XY , the
i, j-th entry of Z is:

zij =
m∑

k=1

xikykj

For example, if A =




1 2
−1 0
3 1


 and B =

[
3 4 −1 6
0 −5 2 −2

]
, we have

AB =




1× 3 + 2× 0 1× 4 + 2× (−5) 1× (−1) + 2× 2 1× 6 + 2× (−2)
(−1)× 3 + 0× 0 (−1)× 4 + 0× (−5) (−1)× (−1) + 0× 2 (−1)× 6 + 0× (−2)
3× 3 + 1× 0 3× 4 + 1× (−5) 3× (−1) + 1× 2 3× 6 + 1× (−2)




=




3 −6 3 2
−3 −4 1 −6
9 7 −1 16




Unlike multiplication of scalars, matrix multiplication is not commutative—that is, it is
not generally the case that XY = Y X. In fact, being able to form the matrix product XY

does not even guarantee that we can do the multiplication in the opposite order and form
the matrix product Y X; the dimensions may not be right. (Such is the case for matrices A
and B in our example.)

Determinants. For a square matrix X, the determinant |X| is a measure of the
matrix’s “size”. In this book, determinants appear in coverage of the multivariate normal
distribution (Section 3.5); the normalizing constant of the multivariate normal density in-
cludes the determinant of the covariance matrix. (The univariate normal density, introduced
in Section 2.10, is a special case; there, it is simply the variance of the distribution that
appears in the normalizing constant.) For small matrices, there are simple techniques for

calculating determinants: as an example, the determinant of a 2 × 2 matrix A =

[
a b
c d

]

is |A| = ad − bc. For larger matrices, computing determinants requires more general and
complex techniques, which can be found in books on linear algebra such as Healy (2000).

Matrix Inversion. The inverse or reciprocal of an n×n square matrix X, denoted
X−1, is the n× n matrix such that XX−1 = In. As with scalars, the inverse of the inverse
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of a matrix X is simply X. However, not all matrices have inverses (just like the scalar 0
has no inverse).

For example, the following pair of matrices are inverses of each other:

A =

[
2 1
1 2

]
A−1 =

[
2
3

−1
3

−1
3

2
3

]

A.9.1 Algebraic properties of matrix operations

Associativity, Commutativity, and Distributivity

Consider matrices A, B, and C. Matrix multiplication is associative (A(BC) = (AB)C)
and distributive over addition (A(B +C) = (A+B)C), but not commutative: even if the
multiplication is possible in both orderings (that is, if B and A are both square matrices
with the same dimensions), in general AB 6= BA.

Transposition, inversion and determinants of matrix products.

• The transpose of a matrix product is the product of each matrix’s transpose, in reverse
order: (AB)T = BTAT .

• Likewise, the inverse of a matrix product is the product of each matrix’s inverse, in
reverse order: (AB)−1 = B−1A−1.

• The determinant of a matrix product is the product of the determinants:

|AB| = |A| |B|

• Because of this, the determinant of the inverse of a matrix is the reciprocal of the
matrix’s determinant:

∣∣A−1
∣∣ = 1

|A|

A.10 Miscellaneous notation

• ∝: You’ll often see f(x) ∝ g(x) for some functions f and g of x. This is to be read
as “f(x) is proportional to g(x)”, or “f(x) is equal to g(x) to within some constant”.
Typically it’s used when f(x) is intended to be a probability, and g(x) is a function
that obeys the first two axioms of probability theory, but is improper. This situation
obtains quite often when, for example, conducting Bayesian inference.
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Appendix B

More probability distributions and
related mathematical constructs

This chapter covers probability distributions and related mathematical constructs that are
referenced elsewhere in the book but aren’t covered in detail. One of the best places for
more detailed information about these and many other important probability distributions
is Wikipedia.

B.1 The gamma and beta functions

The gamma function Γ(x), defined for x > 0, can be thought of as a generalization of the
factorial x!. It is defined as

Γ(x) =

∫ ∞

0

ux−1e−u du

and is available as a function in most statistical software packages such as R. The behavior
of the gamma function is simpler than its form may suggest: Γ(1) = 1, and if x > 1,
Γ(x) = (x− 1)Γ(x− 1). This means that if x is a positive integer, then Γ(x) = (x− 1)!.

