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Probabilistic Linguistic Expectations, Uncertain Input, and Implications for Eye

Movements in Reading

Roger Levy
(University of California, San Diego)

One nearly ubiquitous assumption in models of linguistic comprehension and of eye movement control in reading alike is of partial

modularization between word-level and sentence-level processing: that the outcome of word recognition, and thus the input to

sentence-level comprehension, is a categorial representation. Yet such a partial modularization throws away residual uncertainty re-

garding word identity that might potentially be of value to the comprehender further downstream in the sentence. Here I describe a

line of research combining computational modeling with experimental eye-tracking work to explore the consequences of removing this

partial modularity assumption.

Introduction

As you begin reading this article, your eyes jump
rapidly across the page, roughly four times a second
(Rayner, 1998, 2009). But, really, why do your eyes
move at all?

This article explores some of the consequences of the
idea that eye movements in reading can be best under-
stood as an adaptive response to the fundamental prob-
lem of action in an uncertain environment that is posed
by reading. From this perspective, the conclusion is in-
escapable that eye movements in reading reflect the
goal of obtaining information from the text. Consider:
before one reads a given sentence, one possesses
knowledge in the face of uncertainty. The author might
have written anything, but some sentences are more
likely to have been written than others. The system
of the

“knows” that perceptual input is constrained and noisy.

governing movement eyes presumably also
The process of reading involves using this noisy percep-
tual input in conjunction with one’s prior knowledge of

one’s language and one's environment in order to figure
(1) s

NP — N
VP — V NP
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out what the author wrote, and to infer meaning from
this writing. Both input and prior knowledge inform de-
cisions about where to move the eyes next; this iterative
process of input acquisition, integration with prior
knowledge, decision-making, and action unfolds rapidly
in real time. This article is about integrating methods

and ideas from computational linguistics and psycholin-

guistics in order to gain insight into this process.
Grammatical Knowledge

In particular, in this article 1 focus heavily on the
profound role played by grammaiical knowledge in the
real-time understanding of written language. It is easy
to demonstrate how powerful grammatical knowledge
can be: just reflect on the fact that the sentence dog
bites man describes an everyday event, whereas man
bites dog is newsworthy. The field of generative syntax
gives us formal tools for expressing this knowledge; one
particularly useful yet simple tool is the contextfree
grammar (CFG; Chomsky, 1956; Ginsburg, 1966; Hopcroft
& Ullman, 1979), which consists of rewrite rules such as

(for English):

— NP VP [a Sentence can consist of a Noun Phrase subject followed by a Verb Phrase]
[a Noun Phrase can consist of a Noun]

[a Verb Phrase can consist of a Verb followed by a Noun Phrase object]
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Context-free grammars generate tree-structured de-
scriptions of the syntactic form of sentences, and im-
portant aspects of the meaning of the sentence—such
as, in this case, who did the biting and who got

bitten—can be read off these descriptions:

vAL AN

NP VP NP VP

I\II \‘/ NP ITI \I/ NP

| |
man  bites ITI dog bites 1’\1

dog man

Furthermore, seemingly large crosslinguistic differ-
ences in the grammatical properties of languages can
often be elegantly captured by small differences in the
CFG description of the language. For example, in both
English and Chinese word order plays a relatively large
role in encoding the grammatical functions played by
each word in a sentence; yet consider the systematic dif-

ferences in word order in the two sentence pairs below:

(3) a. I lectured in Tianjin.
b, & 78 K il
I in Tianjin lecture

(4) a. They expressed enthusiasm to me.

b flfi] xF & Fom A0

They to me express enthusiasm

If we think of sentences as raw sequences of words,
the systematicity of the differences between these Eng-
lish and Chinese examples isn't obvious at all, since no
words are shared between examples (3) and (4). But if
we think of sentences as structured grammatical repre-
sentations, the systematicity becomes overwhelming:
whereas in English, verb-modifying Prepositional Phras-
es follow the verb, in Chinese they precede the verb.'

