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Q: Is it possible to accelerate Gradient Descent (GD)
without changing the algorithm?
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Introduction

Q: Can we accelerate Gradient Descent (GD) without changing the algorithm?

Instead, simply by a judicious choice of stepsizes?

GD : xk+1 = xk − ηk∇f (xk)

Mainstream GD analysis uses constant (or diminishing) stepsize η

Convergence rate: typically O(1/ϵ) iterations

Example Applications: Modern optimization, engineering, machine learning

Earlier empirical works hint at potential advantages (e.g., cyclic schedules in NN training)

Huge variety of other gradient-based methods (momentum, Nesterov, adaptive, etc) –
here we can ONLY change the stepsize (non-adaptively)
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Mainstream GD Analysis

Typical settings: convex M-smooth, or (M,m) strongly convex

With constant stepsize η, convergence in O(1/ϵ) or O(κ log(1/ε)) iterations (slow rate,
unaccelerated rate)

E.g., textbooks by Polyak, Nesterov, Boyd, Vandenberghe, Bertsekas, Bubeck, Hazan

Issue: Constant schedule converges slowly, even after optimizing η. For instance, for
M-smooth, m-strongly convex functions, optimal (1-step) stepsize gives

η⋆ =
2

m +M
, ∥xk+1 − x⋆∥ ≤

(
M −m

M +m

)
∥xk − x⋆∥ ≈ (1− 2

κ
)∥xk − x⋆∥

where κ = M/m is the condition number

Many other stepsize proposals (e.g., line search, Armijo, Goldstein, Barzilai-Borwein), but
don’t provably help for convex optimization

Any reason to be hopeful?
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Convex Quadratic Functions (Young 1953)

Minimize f (x) = 1
2x

⊤Qx where Q is positive definite (mI ⪯ Q ⪯ MI )

GD : xk+1 = xk − ηk∇f (xk) = xk − ηkQxk = (I − ηkQ)xk

Nice, because it becomes a question about eigenvalues:

eig(I − ηkQ) = 1− ηkeig(Q)

Stepsize design is a polynomial optimization problem:

min
η

max
λ∈[m,M]

∣∣∣ n∏
k=1

(1− ληk)︸ ︷︷ ︸
pη(λ)

∣∣∣

Find a polynomial pη(λ) with pη(0) = 1 that is “small” on [m,M].
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Convex Quadratic Functions (Young 1953)

Classic problem, with a classic answer:
(scaled) Chebyshev polynomials.

Young (1953):

Optimal gradient stepsizes are the inverse roots of
(scaled) Chebyshev polynomials.

Associated convergence rate is O(
√
κ)

Proves advantage of non-constant stepsizes. But, unclear
whether it extends to other settings!

Key Point: Non-constant stepsizes (hedging) can
accelerate convergence — at least for quadratics

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Altschuler / Parrilo Accelerating Gradient Descent by Stepsize Hedging June 2024 5 / 23



Quadratic functions (and polynomials) are very special

(At least) three different viewpoints:

Inverse roots and minimax characterization of
Chebyshev polynomials

Orthogonal polynomials and three-term recurrence
(Heavy Ball, momentum, . . . )

Asymptotic root distribution (arcsine distribution,
potential theory, universality)

Unfortunately, most of these methods and proof techniques do not gracefully extend to the
general (convex non-quadratic) case... :(
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Convex Optimization Challenges

Before 2018, it was unknown whether any stepsize schedule leads to speedup over
constant steps for any setting beyond quadratics

Core difficulties: Many phenomena false beyond quadratics, multistep reasoning necessary

Additional challenge: How to find optimal stepsizes beyond quadratics

Quadratic Convex
Mainstream Θ(κ) by constant stepsizes (folklore) Θ(κ) by constant stepsizes (folklore)

Mod. Algorithm Θ(
√
κ) by Heavy Ball (Polyak’64) Θ(

√
κ) by Nesterov Acceleration

Hedged Stepsizes Θ(
√
κ) by Chebyshev Stepsizes (Young’53) ???????

Table: Iteration complexity of various approaches for minimizing a κ-conditioned convex function. The
dependence on the accuracy ε is omitted as it is always log 1/ε.
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Does Hedging Help for Non-Quadratic Convex Functions?

Consider two possible setups: Minimize f (x), which is either

convex and M-smooth
m-strongly convex and M-smooth

Algorithmic Opportunity: Similar intuition as in quadratic case. Worst-case functions
may not align, so there is an incentive for hedging

Hopefully easier to understand first: what can we do with two stepsizes?

