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Outline

• Optimization vs. games: alternating quantifiers

• Motivation, examples

• Polynomial games, and geometry of solutions

• Nonnegativity, sum of squares, and SDP

• Characterization of mixed strategies

• Putting it all together

• Semialgebraic games

• Future research and conclusions.
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Optimization and games

Setting \ # DM One Many

Static Optimization Game theory
Dynamic Optimal control Dynamic games

Abstractly, what matters is the structure of the logical formula. Both
existential and universal quantifiers?

{

∃xP (x)
∀xP (x)

vs.

{

∃x ∀y P (x, y)
∀x ∃y P (x, y)

• Many versions (minimax, games, robust control, etc.)

• Different levels of the polynomial hierarchy NP/co-NP = Σ1/Π1,
Σ2/Π2, . . .
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From optimization to games

• Problems with two alternating quantifiers.

∃x∀yP (x, y) ∀x∃yP (x, y)

• We are interested in predicates that are semialgebraic.

• In general, harder than NP-complete, in the second level of the poly-
nomial hierarchy.

• Game theory

• Minimax optimization

• Robust control, robust optimization

An important feature: we consider mixed strategies.

• Sometimes, however, this is irrelevant: optimal strategies are pure.
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Game theory 101: finite games

Two-player, zero-sum, finite games, strategic form.

Example: Rock, paper, scissors

P1 \ P2

0 -1 1

1 0 -1

-1 1 0

P1 chooses rows, P2 chooses columns. Finite number of pure strategies.

Notions of equilibria? How to compute “optimal” strategies?
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Review: finite games, LP solution

Well-defined equilibrium concept: minimax value of the game.

Optimal strategies are randomized (mixed).

For mixed strategies, we have von Neumann’s minimax theorem:

max
x∈∆n

min
y∈∆m

xTPy = min
y∈∆m

max
x∈∆n

xTPy.

Can compute this by solving the primal-dual pair of LPs






max α

s.t. PTx ≥ α1

x ∈ ∆n







min β
s.t. Py ≤ β1

y ∈ ∆m

Gives a saddle point (x∗, y∗) ∈ ∆n × ∆m:

max
x∈∆n

xTPy∗ = xT
∗ Py∗ = min

y∈∆m
xT
∗ Py.
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Infinite strategies

We are interested in games with an infinite number of pure strategies.

In particular, the strategy sets will be semialgebraic, defined by polynomial
equations and inequalities.

How to characterize and compute optimal strategies?

It is known that under mild conditions, we can always discretize and ap-
proximate with a finite game.

However, that can be irrelevant for computation. For instance, the same
thing is true for optimization problems...
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Example: A guessing game

X = {x | − 1 ≤ x ≤ 1}

Y = {y | − 1 ≤ y ≤ 1}

P (x, y) = (x − y)2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1

0

1

0

0.5

1

1.5

2

2.5

3

3.5

4

(x−y)2

x
y

• Zero-sum, infinite number of pure strategies.

• The simplest case, the strategy space is [−1, 1] × [−1, 1], and the
payoff (to X) is a polynomial function of x and y.

Does the game have a value?
What are the optimal strategies, and how to compute them?



9- SOS/SDP: Optimization and Games

Polynomial games

Introduced by Dresher, Karlin and Shapley (1950). No computational
methods available (other than discretization).

• Here, we’ll concentrate on two-player, zero-sum games

• Simplest case, strategy space is [−1, 1] × [−1, 1], and the payoff is a
polynomial function of x and y

• The value of the game is well-defined

• Optimal strategies exist. WLOG, finite support.

• Includes polynomial optimization as special case.
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A simple game: solution

X = {x | − 1 ≤ x ≤ 1}

Y = {y | − 1 ≤ y ≤ 1}

P (x, y) = (x − y)2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1

0
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0
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3.5

4

(x−y)2

x
y

• For pure strategies, maxmin 6= minmax. Need to randomize.