The phrase structure rule sets below capture this dif-

ference succincetly:

(5) English Chinese
S — NP VP S — NP VP
NP — N NP — N
VP — V NP VP — V NP
VP — V VP — V
VP — VP PP VP — PPV

The first three rules in each language should be fa-
miliar from (1) above, and are the same in both lan-
guages. The fourth rule is also the same in both lan-
guages, and states that a verb phrase can consist of
only a verb. The fifth rule is the only one that is dif-
ferent between the two languages: in English, it states
that a verb phrase can (recursively) consist of a verb
phrase followed by a repositional phrase, whereas in
Chinese, it states that a verb phrase can (recursively)
consist of a prepositional phrase followed by a verb
phrase. These CFGs give rise to the following structural
descriptions of (3) and (4):

©6) a S

A

NP VP
l A
N VP PP
| l PN
S R A
lectured in 1‘\1
Tianjin
b. S
/\
NP VP
| T
N PP VP
N |
S8
1 1’\1 i
PN
c S

I\IIP
VP
| N
They N p p p
R
expressed N to I\II
enthusiasm me

S

1\’113 VP

/\

N PP

‘ /\
fbAr] p
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S

D{P
N & 1\|1

1. This point ignores a certain degree of controversy regarding whether examples like zai Tianjin are best analyzed as prepositional phrases or

as something more like seral-verb construtions, which is not pertinent to the goals of this article.
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Incrementality, Rationality, and Grammar

One of the outstandingly interesting properties of
real-time sentence comprehension that must be included
in any serious model of eye-movement control in read-
ing is the incrementality of sentence comprehension.
This property essentially states that humans don’t wait
until a sentence is complete to draw inferences about
what it might mean, or even how it might continue. An
outstanding demonstration of this comes from another
methodology in which eye movements are monitored as
a window into language comprehension: the visual world
paradigm. As a particularly clear example from Altmann
and Kamide (1999), suppose that the comprehender is
presented with a visual display including a boy; a mov-
able, edible object (such as a cake); and a number of
movable, inedible objects (such as a ball and a toy car).
If the comprehender hears the sentence onset The boy
will eat..., when they hear the verb eat they initiate dif-
ferentially more eye movements to the edible object on
the display than in an alternative variant with a less re-
strictive verb The boy will move... This and related
findings (Tanenhaus, Spivey-Knowlton, Eberhard, & Se-
1995; Kamide, & Haywood, 2003)

demonstrate incrementality: rapid access to detailed

divy, Altmann,

syntactic and semantic properties of the words encoun-

tered thus far. Furthermore, comprehenders generally
use this information in the “right way”: the word eat, for
example, is used to narrow down the set of possible up-
coming referents to those in the environment which are
edible. T will call this latter property the rational use of
information in online language comprehension.

How do incrementality and rationality interact with
the deployment of grammatical knowledge in online
comprehension? When considering this problem, it is
important to note that in any language, most sentences
are afforded more than one possible interpretation by
the grammar. For example, the Chinese sentence in
(6b) below has two interpretations, depending on who's
considered to be in America? (This ambiguity is pre-
served in the English translation.)

(7) 7 RE B B 57| PR P U P
in America DE professor DE daughter has studied Mandarin
"The daughter of the professor in America has studied Mandarin."

When the rules given in (8) below are added to our
Chinese grammar fragment, it gives rise to the two
structural descriptions seen in (9). In the left-hand de-
scription, it is the professor who is in America, as can
be seen from the fact that there is an NP node dominat-
ing the substring £ £ 1) 242 (in America DE pro-
fessor); in the right-hand description, it is the daughter

who is in America.

(8 NP — DeP NP [an NP can recursively consist of a premodifying De—Phrase followed by an NP]

DeP — VP De [a DeP can consist of a VP followed by the word fJ ‘de’]
DeP — NP De [a DeP can consist of an NP followed by the word HJ ‘de’]
©) S S
b v v T
DeP N Y NP DeP NP Vv WP
K Dle 2L s 11\: /V{ D‘e DeP 1’\1 it 1‘\1
/DeP ll\l £6] PG \I/ 1\’113 Ef] N’P ]l)e 7L s
/VP\ \Dle Hi% 1E ITI I\II i
\‘/ N‘P ih] F*H Ut
=
S [H]

2. The Chinese grammatical morpheme [, glossed here as DE (its Pinyin form is de), marks all types of nominal premodifiers. In Example

(6b), its first instance is effectively semantically emptyempty; its second instance carries the meaning of possession and thus is translated as

English of.
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Although in this particular sentence, one can make
the case that there is no strong preference for one in-
terpretation over the other, usually there are prefer-
ences which are relatively consistent across native
speakers. For example, both English sentences in (10) be-
low involve an ambiguity as to what the prepositional
phrase on the beach modifies. Most native speakers prefer
an interpretation of (10a) in which it modifies discussed,
but an interpretation of (10b) in which it modifies dogs
(Ford, Bresnan, & Kaplan, 1982; Jurafsky, 1996).