The beta function B(α1, α2) is defined as a combination of gamma functions:

B(α1, α2)
def
=

Γ(α1)Γ(α2)

Γ(α1 + α2)

The beta function comes up as a normalizing constant for beta distributions (Section 4.4.2).
It’s often useful to recognize the following identity:

B(α1, α2) =

∫ 1

0

xα1−1(1− x)α2−1 dx

239



B.2 The Poisson distribution

The Poisson distribution is a generalization of the binomial distribution in which the
number of trials n grows arbitrarily large while the mean number of successes πn is held
constant. It is traditional to write the mean number of successes as λ; the Poisson probability
density function is

P (y;λ) = eλ
λy

y!
(y = 0, 1, . . . ) (B.1)

The Gamma distribution is conjugate for the Poisson parameter λ, hence it is common
to use a Gamma prior on λ in Bayesian inference.

B.3 The hypergeometric distribution

One way of thinking of the binomial distribution is as n repeated draws from a bag with M
marbles, πM of which are black and the rest of which are white; each outcome is recorded and
the drawn marble is replaced in the bag, and at the end the total number of black marbles is
the outcome k. This picture is often called sampling with replacement. The hyperge-
ometric distribution is similar to this conception of the binomial distribution except that
the marbles are not replaced after drawn—this is sampling without replacement. The
hypergeometric distribution has three parameters: the number of marbles M , the number of
black marbles m, and the number of draws n; the probability mass function on the number
of “successes”X (black marbles drawn) is

P (X = r) =

(
m
r

)(
M−m
n−r

)
(
M
m

)

In this book, the hypergeometric distribution comes up in discussion of Fisher’s exact test
(Section 5.4.3).

B.4 The chi-square distribution

Suppose that we have a standard normal random variable Z—that is, Z ∼ N(0, 1). The
distribution that the quantity Z2 follows is called the chi-square distribution with one

degree of freedom. This distribution is typically denoted as χ2
1.

If we have k independent random variables U1, . . . , Uk such that each Ui ∼ χ2
1, then the

distribution of U = U1 + · · · + Uk is the chi-squared with k degrees of freedom. This is
denoted as U ∼ χ2

k. The expectation of U is k and its variance is 2k.
Figure B.1 illustrates the probability density functions for χ2 distributions with various

degrees of freedom. The χ2
1 distribution grows asyptotically as x approaches 0, and χ2

2

decreases monotonically, but all other χ2
k distributions have a mode for some positive x < k.
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Figure B.1: The χ2 distribution with various degrees of freedom

As k grows large, more and more of the probability mass becomes located relatively close to
x = k.

The key place where χ2 variables arise is as the distribution of variance of a normal
distribution. If we sample n points from N (µ, σ2) (once again: that’s a normal distribution
with mean µ and variance σ2), then the quantity

1

σ2

n∑

i=1

(xi − µ̂)2

is distributed as χ2
n−1.

If U is distributed as χ2
k, then the distribution of the quantity 1/U is called the inverse

chi-square distribution with k degrees of freedom. The inverse chi-square distribution is
used in Bayesian inference as a conjugate prior (Section 4.4.3) for the variance of the normal
distribution.

B.5 The t-distribution

Suppose once again that we have a standard normal random variable Z ∼ N(0, 1), and also
that we have a chi-squared random variable U with k degrees of freedom. The distribution
of the quantity

Z√
U/k

(B.2)

is called the t-distribution with k degrees of freedom. It has expectation 0, and as
long as k > 2 its variance is k

k−2
(it has infinite variance if k ≤ 2).

Roger Levy – Probabilistic Models in the Study of Language draft, November 6, 2012 241



0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

x

p(
x/

k)

df=5
df=10
df=20
df=50

Figure B.2: The χ2 distribution, nor-
malized by degrees of freedom

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

t d
en

si
ty

1 d.f.
2 d.f.
3 d.f.
5 d.f.
10 d.f.
normal

Figure B.3: The t distribution

Figure B.3 shows the probability density functions for t distributions with varying degrees
of freedom, together with the standard normal distribution for reference. The t distribution
is heavier-tailed than the normal distribution, but even with 10 degrees of freedom the t
distribution is already very close to the standard normal. As the degrees of freedom grow,
the t distribution converges to the standard normal; intuitively, this is because χ2

k becomes
more and more centered around k, so the quantity U/k in Equation B.2 converges to 1.