• Player X plays x = −1 or x = 1 with probability 1
2.

• Player Y always plays y = 0.

• The value of the game is 1, no player has incentive to deviate.

Too easy. What about general polynomial payoffs?
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Computing the solution

Zero-sum polynomial game in [−1, 1] × [−1, 1], payoff function given by

P (x, y) =

n
∑

i=0

m
∑

j=0

pijx
iyj.

The mixed strategies for each player correspond to measures ν, µ.

Similar to the finite case, want to solve

max
ν

min
µ

Eν×µ[P (x, y)] = min
µ

max
ν

Eν×µ[P (x, y)].

where ν, µ are probability measures with support in [−1, 1].
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Moments and minimax

max
ν

min
µ

Eν×µ[P (x, y)] = min
µ

max
ν

Eν×µ[P (x, y)].

Equivalently,

max
νi

min
µj

n
∑

i=0

m
∑

j=0

pijνiµj = min
µj

max
νi

n
∑

i=0

m
∑

j=0

pijνiµj.

where νj, µj are the moments

νj :=

∫ 1

−1
xjdν, µj :=

∫ 1

−1
yjdµ.

What does the set of moments look like?
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Geometry of Moments

The set of moments of measures
supported on [−1, 1] is convex.

Convex hull of the curve (1, t, . . . , td).

Not polyhedral (a “spectrahedron”).
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Well-understood geometry.

“Simplicial”: every supporting hyperplane yields a simplex.

Related to cyclic polytopes.
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Moments and minimax

The game is equivalent to:

max
νi

min
µj

n
∑

i=0

m
∑

j=0

pijνiµj = min
µj

max
νi

n
∑

i=0

m
∑

j=0

pijνiµj.

A bilinear function, and two finite dimensional compact convex sets.

Thus, the minimax theorem still applies.

Key fact: The optimal strategies are characterized only in terms of its
first m (or n) moments. Higher moments are irrelevant.

How to compute solutions? What’s the equivalent of the game LPs?
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Computation

Similar derivation as in the finite case: if Player 1 knows the strategy µ of
Player 2, he can ensure a payoff of maxx∈[−1,1] Eµ[P (x, y)].

Thus, Player 2 should be optimizing

min
β,µ

β s.t.

{

Eµ[P (x, y)] =
∫ 1
−1 P (x, y)dµ ≤ β ∀x ∈ [−1, 1]

supp(µ) ⊆ [−1, 1]
(1)

Since P (x, y) is polynomial, the constraints can be equivalently written in
terms of the first m moments of the measure µ:

Eµ[P (x, y)] =

∫ 1

−1
P (x, y)dµ =

n
∑

i=0

m
∑

j=0

pijx
iµj.

This is a univariate polynomial in x.
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From minimax to optimization

Thm: (P.) Consider a zero-sum polynomial game in [−1, 1]× [−1, 1], with
payoff function given by

P (x, y) =

n
∑

i=0

m
∑

j=0

pijx
iyj.

The value of the game, and optimal mixed strategies, can be computed
via

min β s.t.

{ ∑n
i=0

∑m
j=0 pijµjx

i ≤ β ∀x ∈ [−1, 1]

µj are moments of a [−1, 1] measure

This is a convex optimization problem.

Furthermore, is exactly equivalent to a finite-dimensional SDP problem.
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Two obstacles

To solve this, we need to understand how to computationally characterize:

• Polynomials that are nonnegative on a given set.

• The valid moments of a measure.

Interestingly, the answers turn out to be dual of each other!

We’ll explain how. But first, a mini-review about SDP.
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Semidefinite programming - background

• A semidefinite program:

M(z) := M0 +

m
∑

i=1

ziMi � 0,

where z ∈ R
m are decision variables and

Mi ∈ R
n×n are given symmetric matrices.

PSD cone

O

L

• The intersection of an affine subspace and the self-dual convex cone
of positive semidefinite matrices.