(10) a. The women discussed the dogs on the beach.
b. The women kept the dogs on the beach.

We might thus expect an incremental, rational sys-
tem for sentence comprehension to form and update
preferences about these grammatical interpretations both
rapidly and in a manner consistent with the information
sources available in the sentence thus far-including lex-
ical, syntactic, semantic, and even pragmatic informa-
tion sources. Paradoxically, one of the side effects of
this type of incremental preference update is that cer-
tain types of sentences can temporarily mislead the
comprehender, when the material early on in a sen-
tence gives rise to a strong preference for a grammati-
cal interpretation that ultimately turns out to be incor-
rect. Consider the examples in (11) below:

1) o B BT 0 W% BE wik

most capable DE lead country advance.
“The most capable lead the country forward.”

b. The excellent play the fool rarely.

When reading these sentences, native speakers of
Chinese and English typically experience confusion at
the words % (‘country’) and the respectively. This
confusion reflects the ability of the preceding words, %
F (‘lead’ or ‘leader’) and play, to function either as
nouns or as verbs. The context biases the comprehender
toward a nominal interpretation of these words—more
precisely, as the head noun of the sentential subject
but the grammars of Chinese and English also allow
omission of the head noun of an NP, and this omitted
variant turns out to be the globally correct interpreta-
tion, with intended meanings approximately the same as

those seen in (12) below:

(12) a f fig ZHUNSTES S ES N  [/57:
most capable DE person lead country advance.
“The most capable people lead the country forward”

b. The excellent people play the fool rarely.

This early misinterpretation is known as a GARDEN-
PATH effect. Its signature on eye movements in read-
ing is elevation of first-pass reading times and first-pass
regression probability, and has been known since Fra-
zier and Rayner (1982). A desirable goal for deepening
our understanding of eye movements in reading would
thus be to integrate into models of eye movement con-
trol models of this incremental process of preference
formation and update for grammatical interpretation.
The leading candidate class of such models is the fam-
ily of PROBABILISTIC GRAMMARS from the field of
computational linguistics. Perhaps the most widely used
family is the PROBABILISTIC
CONTEXT-FREE GRAMMAR (PCFG; Booth, 1969; Ju-
rafsky & Martin, 2008; Manning & Schiitze, 1999). A
PCFG is exactly like the CFGs seen earlier in Section

member of this

2, except that each rewrite rule comes with a
probability—a real number between zero and 1 whose
interpretation is the likelihood with which the category
on the left-hand side will rewrite as the sequence of
categories on the right-hand side. If the probability of a
verb phrase consisting of a verb and a noun phrase is
04, for example, it would be written as P(VP—V NP)=
0.4, or equivalently P(V NPIVP)= 0.4. This latter formu-
lation states explicitly that the conditional probability of
the category sequence V NP given the presence of a
VP is 04—this probability only matters if a VP has
already been generated by some other rule in the
grammar. In a PCFG, rule probabilities are constrained
such that the probabilities of all rules with the same
category on the left-hand side should sum to 1. For ex-
ample, (13) below gives a PCFG fragment of Chinese
grammar incorporating all the rules we have seen thus
far. (In reality, a grammar covering a large fragment of
a language would contain tens of thousands of rules, not
the handful seen in an example such as this.)

A PCFG defines a PROBABILITY DISTRIBUTION
over tree-structured descriptions of sentences: the prob-

ability of a tree is the product of the probabilities of
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the rules used to derive the tree. Example (14) depicts the
Chinese tree in (6b), decorated with the probabilities of
each subtree as specified by the grammar in (13), as well

as the total probability of this particular tree.