B.6 The F distribution

The F distribution, named after Ronald A. Fisher, one of the founders of the frequentist
school of statistical analysis, is the distribution of the normalized ratio of two independent
normalized χ2 random variables. More formally, if U ∼ χ2

k1
and V ∼ χ2

k2
, we have

Fk1,k2 ∼
U/k1
V/k2

(B.3)

Here are a few things to note about the F distribution:

• The F distribution comes up mainly in frequentist hypothesis testing for linear models
(Section 6.5).

• As k1 and k2 grow, all the probability mass in the F distribution converges to x = 1.
Because the variance of a sample is distributed as a χ2 random variable, the ratio of
variances in linear models (as in Figure 6.9) can be compared to the F distribution.

• Consider the case where k1 = 1. Since U is then the square of a standard normal
random variable, a random variable with distribution F1,k2 has the same distribution
as the square of a random variable with distribution tk2 (compare Equation (B.2)).
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Figure B.4: Density and cumulative distribution functions for the F distribution

It is useful to play a bit with the F distribution to see what it looks like. Figure B.4 gives
sample density and cumulative distribution functions for several choices of the degrees of
freedom. In general, the cumulative distribution is more interesting and pertinent than the
probability density function (unless you have an anomalously low F statistic).

B.7 The Wishart distribution

Recall that the χ2 distribution is used to place probability distributions over the inverse
variance of a normal distribution (or of a sample from a normally-distributed population).
The Wishart distribution is a multi-dimensional generalization of the χ2 distribution;
it generates inverse covariance matrices. Suppose that we have k independent observations
from an n ≤ k-dimensional multivariate normal distribution that itself has mean zero and
covariance matrix Σ. Each observation zi can be written as 〈zi1, . . . , zin〉. If we write the
matrix

Z =




z11 z12 . . . z1n
z21 z22 . . . z2n
...

...
. . .

...
z2n z2n . . . zkn




then the matrix X = ZTZ follows a Wishart distribution with k degrees of freedom and
scale matrix Σ.

If X is Wishart-distributed, then its inverse X−1 is said to be inverse Wishart-

distributed. The inverse Wishart distribution is used in Bayesian inference as the con-
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Figure B.5: Covariance-matrix samples from the two-dimensional inverse Wishart distri-
bution with Σ = ( 1 0

0 1 ) and k = 2 (top row) or k = 5 (bottom row), represented by their
characteristic ellipses. The unit circle appears in gray in the center of the figure for refer-
ence.

jugate prior (Section 4.4.3) for the covariance matrix of a multivariate normal distribution.
Figure B.5 illustrates the inverse Wishart distribution for different degrees of freedom. Note
that the variability in the covariance structure are more extreme when there are fewer degrees
of freedom.

B.8 The Dirichlet distribution

The Dirichlet distribution is a generalization of the beta distribution (Section 4.4.2).
Beta distributions are probability distributions over the success parameter π of a binomial
distribution; the binomial distribution has two possible outcome classes. Dirichlet distribu-
tions are probability distributions over the parameters π1, . . . , πk of a k-class multinomial
distribution (Section 3.4.1; recall that πk is not a true model parameter as it is fully deter-
mined by π1, . . . , πk−1). The Dirichlet distribution is characterized by parameters α1, . . . , αk,
and D(π1, . . . , πk) is defined as

D(π1, . . . , πk)
def
=

1

Z
πα1−1
1 πα2−1

2 . . . παk−1
k

where the normalizing constant Z is

Z =
Γ(α1)Γ(α2) . . .Γ(αk)

Γ(α1 + α2 + · · ·+ αk)

By comparing with the beta function and beta distribution as defined in Sections 4.4.2
and B.1, it will be apparent that the beta distribution is a Dirichlet distribution in which
k = 2. Just as there is a beta-binomial distribution giving the probability of obtaining
y successes out of N draws from a binomial distribution drawn from a beta distribution,
there is a Dirichlet-multinomial distribution that gives the probability of obtaining
y1, . . . , yk outcomes in each of the k response classes respectively when taking N draws from
a multinomial drawn from a Dirichlet distribution with parameters α1, . . . , αk. If we define
α =

∑k
i=1 αi, then the predictive distribution is (Leonard, 1977):

P (y1, . . . , yk) =

∫

π

P (y1, . . . , yk|π)P (π|α1...k) dπ =

∏k
i=1

(
αi+yi−1

αi

)
(
α+N−1

α

)
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The special case of this predictive distribution is when we draw a multinomial distribution
from the Dirichlet, and then draw one sample X from that multinomial distribution. The
probability that that sample X has outcome class i is given by the value

P (X = i|α1...k) =
αi

α

This is often convenient for using Gibbs sampling to draw samples from the posterior dis-
tribution in Bayesian models which use Dirichlet priors over multinomial distributions. An
example of this usage is given in Section ??.