• Convex finite dimensional optimization problem.

• A broad generalization of linear programming. Nice duality theory.

• Essentially, solvable in polynomial time (interior point, etc.).

• Many applications.
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Nonnegativity of polynomials

How to check if a given F (x1, . . . , xn) is globally nonnegative?

F (x1, x2, . . . , xn) ≥ 0, ∀x ∈ R
n

In general, a hard question. NP-hard if deg(F ) ≥ 4.

A “simple” sufficient condition: a sum of squares (SOS) decomposition:

F (x) =
∑

i

f2
i (x) ⇒ F (x) ≥ 0, ∀x ∈ R

n.

Important properties:

• In some cases (e.g. univariate), it is exact.

• Efficiently computable, using semidefinite programming.
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Some notation

For later reference, define a linear operator H : R
2d−1 → Sd:

H :











a1

a2

...
a2d−1











7→











a1 a2 . . . ad

a2 a3 . . . ad+1

... ... . . . ...
ad ad+1 . . . a2d−1











.

Its adjoint H∗ : Sd → R
2d−1 is given by:

H∗ :











m11 m12 . . . m1d

m12 m22 . . . m2d
... ... . . . ...

m1d m2d . . . mdd











7→



















m11

2m12

m22 + 2m13

...
md−1,d−1 + 2md−2,d

mdd



















,

that “flattens” a matrix by adding along antidiagonals. Furthermore, let

L1 =

[

In×n

01×n

]

, L2 =

[

01×n

In×n

]

.
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SOS and SDP

Lemma 1. The polynomial p(x) =
∑2d

k=0 pkx
k is nonnegative (or SOS)

if and only if there exist S ∈ Sd+1, S � 0 such that








p0
p1
...

p2d









= H∗(S).

Proof: For univariate polynomials, nonnegativity is equivalent to SOS. Furthermore,
letting md := [1, x, . . . , xd]T , for every S ∈ Sd+1 we have

p(x) = 〈H∗(S),m2d〉 = mT
d Smd.

Example:

x4 − 2x2 + 2 = 1 + (1 − x2)2 =







1

x

x2







T 





2 0 −1

0 0 0

−1 0 1













1

x

x2






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Polynomials nonnegative on an interval

Lemma 2. The polynomial p(x) =
∑n

k=0 pkx
k is nonnegative in [−1, 1]

if and only if there exist S, T � 0 such that








p0
p1
...

pn









= H∗(S + L1TLT
1 − L2TLT

2 ).

Proof. Follows directly from the relationships between SOS and SDP,
and the fact (Fekete) that

p(x) ≥ 0 ∀x ∈ [−1, 1] ⇔ p(x) = s(x) + t(x)(1 − x2).

where s(x), t(x) are SOS.

This is an SDP characterization!
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Valid measures

Lemma 3. The vector µ = [µ0, µ1, . . . , µn]T is a valid moments sequence
for a measure in [−1, 1] if and only if

H(µ) � 0

LT
1 H(µ)L1 − LT

2 H(µ)L2 � 0

eT
1 µ = 1.

This result follows from the previous lemma, by the duality between non-
negative polynomials and moment spaces. Also, direct proofs (Hausdorff,
Markov, etc).

Example: {µ0, µ1, µ2, µ3, µ4} are valid moments if and only if




µ0 µ1 µ2
µ1 µ2 µ3
µ2 µ3 µ4



 � 0,

[

µ0 − µ2 µ1 − µ3
µ1 − µ3 µ2 − µ4

]

� 0, µ0 = 1.
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Explicit SDP

Recall

min β s.t.

{ ∑n
i=0

∑m
j=0 pijµjx

i ≤ β ∀x ∈ [−1, 1]

µj are moments of a [−1, 1] measure

We can put all conditions together in an explicit SDP:

min β s.t.



