(13) Rule Probability Rule Probability
S —NPVP 1.0 De — 1Y 1.0
NP —N 0.7 VP—V 0.3
N —F 0.5V —ifih 1.0
N —KH 0.5/VP—V NP 04
NP —DeP NP 0.3 VP—PP VP 0.3
DeP —VP De 0.5/PP —P NP 1.0
DeP —NP De 0.5 P —7E 1.0

S

(14) y\

NP VP 3
0.7| T
N PP VP
ng Lo~ 0.3
: p
L&) ﬂb] YLO
1E N s
0.5
Kt

P (Tree) =1.0x0.7x0.5x0.3x1.0x1.0x0.7x0.5%x0.3x1.0=0.011025
For a given PCFG, the PROBABILITY OF A
STRING 1is the sum of the probabilities of all the trees
generating that string; and the PROBABILITY OF A
STRING PREFIX is the sum of the probabilities of all
the trees generating a string starting with that prefix.
According to a number of models of online sentence
comprehension, incremental and rational comprehension
of a sentence involves computing (or approximating) the
probability distribution over trees given a probabilistic
in a sentence thus far

grammar and the words

(Crocker & Brants, 2000; Hale, 2001, 2003, 2006; Ju-
rafsky, 1996; Levy, 2008a; Narayanan & Jurafsky,
1998, 2002; Roark, 2001). What is a garden-path effect
in such a model? An answer to this question can be
found by considering that the number of possible
grammatical analyses of a given sentence grows expo-
nentially as sentence length increases (Church & Patil,
1982). Although there are algorithms that allow this ex-
ponentially increasing set of analyses to be computed
efficiently-in time increasing cubically with sentence
length (Earley, 1970) —this is not sufficient to explain
the speed of human sentence comprehension, as the

time we spend on comprehending a sentence is essen-

tially linear in its length. In all realistic models of
sentence comprehension, then, attention is restricted to
some subset of the logically possible analyses. One way
of doing so within a probabilistic framework is to dis-
card possible analyses that have low probability. This
can be done either deterministically (Crocker & Brants,
2000; Jurafsky, 1996; Narayanan & Jurafsky, 1998;
Roark, 2001) or it can be done stochastically (Levy,
Reali, & Griffiths, 2009). An example of how both gar-
denpath recovery and garden-path failure can take
place for a locally ambiguous sentence is shown in
Figure 1, which shows the evolving probabilities of two
alternate analyses of each word, as well as the proba-
bility of successfully finding some analysis through
each word of the sentence (bottom row), using a gram-
mar learned from the parsed Brown corpus of English
(Kuc¢era& Francis 1967, Marcus Santorini, & Marcinkiewicz
1994). At the word play, for example, the parser typi-
cally devotes most of its resources to the garden-path
analysis (the top tree), and thus fails to find any analy-
sis at the next word, the, almost half the time. Note that
the garden-path analysis can in fact be saved at the
word the by hypothesizing a relative clause, as in the
possible continuation The excellent play the author
wrote was never performed. This possible continuation
accounts for the fact that the true posterior probability
of the garden-path analysis remains considerable after
this point, and for the fact that true comprehension fail-
ure can happen later than the first point of gardenpath
disambiguation: sometimes at rarely and quite often at
the end of the sentence. This gradualness of garden-path
disambiguation is a property more difficult to obtain in

serial and deterministic limited-parallel models.

Incremental probabilistic inference and

eye movements

How does this process of incremental probabilistic
grammatical inference relate to the eye movement pat-
terns seen in reading? In addition to the effects of
garden-path disambiguation just described, another cru-
cial phenomenon in probabilistic inference is prediction
of upcoming words and syntactic events. It has been

known since Ehrlich and Rayner (1981) that highly
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Figure 1. Incremental parsing of a garden-path sentence. Trees indicate the canonical structures for nominal

(above) and verbal (below) interpretations of the ambiguous word play. Numbers above the trees indicate the true

probabilites in the grammar of nominal and verbal interpretations after each word. Numbers in the second-to-last

line indicate the frequency with which a 30—particle incremental parser (Levy, Reali, & Griffiths, 2009) produces a

viable parse tree including the given word.

predictable words are skipped more often and fixated
on more briefly than less predictable words. In compu-
tational psycholinguistics, one well-known formalization
of this idea has been the proposal of SURPRISAL as a
linking function between probability and the amount of
time required to process a word in its context (Hale,
2001; Levy, 2008a). Surprisal is defined as the negative
log of the conditional probability of a word wi in its

context:
—log P(w,w, .., ),CONTEXT)