Should they be the same? If not, do we want to do long/short, or short/long?

Altschuler / Parrilo Accelerating Gradient Descent by Stepsize Hedging June 2024 8 / 23



The two-step case (Altschuler 2018)

Consider
x1 = x0 − α∇f (x0), x2 = x1 − β∇f (x1) ,

and define the worst-case convergence rate over a function class F as

R(α, β;F) := sup
f ∈F , x0 ̸=x∗

∥x2 − x∗∥
∥x0 − x∗∥

The question of optimal stepsizes is therefore the minimax problem minα,β R(α, β;F)

Theorem (Altschuler 2018, Thm 8.10)

For (m,M)-convex functions, the optimal two-step schedule and rate are

α∗ =
2

m + S
, β∗ =

2

2M +m − S
, R∗ =

S −M

2m + S −M
,

where S =
√
M2 + (M −m)2. Since R⋆ ≈ 1− 2(1+

√
2)

κ <
(
M−m
M+m

)2
≈ 1− 4

κ , repeating this

periodically gives a constant-factor improvement over the 1-step rate.
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Figure: Stepsize hedging (m = 1/4,M = 1): quadratic (left) vs convex (right).
These are level sets of the convergence rate. Notice the symmetry-breaking, short/long is optimal.
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How much better?

OK, can do better with n = 2. What about n = 3, 4, . . .. How much better?

Altschuler 2018 First results showing that non-constant steps help beyond quadratics.

Strongly convex and smooth (optimal 2- and 3-step)
Separable functions (iid arcsine stepsize, full acceleration)

Daccache 2019, Eloi 2022 Optimal stepsizes for n = 2, 3 for smooth case, also different
performance criteria.

Das Gupta-Van Parys-Ryu 2022 Combined Branch & Bound and PESTO SDP to
numerically search for n-step schedules (up to n = 50)

Grimmer 2023 Extend and round B&B solutions to rational numbers to rigorously certify
approximate schedules up to n = 127, yields larger constant factor improvements.

Altschuler-P. 2023 Extends 2-step solution from [A. 2018] via recursion, proving
acceleration and first asymptotic improvement: O(κ0.7864). For convex, O(ε−0.7864) (first
via black-box reductions, later via simpler limiting case).

Grimmer-Shu-Wang 2023 Concurrent, obtain rates O(κ0.947) and O(ε−0.947).

Altschuler / Parrilo Accelerating Gradient Descent by Stepsize Hedging June 2024 11 / 23



Aside: the Silver Ratio

Define the number ρ := 1 +
√
2 (from the 2-step solution)

We have logρ 2 ≈ 0.7864 (from our convergence rate)

One of the “metallic means”

n = 1 : Golden ratio (1 +
√
5)/2

n = 2: Silver ratio 1 +
√
2

n = 3: Bronze ratio . . .

Apparently used in Eastern architecture, and Japanese anime characters
(though, there the ratios seem to be

√
2 : 1)
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Good Stepsize Hedging through Silver Stepsizes

Silver Stepsize Schedule: a natural recursive construction
(but can be made explicit)

Non-monotonic fractal order, convergence rate has a phase
transition

Proof of multistep descent by enforcing long-range
consistency conditions among iterates

Non-strongly convex case is the (much simpler) limit of the
(m,M) strongly convex case
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Silver Stepsizes in (m,M) Strongly Convex Setting

Fully explicit recursive construction (later)

Schedule is near-periodic of period κlog2 ρ

Largest stepsizes increase exponentially and later saturate

Convergence rate has phase transition 2^0 2^5 2^10 2^15

-0.08

-0.06

-0.04

-0.02

0.00

n

(1
/n
)
lo
g
τ n

κ=400

κ=200

κ=100

0 10 20 30 40 50 60
0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60
0

2

4

6

8

0 10 20 30 40 50 60
0

5

10

15

20

25

30

0 10 20 30 40 50 60
0

20

40

60

80

Figure: Silver Stepsizes for condition numbers κ = 4, 16, 64, 256 (only first 64 steps shown)

Altschuler-P., “Acceleration by Stepsize Hedging I: Multi-Step Descent and the Silver Stepsize Schedule,” arXiv:2309.07879
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Quadratic Convex
Mainstream Θ(κ) by constant stepsizes (folklore) Θ(κ) by constant stepsizes (folklore)

Mod. Algorithm Θ(
√
κ) by Heavy Ball (Polyak’64) Θ(

√
κ) by Nesterov Acceleration

Hedged Stepsizes Θ(
√
κ) by Chebyshev Stepsizes (Young’53) Θ(κlog2 ρ) by Silver Stepsizes

Table: Iteration complexity for κ-conditioned convex functions. Here logρ 2 ≈ 0.7864
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Silver Stepsizes in M-smooth convex setting

Simpler limiting case as κ → ∞. Recursive construction:

h2n+1 = [ hn, 1 + ρk−1, hn ],

with h1 := [
√
2].