H∗(Z + L1WLT
1 − L2WLT

2 ) = β e1 − Pµ
H(µ) � 0

LT
1 H(µ)L1 − LT

2 H(µ)L2 � 0

eT
1 µ = 1

Z, W � 0.

A perfect generalization of the well-known LP for matrix games!
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SDP and game-theoretic duality

Self-dual: convex duality corresponds to switching players.

The dual SDP is

min α s.t.



























H(ν) � 0

LT
1 H(ν)L1 − LT

2 H(ν)L2 � 0

H∗(A + L1BLT
1 − L2BLT

2 ) = α e1 + PTν

eT
1 ν = 1

A, B � 0

that corresponds to the mapping (P, Z, W, µ, β) ↔ (−PT , A, B, ν, α).

Thm: Let G(P ) represent the value of the game with payoff function
P (x, y). Then,

G(P (x, y)) = G(−P (y, x)).
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Obtaining the measures

How to recover the optimal measures from the computed moments?

A very classical problem, with a classical solution (Hausdorff, etc)

The extreme measures are (in general) discrete, with atoms in the zeros of
the polynomials β −

∫

P (x, y)dµ(y) and α + P (x, y)dν(x).

To obtain the measures, need to factorize a univariate polynomial, and
solve a linear system to find the corresponding weights.
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Example

The payoff function is given by:

P (x, y) = 5xy − 2x2 − 2xy2 − y.

Solving using the SOS approach, we obtain:

µ =







1

0.56

1






, Z =

[

0.08 −0.4

−0.4 2

]

, W = 0.
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5 x y−2 x2−2 x y2−y

y

The value of the game is β = −0.48.
The optimal mixed strategies are

• P1 always picks x = 0.2

• P2 plays y = 1 with probability 0.78,
and y = −1 with probability 0.22.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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t

Value of the game = −0.48

P(0.2,t)
0.22*P(t,−1)+0.78*P(t,1)
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Semialgebraic games

We described in detail only the univariate case. Can extend to semialgebraic
strategy sets X ⊂ R

n,Y ⊂ R
m.

• Two semialgebraic sets, a polynomial payoff.

• Becomes NP-hard, since both polynomial nonnegativity and moment
sequences are.

• However, we can approximate arbitrarily tightly via Positivstellensatz
or Schmüdgen/Putinar representations.

• In some cases, exact results (“Hilbert” games) or hard bounds on the
value of the game.
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General setting

Let S ⊂ E1, T ⊂ E2 be proper cones, and P : E2 → E∗
1 . Then, the

game can be solved via:














max α
s.t. P ∗x − α eT ∗ ∈ T ∗

x ∈ S
〈eS∗, x〉 = 1















min β
s.t. β eS∗ − Py ∈ S∗

y ∈ T
〈eT ∗, y〉 = 1

The convex cones S, T are now the moments of measures supported on the
given semialgebraic sets. The dual cones S∗, T ∗ correspond to nonnegative
polynomials in the sets.
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Semialgebraic games: solution

The sets S,S∗, T , T ∗ can be uniformly approximated via SOS/SDP.

For positive polynomials, under mild compactness conditions (Putinar):

p(x) > 0 on {x ∈ R
n|gi(x) ≥ 0} ⇔ p(x) = s0(x) +

∑

i si(x)gi(x)

where the si(x) are SOS.

By restricting the degree in the SOS representations, we obtain

• inner approximations to S∗, T ∗

• outer approximations to S, T

Converges to the value of the game. However, in general no hard bounds,
unless the approximations on either side are exact.

Alternatively, use inner approximations for measures (essentially, discretiza-
tion).
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Other extensions

• Separable rational games

• Correlated equilibria for nonzero sum, or more players? Almost, but
complicated by the fact that we cannot reduce the problem to pure
moment space.
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Summary

• Optimization and games, common setting

• A useful computational framework for games with infinite number of
pure strategies.

• Relationships between SOS and SDP

• A broad generalization of known successful techniques.

• Unifies numerical and algebraic approaches.