Hence surprisal ranges from zero (an obligatory
event, probability 1) to infinity (an impossible event,
probability zero). To estimate the surprisal of a word in
its context, one can use methods from computational
linguistics (Chen & Goodman, 1998; Jelinek & Lafferty,
1991; Stolcke, 1995) or the more traditional Cloze sen-
tence completion method (Taylor, 1953). It is a sub-
stantive claim that there is a linear relationship be-
tween surprisal and reading times, which can be de-
rived from a number of possible considerations of opti-
mality in the language comprehender ( Norris, 2006;
Smith & Levy, 2008). Because Cloze completion has

been the norm for assessing word predictability in psy-
cholinguistics, however, the precise functional form of
the relationship between word probability and reading
time has not been extensively investigated (though see
Rayner & Well, 1996; Kliegl, Nuthmann, & Engbert,
2006): to obtain reasonably reliable estimates of pre-
dictability levels below about 0.1 would require hun-
dreds or even thousands of participants in a Cloze
norming study. To assess this functional form more
precisely, Smith and Levy (2008, submitted) used broad-
coverage techniques from computational linguistics to
estimate probabilities for every word in the ten-partici-
pant, 50,000-word Dundee corpus, the largest available
dataset of eye movements in reading. Figure 2 shows
the partial contribution of word surprisal to current-
word firstfixation durations, controlling for potential con-
founds including word frequency and length. Remark-
ably, an essentially linear relationship holds over sev-
eral orders of magnitude between word log-probability
and gaze duration. Furthermore, this relationship can be
recovered at the individual subject level, speaking to
the strength and systematicity of the relationship be-

tween predictability and fixation durations in reading.



Figure 2. The linear relationship between a word's
surprisal and first fixations on it, for each of the ten

subjects in the Dundee corpus (Smith & Levy, 2008).

Uncertain input: challenges and solutions for

incrementality and rationality

Thus far the picture of comprehenders as highly in-
cremental, rational users of available information may
seem relatively compelling. However, a number of chal-
lenges remain for this picture, and in the remainder of
the paper I describe one such challenge, recent model-
ing and experimental work we have done to meet that
challenge, and new directions in which this modeling
and experimental work has taken us.

Consider the sentence (15a) below:

(15) a The coach smiled at the player tossed the frishee.

This is a legitimate sentence according to the gram-
matical rules of English, but native speakers find it
extremely difficult to read starting at the word tossed.
This is in contrast with sentences (15b-d) below, which
mean essentially the same thing. Word-by-word reading
times in the self-paced reading study of Tabor et al.
(2004), who originally demonstrated this phenomenon,
are shown in Figure 3; note the localization of the su-
peradditive difficulty effect at the critical word tossed/

thrown and immediately thereafter.
(15) b. The coach smiled at the player who was tossed the
frisbee.
c. The coach smiled at the player thrown the frisbee.
d. The coach smiled at the player who was thrown the
frisbee.

o
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tossed/ a
thrown

the  player frisbee by

Figure 3. Selfpaced reading data from Tabor et al. (2004)

The basic intuition regarding this sentence that first
strikes most investigators is that the sequence of words
the player tossed coheres well together as a potential
subject-verb combination, but that this local interpreta-
tion does not fit with the global sentence context, in
which the player is inside a prepositional phrase—not a
place where the subject of a clause can appear. For
this reason, Tabor et al. dubbed this a LOCAL-CO-
HERENCE EFFECT. This intuition bears some resem-
blance to the garden-path effects described in Section
3, but the reason that the local-coherence effect is
problematic for the rational, incremental theory we have
developed up to this point is that whereas in garden-
path sentences such as (11b) the incorrect analysis is
legitimate and even favored given previous global con-
text, in (15a) the incorrect analysis should be ruled out
by previous global context.

One way of accounting for the local-coherence effect
is to assume that there is a fast, “bottom-up” compo-
nent to syntactic processing that can construct analyses
heedless of global context, and there have been several
formalizations of this idea (Tabor & Hutchins, 2004;
Gibson, 2006; Bicknell & Levy, 2009; Morgan, Keller,
& Steedman, 2010). However, this approach is faced
with the paradox of having to account for how rapidly
effectively human comprehenders do use global context

to constrain interpretation of linguistic input. The theo-
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retical challenge, then, is to reconcile this ability to
use context in general with the apparent failure to use
context to rule out irrelevant interpretations in local-co-
herence effects.

Levy (2008b) deals with this challenge by hypothe-
sizing that comprehenders’ representations of prior
context may in fact be noisier than is often thought.
On this model, the input to the sentence-level compre-
hension mechanism is not a sequence of words, but
rather a set of noisy perceptual input representations /.
The comprehender uses her grammatical and world
knowledge to construct a joint probability distribution
over possible word sequences w and possible structural

analyses T through Bayesian inference:

PUTw )P Tw )

P(Twll = P

We've already described how a probabilistic grammar
places a probability distribution over structural analyses

and word sequences—that is, how it determines P (T,w).