The Dirichlet distribution has the following useful property. For any k-class Dirich-
let distribution with parameters α1, . . . , αk, suppose we partition the k outcome classes
into a smaller, new set of k′ < k classes, with the j-th new class consisting of outcome
classes cj1, . . . , cjMj

. The resulting distribution over the new set of k′ outcome classes is also

Dirichlet-distributed, with parameters αj =
∑Mj

i=1 αij . [see also Dirichlet process in Section
XXX; and give example here?]

B.9 The beta-binomial distribution

We saw the beta-binomial distribution before in Section 4.4.3. If there is a binomial distri-
bution with unknown success parameter π and we put a beta prior with parameters α1, α2

over π, then the marginal distribution on a sample of size n from the binomial distribution
is beta-binomial, with form

P (m|α1, α2,m) =

(
n

m

)
=

(
k

r

)
B(α1 +m,α2 +m− n)

B(α1, α2)
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Appendix C

The language of directed acyclic
graphical models

Beginning with Chapter 8, this book makes considerable use of the formalism of directed
acyclic graphical models, or Bayesian networks (Bayes nets). In a few pages
we cannot to do justice to the diversity of work within this formalism, but this appendix
introduces the formalism and a few critical accompanying concepts.

In the general case, graphical models are a set of formalisms for compactly expressing
different types of conditional independence relationships between an ensemble of random
variables. A graphical model on an ensemble X1, . . . , Xn is literally a graph with one node
for each random variable Xi, and in which each node may or may not be connected to each
other node. The class of directed graphical models is those graphical models in which all
the inter-node connections have a direction, indicated visually by an arrowhead. The class
of directed acyclic graphical models, or DAGs (or Bayes nets), is those directed graphical
models with no cycles—that is, one can never start at a node Xi and, by traverse edges in
the direction of the arrows, get back to Xi. DAGs are the only type of graphical model that
you’ll see in this book. Figure C.1 shows examples of several different types of graphical
models.

C.1 Directed graphical models and their interpretation

The structure of a given DAG encodes what conditional independencies hold among the
variables in the ensemble X1, . . . , Xn. First a bit of nomenclature. The parents of a node
Xi are the nodes that are pointing directly to it—in Figure C.1d, for example, the parents
of X5 are X3 and X4. The ancestors of a node are all the nodes that can be reached
from the node by traveling “upstream” on edges in the direction opposite to the arrows—in
Figure C.1d, for example, all other nodes are ancestors of X5, but X4 has no ancestors.

The set of connections between nodes in a DAG has a formal semantic interpretation
whose simplest statement is as follows:

Any nodeXi is conditionally independent of its non-descendents given its parents.
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X1

X2 X3

(a) A graphical
model with no
dependencies

X1

X2 X3

(b) A directed cyclic
graphical model

X1

X2 X3

(c) A directed acyclic
graphical model
(DAG)

X1 X2 X3

X4 X5

X6 X7

(d) A more complex DAG

Figure C.1: Different classes of graphical models

In Figure C.1d, for instance, we have that:

X6 ⊥ {X1, X2, X3, X7} | {X4, X5}

An important proviso is that—recalling from Chapter 2—conditional independencies can
disappear with the accrual of new knowledge. In particular, two nodes are not conditionally
independent of one another given a common descendent. So in Figure C.1d, for example, X4

has many conditional independencies given only its parents:

X4 ⊥ {X3, X5, X7} | {X1, X2}

but two of them go away when its child X6 is also given:

X4��⊥X3 | {X1, X2, X6}
X4��⊥X5 | {X1, X2, X6}

X4 ⊥ X7 | {X1, X2, X6}

A more complete statement of conditional independence in DAGs is given in Section C.2.
This statement of conditional independence simplifies the factorization of the joint prob-

ability distribution into smaller components. For example, we could simply use the chain
rule (Section 2.4) to write the joint probability distribution for Figure C.1d as follows:

P (X1...7) = P (X7|X1...6)P (X6|X1...5)P (X5|X1...4)P (X4|X1...3)P (X3|X1, X2)P (X2|X1)P (X1)
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but we can use the following conditional independencies, which can be read off the connec-
tivity in the graph, to simplify this:

P (X7|X1...6) = P (X7|X5) (C.1)

P (X6|X1...5) = P (X5|X4, X5)

P (X5|X1...4) = P (X5|X3)

P (X4|X1...3) = P (X4|X1, X2)

P (X3|X1, X2) = P (X3)

P (X2|X1) = P (X1)

giving us the following expression for the joint probability distribution

P (X1...7) = P (X7|X5)P (X6|X5, X4)P (X5|X3)P (X4|X1, X2)P (X3)P (X2)P (X1)

which is much simpler. These minimal conditional probability distributions seen in (C.1) are
the components whose form needs to be specified in order to give a complete probabilistic
model of a given domain.