Can be made explicit, easy to implement (e.g., Python)

[1+rho**((k & -k).bit length()-2) for k in range(1,64)]

Theorem

If f is convex and M-smooth, Silver Stepsizes yield (n = 2k − 1)

f (xn)− f⋆ ≤
M

2nlog2 ρ
∥x0 − x⋆∥2 ≈

M

2n1.2716
∥x0 − x⋆∥2
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Altschuler-P., “Acceleration by Stepsize Hedging II: Silver Stepsize Schedule for Smooth Convex Optimization,” arXiv:2309.16530
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How to analyze this?

Techniques have long history in dynamical systems and robust control (Lyapunov, µ-analysis,
Linear Matrix Inequalities (LMIs), Integral Quadratic Constraints (IQCs), Sum of Squares
(SOS). More recently, PEP/PESTO, neural network certification, etc.)

Essentially:

Write valid inequalities for the “uncertain” or “nonlinear” part of the system.
Typically quadratic or polynomial.

Use Lagrangian duality (or stronger things, like the Positivstellensatz) to find an identity
that “obviously” certifies the desired conclusion

Key: Proof system is convex optimization-friendly (e.g., SDP)
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Proof strategy for GD

Desired function class F is described through interpolability conditions (Rockafellar,
Taylor, etc.). For instance, for (m,M) strong convexity, all data (xi , gi , fj) satisfies

Qij := 2(M −m)(fi − fj) + 2⟨Mgj −mgi , xj − xi ⟩ − ∥gi − gj∥2 −Mm∥xi − xj∥2 ≥ 0

Combine valid quadratic inequalities by nonnegative linear combinations (i.e., Lagrangian
duality)

E.g., Drori-Teboulle 2014, Lessard-Recht-Packard 2016, Taylor-Hendrickx-Glineur 2016,
. . .

Usually works fine for fixed n.
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In our case (at a high level)

Want to certify that for our stepsize choice ηk , the set of equations describing:

Interpolability conditions on the data: Qij ≥ 0 for all pairs 1 ≤ i , j ≤ n

Method definition: gradient descent equations

xk+1 = xk − ηkgk

directly imply the desired rate inequality.

For any finite n, this is just a finite collection of linear/quadratic inequalities in (fi , gi , xi ). In
particular we can do this by finding nonnegative multipliers λij such that∑

ij

λijQij + (something squared) = ∥x0 − x⋆∥2 +
1

Rn
(f⋆ − fn).

since this obviously implies fn − f⋆ ≤ Rn∥x0 − x⋆∥2.
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Proof strategies

Caveats (!)

To prove asymptotic improvements (not just constant factors), this must be done
“symbolically,” i.e., for all values of n

Finding stepsizes ηk is not (yet?) a convex problem. Typically, one proposes an ansatz
based on small instances, and attempts to prove it.

In our case, the Silver Stepsizes were motivated by Jason’s 2-step solution and numerical work.

We believe they are essentially optimal (work in progress, more soon!)
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Recursive gluing

A recursive certificate that almost works, by “gluing” two smaller certificates

Then don’t quite match, but can modify things to fix it

Write perturbation as sum of two quadratic forms:

λij = Θij︸︷︷︸
gluing

+ Ξij︸︷︷︸
rank-one correction

+ ∆ij︸︷︷︸
sparse correction

Then an induction argument proves the identity for all n

Proof verification is fully algorithmic – no need to trust
our math!
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Things to think about

Finer-grained understanding for restricted function classes

Robustness (cf. Devolder et al. for Nesterov’s)

Connections to superacceleration in neural network training?

Rethink offline to online conversions

Beyond GD: Re-investigating algorithms that use greedy analyses
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Takeaways

Why this is interesting: provides a new mechanism for acceleration

Result: Can (partially) accelerate GD simply by non-adaptive stepsize choice!

Intuition: Hedging between misaligned worst-case functions

Analysis: Multi-step descent by enforcing long-range consistency along GD trajectory

Carefully exploits the “rigidity” of the cost at different timesteps

Can we make algorithm analysis AND design fully algorithmic?
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