...the player...

An additional component needs to be specified for this
new model, however: the comprehender’s model of per-
ceptual noise (and, potentially, speaker error), P (IIT;w).
There are many possibilities for how to construct such
a noise model; Levy (2008b) used one based on Lev-
enshtein edit distance (Levenshtein, 1966), which es-
sentially encodes the intuitions that orthographically
similar words are more likely to be confused for one
another, and that short words are more likely to be
missed (or, inversely, perceived to be present when
they're not) than long words.

How could this model account for the local-coher-
ence effect seen in (15a)? Crucially, there are many
small changes that could be made to this sentence
which would make the eritical word tossed into a main

verb instead of a participial verh:

(16) a. The coach smiled {as/and}
the frisbee.
b. The coach smiled at the player {who/that/and}
tossed the frisbee.

the player tossed

...the coach smiled...

...the player...
Figure 4. Coupling of inference about sentence identity and grammatical analysis: two paths through a local-coher-
ence sentence.

_//
tossed...

c. The coach {who/that} smiled at the player tossed the frisbee.

Just as in syntactic disambiguation a word can dra-
matically change the comprehender’s beliefs about the
probability of different structural interpretations ( e.g.,
the second instance of the in Figure 1), in a model
where word-level representations are non-veridical, per-
ceptual input midstream in a sentence can dramatically
change the comprehender’ s beliefs about what word
sequences may have preceded the current input. This
possibility, and how it interacts with grammatical
knowledge in the online comprehension of (15a), is il-
lustrated in Figure 4. The perceptual neighborhood and
the grammar of English effectively provide multiple

different paths through the sentence; two of the most

important paths are seen here, and their relative
strengths (probabilities) are indicated with thicker line
length for a path segment that is more probable given
(a) having arrived to the start of the path segment, and
(b) the input the segment covers. On the upper path,
the word @ is correctly identified; since perception on
average is not biased to be inaccurate, through this
path is initially more likely. On the lower path, the
word at is incorrectly identified as one of its neighbors,
as or and; since this path involves a perceptual error,
it is less likely. Since at is a preposition whereas as
and and are conjunctions, however, the different paths

now correspond to different syntactic analyses of up-
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coming input. The phrase the player is of similar prob-
ability for both the upper and lower path sequences;
hence the path strengths do not change appreciably at
this point. But in order for the upper path to further
continue with the word tossed, a highly unlikely syn-
tactic event has to occur-a reduced relative clause in-
volving passivization on the goal argument of a ditran-
sitive verb—whereas the lower path can continue with
the word tossed through the much likelier syntactic
event of a main-clause finite verb. Therefore strength of
the path segment covering tossed on the upper path is
much lower than the strength of the corresponding seg-
ment on the lower path. Bayesian inference incorporates
this new information to update the aggregate strengths of
the upper and lower paths, causing a substantial shift in
belief from the upper path to the lower path (gray arrows
and new, longer path segments in Figure 4). On the ac-
count of Levy (2008b), the boggle in (15a) involves pre-
cisely this shift: the word tossed calls into question the
comprehender’s representation of past input.

Levy (2008b) modeled this shift in beliefs about past
input by defining probability distributions over possible
word sequences up to a position i in the sentence (in
(15a) , i is where the word tossed is seen) before and
after seeing perceptual input from position i In the
model, the magnitude of the shift is quantified by the
KULLBACK-LEIBLER DIVERGENCE—a standard mea-
sure of one coarse-grained probabilty distribution encodes

another, finergrained distribution ( Cover & Thomas,

o
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Figure 5. Error identification signal at critical word in
local-coherence sentences.