[say something about proper indexing of variables?]
When conducting statistical inference in DAGs, it is often the case that we observe the

more “downstream” variables and need to infer some of the more “upstream” variables. The
catch is that the conditional probability distributions in the DAG are specified in terms
of downstream variables given upstream variables. Conducting inference upstream, then,
requires Bayesian inference (the reason that DAGs are often called “Bayes nets”). As an
example, in Figure C.1d suppose that we observe (or choose via prior knowledge) all variables
except X4. To draw inferences about X4, we’d use Bayes rule, targeting the downstream
variable X6 for Bayesian inversion:

P (X4|X1, X2, X3, X5, X6, X7) =
P (X6|X1...5, X7)P (X4|X1...3, X5, X7)

P (X6|X1...3, X5, X7)

We can now apply the conditional independencies in the graph to simplify all the numerator
of the right-hand side:

=
P (X6|X4, X5)P (X4|X1, X2)

P (X6|X1...3, X5, X7)

If we wanted to compute the denominator of Equation C.2, we’d need to do it by marginal-
izing over all possible values x4 that can be taken by X4:

=
P (X6|X4, X5)P (X4|X1, X2)∑

x4
P (X6|X1...5, X7)P (X4|X1...3, X5, X7)
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Applying the conditional independencies of the graph to the explicit marginalization reveals
that X3 and X7 can be ignored:

=
P (X6|X4, X5)P (X4|X1, X2)∑
x4
P (X6|X4, X5)P (X4|X1, X2)

If we now drop the explicit marginalization, we obtain the simplest characterization of
Bayesian inference on X4 available for this graph:

P (X4|X1, X2, X3, X5, X6, X7) =
P (X6|X4, X5)P (X4|X1, X2)

P (X6|X1, X2, X5)
(C.2)

C.2 Conditional independence in DAGS: d-separation†

We have already briefly described the intuitive picture for when conditional independence
holds in a DAG: given its parents, a node is conditionally independent of all of its non-
descendents. However, we also saw that such conditional independencies can be broken when
more information is conditioned on. In this section, we give the comprehensive criterion by
which conditional independence can be assessed in any DAG. This criterion is known as
D-separation (Pearl, 1988, Section 3.3).

Consider two disjoint subsets A and B of nodes in a DAG. A path between A and B is
simply a sequence of edges that, when taken together, connects some node in A with some
node in B (note that this definition doesn’t require that the arrows along the path all point
in the same direction). Any node on a given path is said to have converging arrows

if two edges on the path connect to it and point to it. A node on the path is said to have
non-converging arrows if two edges on the path connect to it, but at least one does
not point to it. (Note that the starting and ending nodes on the path are each connected to
by only one edge on the path, so are not said to have either converging or non-converging
arrows.)

Now consider a third subset C of nodes in the DAG, disjoint from both A and B. C
is said to d-separate A and B if for every path between A and B, one of the following two
properties holds:

1. there is some node on the path with converging arrows which is not in C; or

2. there is some node on the path whose arrows do not converge and which is in C.

If C d-separates A and B, then A and B must be conditionally independent given C. If C
does not d-separate A and B, then A and B are not in general conditionally independent.

Figure C.2 illustrates the canonical cases of d-separation and of failure of d-separation. In
Figures C.2a, we have d-separation: C is on the path between A and B, and it does not have
converging arrows. Therefore if C is known, then A and B become conditionally independent:
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(a) Common-cause d-
separation

A C B

(b) Intervening d-separation

A B

C

(c) Explaining away:
no d-separation

A B

C

(d) D-separation in
the absence of knowl-
edge of C

Figure C.2: Examples of d-separation and of failure of d-separation. C blocks the path
between A and B in Figures C.2a, C.2b, and C.2d, but not in Figure C.2c.