1991) —from the distribution before seeing i to the dis-
tribution after seeing i. This quantity, the ERROR I-
DENTIFICATION SIGNAL (EIS) at position i, is shown
for (15a) and (15) in Figure 5 (at conditions). There is
one free parameter in this model, corresponding to the
perceptual noise level N\, but regardless of the value of
this parameter the EIS is larger at the part-of-speech
ambiguous fossed than at the unambiguous thrown.
Because the local-coherence effect in the Levy
(2008b) model of rational probabilistic comprehension
under uncertain input depends crucially on the percep-
tual neighborhood of the sentence being read, the
model makes a number of non-trivial empirical predic-
tions regarding how manipulations of perceptual neigh-
borhood may affect online comprehension. As shown in
(16) and Figure 4, for example, an important part of
the EIS in (15a) arises from the presence of the words
as and/or and in the immediate perceptual neighbor-
hood of the word at. The model thus predicts that if a
semantically similar preposition without such a percep-
tual neighborhood, such as toward, is substituted for at,
the EIS should be diminished (Figure 5). Levy, Bick-
nell, Slattery, and Rayner (2009) tested this prediction
in an eye-tracking study by crossing the use of the
preposition at versus toward with the part-of-speech
ambiguity of the critical word ( e.g., tossed versus
thrown). The prediction was borne out in interactions
on rate of first-pass regressions from the critical word,

go-past time, and the frequency of fixating on the
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Figure 6. Crucial results of Levy, Bicknell, et al. (2009)
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preposition during go-past reading of the critical word
(Figure 6).

Future directions

In this article, I have attempted to present evidence
for a view of incremental sentence comprehension as
grammar-based, rational, predictive, and probabilistic;
and to explicate the implications and support of such a
view for eye movement control in reading. We have
seen how the notion of incremental, probabilistic gram-
matical analysis can capture both coarse-grained and
subtle garden-path effects, and how a highly regular
relationship holds between prediction strength and fixa-
tion durations in first-pass reading. We have also exam-
ined local coherence effects, which pose an apparent
challenge to the rational view articulated above, and
explored the possibility that the rational view can be
maintained if a key simplifying assumption common to
all previous models of sentence comprehension—that of
categorical word-level input—is relaxed. It turns out
that relaxing this simplifying assumption and allowing
input representations to be uncertain not only accounts
for the classic local-coherence effect, but makes new
predictions regarding the effects of perceptual neigh-
borhood on eye movements in sentence reading.

The input-uncertainty model also leads to a number
of other predictions that have been tested using con-
trolled experiment and corpus analysis. Levy (2010)
demonstrated the existence of hallucinated garden-paths,
where strong prior expectations regarding likely and
unlikely grammatical structures can bias comprehenders
toward adopting incremental analyses that are not
strictly licensed by surface input, as evidenced by
garden-path disambiguation effects upon encountering
downstream material consistent with the true surface
input but not with the hallucinated garden path. Smith
and Levy (2010) found evidence from eye movements
in reading newspaper text that fixation durations during
first-pass reading seem to reflect the word surprisals
expected given a combination of prior context and
coarse-grained, uncertain bottom-up input more strongly
than they reflect true word surprisals. Additionally, tak-

ing input uncertainty into account has the potential to

lead to a new framework in which eye movement con-
trol policies are seen as (near-) rational solutions to an
optimization problem in which the goal of reading is to
discern the contents of the sentence rapidly and with
high accuracy. Bicknell and Levy (2010) presented this
framework and a first implementation, using a combi-
nation of noisy-channel probabilistic grammatical infer-
ence and reinforcement learning ( Russell & Norvig,
2003, Chapter 21; Sutton & Barto, 1998). They demon-
strated that regressive eye movements can be viewed as
a rational response to the above optimization problem:
the occasional re-reading necessitated by setting the re-
quired level of first-pass identification accuracy only
moderately high is an acceptable price to pay for the
increased overall speed of reading it allows.

In summary, then, we have seen a picture of the deep
intertwinement of sophisticated grammatical knowledge,
information uptake from perceptual input, and decision-
making regarding eye movements on rapid time scales
in sentence comprehension during reading. We have
seen evidence for surprisingly law-like behavior in sev-
eral respects—including beliefs about sentence structure
and identity being well-described by the integration of
visual input with linguistic knowledge through the rules
of probability theory, and a systematic relationship
holding between the conditional probability of a word
and how long it is fixated. Apparent difficulties for this
picture have led to a more careful assessment of basic
assumptions regarding the nature of the input represen-
tations in sentence-level comprehension, which in turn
has led to richer models which make novel predictions.
The larger lesson is that appropriately accounting for
environmental and cognitive constraints in probabilistic
models can sometimes lead to a more nuanced and
ultimately more satisfactory picture of key aspects of
human cognition. Thus far, this lesson has been strik-
ingly true for eye movements in real-time linguistic
comprehension; one can hope that it may continue to
hold in this domain, and that it may hold in other

cognitive domains as well.
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