A ⊥ B | C.1 This configuration is sometimes called “common cause” d-separation: if A and
B are the outcomes of two tosses of a possibly unfair coin, then knowing the coin’s weighting
(C) renders the tosses independent.

The same holds of Figure C.2b: C is on the path between A and B, and doesn’t have
converging arrows, so A ⊥ B | C. This configuration is often known as “indirect cause”: if
I know my mother’s genome (C), then the respective contents of my genome (B) and my
mother’s mother’s genome (A) become conditionally independent.

In Figures C.2c and C.2d, on the other hand, C is on the path between A and B but it has
converging arrows. Therefore C does not d-separate A and B, so A��⊥B | C (Figure C.2c. This
configuration is often known as “common effect”: a signal (C) indicating whether the tosses
of two fair coins (A and B) came up on the same side renders the two tosses conditionally
dependent. However, not having seen this signal leaves the two tosses independent. In the
language of graphical models, d-separation, and conditional independence, we have A ⊥ B | ∅
(Figure C.2d).

C.3 Plate notation

Since graphical models for structured datasets can get quite complex when the full set of
variables, including observations, latent classes, and model parameters, is written out ex-
plicitly, it is common to use “plate” notation to succinctly express repetitive structure in
the model. The semantics of “plate” notation are simply that any part of a graphical model
on a plate with subscript n should be interpreted as being repeated n times, with all the
dependencies between nodes external to the plate and nodes internal to the plate preserved
and no dependencies between elements on different replicates of the plate. Figure C.3 gives

1Technically, since d-separation is a property holding among sets of nodes, we should write
{A} ⊥ {B} | {C}; but for simplicity we drop the braces as a slight abuse of notation when a set con-
sists of exactly one node.
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(a) “Flat” model with no hierarchical structure (b)

Figure C.3: Equivalent directed graphical models in plate and no-plate notation

two examples of equivalent models in plate notation and “unfolded” into a plate-free format.
Note in particular that in Figure C.3b in the “unfolded” version the variables XXXi and
Y Y Yi′ are not connected for i 6= i′ [TODO!]. Further examples of equivalent non-plate and
non-plate models can be found early in Chapter 8.

C.4 Further reading

Directed graphical models are an area of considerable research activity. For further reading,
some key sources are Pearl (1988, 2000); Jordan (1998); Russell and Norvig (2003, Chapter
14); Bishop (2006, Chapter 8).

Exercise C.1: Conditional independencies in Bayes nets
In each case, state the conditions (what sets of nodes must and/or must not be known)

under which the specified node sets will be conditionally independent from one another. If
the node sets are always independent or can never be independent, say so.

Example:

W is the word intended to be spoken a hard word?
A was the speaker’s attention distracted?
D was a disfluency uttered?

W A

D

• {W} and {A} are conditionally independent if and only if D is unknown.

• {W} and {D} are never conditionally independent.

Examples to solve:
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1. A variant of the disfluency model we saw earlier:

M intended meaning to be conveyed
W is the word intended to be spoken a hard word?
A was the speaker’s attention distracted?
D was a disfluency uttered?

M

W A

D

(a) {W} and {A}
(b) {M} and {D}
(c) {M} and {A}
(d) {D} and {A}

2. The relationship between a child’s linguistic environment, his/her true linguistic abil-
ities/proficiency, and measures of his/her proficiency in separate spoken and written
tests

E a child’s linguistic environment
P the child’s linguistic proficiency (number of words known, etc.)
S the child’s performance on a spoken language proficiency test
W the child’s performance on a written language proficiency test

E

P

S W
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(a) {S} and {W}
(b) {E} and {P}
(c) {E} and {S}
(d) {E,P} and {S}
(e) {E,P} and {S,W}

3. Speakers’ familiarities (quantified, say, on a scale of 1 to 10) with different words

Si the i-th speaker’s general vocabulary size
Wj the j-th word’s general difficulty/rarity
ΣS the variability in vocabulary sizes across speakers
ΣW the variability in difficulties/rarities across words
Yij the i-th speaker’s familiarity with the j-th word

ΣS

S1 S2

ΣW

W1 W2

Y11 Y12 Y21 Y22

• {ΣS} and {ΣW}
• {Y11} and {Y22}
• {Y11} and {Y12}
• {Y11} and {S2}
• {W1} and {S1}, supposing that you know Y21

• {W1} and {S1}, supposing that you know Y22
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Appendix D

Dummy chapter

255
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