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6. The Positivstellensatz
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• Hierarchy of certificates

• Boolean minimization and the S-procedure

• Exploiting structure
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Basic Semialgebraic Sets

The basic (closed) semialgebraic set defined by polynomials f1, . . . , fm is
{
x ∈ Rn | fi(x) ≥ 0 for all i = 1, . . . ,m

}

Examples

• The nonnegative orthant in Rn

• The cone of positive semidefinite matrices

• Feasible set of an SDP; polyhedra and spectrahedra

Properties

• If S1, S2 are basic closed semialgebraic sets, then so is S1 ∩ S2; i.e.,
the class is closed under intersection

• Not closed under union or projection
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Semialgebraic Sets

Given the basic semialgebraic sets, we may generate other sets by set the-
oretic operations; unions, intersections and complements.

A set generated by a finite sequence of these operations on basic semial-
gebraic sets is called a semialgebraic set.

Some examples:

• The set
S =

{
x ∈ Rn | f (x) ∗ 0

}

is semialgebraic, where ∗ denotes <,≤,=, 6=.

• In particular every real variety is semialgebraic.

• We can also generate the semialgebraic sets via Boolean logical oper-
ations applied to polynomial equations and inequalities
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Semialgebraic Sets

Every semialgebraic set may be represented as either

• an intersection of unions

S =

m⋂

i=1

pi⋃

j=1

{
x ∈ Rn | sign fij(x) = aij

}
where aij ∈ {−1, 0, 1}

• a finite union of sets of the form
{
x ∈ Rn | fi(x) > 0, hj(x) = 0 for all i = 1, . . . ,m, j = 1, . . . , p

}

• in R, a finite union of points and open intervals

Every closed semialgebraic set is a finite union of basic closed semialgebraic
sets; i.e., sets of the form

{
x ∈ Rn | fi(x) ≥ 0 for all i = 1, . . . ,m

}
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Properties of Semialgebraic Sets

• If S1, S2 are semialgebraic, so is S1 ∪ S2 and S1 ∩ S2

• The projection of a semialgebraic set is semialgebraic

• The closure and interior of a semialgebraic sets are both semialgebraic

• Some examples:

Sets that are not Semialgebraic

Some sets are not semialgebraic; for example

• the graph
{

(x, y) ∈ R2 | y = ex
}

• the infinite staircase
{

(x, y) ∈ R2 | y = bxc
}

• the infinite grid Zn
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Tarski-Seidenberg and Quantifier Elimination

Tarski-Seidenberg theorem: if S ⊂ Rn+p is semialgebraic, then so are

•
{
x ∈ Rn | ∃ y ∈ Rp (x, y) ∈ S

}
(closure under projection)

•
{
x ∈ Rn | ∀ y ∈ Rp (x, y) ∈ S

}
(complements and projections)

i.e., quantifiers do not add any expressive power

Cylindrical algebraic decomposition (CAD) may be used to compute the
semialgebraic set resulting from quantifier elimination
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Feasibility of Semialgebraic Sets

Suppose S is a semialgebraic set; we’d like to solve the feasibility problem

Is S non-empty?

More specifically, suppose we have a semialgebraic set represented by poly-
nomial inequalities and equations

S =
{
x ∈ Rn | fi(x) ≥ 0, hj(x) = 0 for all i = 1, . . . ,m, j = 1, . . . , p

}

• Important, non-trivial result: the feasibility problem is decidable.

• But NP-hard (even for a single polynomial, as we have seen)

• We would like to certify infeasibility
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Certificates So Far

• The Nullstellensatz: a necessary and sufficient condition for feasibility
of complex varieties

{
x ∈ Cn | hi(x) = 0 ∀ i

}
= ∅ ⇐⇒ −1 ∈ ideal{h1, . . . , hm}

• Valid inequalities: a sufficient condition for infeasibility of real basic
semialgebraic sets

{
x ∈ Rn | fi(x) ≥ 0 ∀ i

}
= ∅ ⇐= −1 ∈ cone{f1, . . . , fm}

• Linear Programming: necessary and sufficient conditions via duality
for real linear equations and inequalities
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Certificates So Far

Degree \ Field Complex Real

Linear Range/Kernel Farkas Lemma
Linear Algebra Linear Programming

Polynomial Nullstellensatz ????
Bounded degree: LP ????

Groebner bases

We’d like a method to construct certificates for

• polynomial equations

• over the real field
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Real Fields and Inequalities

If we can test feasibility of real equations then we can also test feasibility
of real inequalities and inequations, because

• inequalities: there exists x ∈ R such that f (x) ≥ 0 if and only if

there exists (x, y) ∈ R2 such that f (x) = y2

• strict inequalities: there exists x such that f (x) > 0 if and only if

there exists (x, y) ∈ R2 such that y2f (x) = 1

• inequations: there exists x such that f (x) 6= 0 if and only if

there exists (x, y) ∈ R2 such that yf (x) = 1

The underlying theory for real polynomials called real algebraic geometry
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Real Varieties

The real variety defined by polynomials h1, . . . , hm ∈ R[x1, . . . , xn] is

VR{h1, . . . , hm} =
{
x ∈ Rn | hi(x) = 0 for all i = 1, . . . ,m

}

We’d like to solve the feasibility problem; is VR{h1, . . . , hm} 6= ∅?

We know

• Every polynomial in ideal{h1, . . . , hm} vanishes on the feasible set.

• The (complex) Nullstellensatz:

−1 ∈ ideal{h1, . . . , hm} =⇒ VR{h1, . . . , hm} = ∅

• But this condition is not necessary over the reals
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The Real Nullstellensatz

Recall Σ is the cone of polynomials representable as sums of squares.

Suppose h1, . . . , hm ∈ R[x1, . . . , xn].

−1 ∈ Σ + ideal{h1, . . . , hm} ⇐⇒ VR{h1, . . . , hm} = ∅

Equivalently, there is no x ∈ Rn such that

hi(x) = 0 for all i = 1, . . . ,m

if and only if there exists t1, . . . , tm ∈ R[x1, . . . , xn] and s ∈ Σ such that

−1 = s + t1h1 + · · · + tmhm
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Example

Suppose h(x) = x2 + 1. Then clearly VR{h} = ∅

We saw earlier that the complex Nullstellensatz cannot be used to prove
emptyness of VR{h}

But we have
−1 = s + th

with
s(x) = x2 and t(x) = −1

and so the real Nullstellensatz implies VR{h} = ∅.

The polynomial equation −1 = s + th gives a certificate of infeasibility.
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The Positivstellensatz

We now turn to feasibility for basic semialgebraic sets, with primal problem

Does there exist x ∈ Rn such that

fi(x) ≥ 0 for all i = 1, . . . ,m

hj(x) = 0 for all j = 1, . . . , p

Call the feasible set S; recall

• every polynomial in cone{f1, . . . , fm} is nonnegative on S

• every polynomial in ideal{h1, . . . , hp} is zero on S

The Positivstellensatz (Stengle 1974)

S = ∅ ⇐⇒ −1 ∈ cone{f1, . . . , fm} + ideal{h1, . . . , hm}
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Example

Consider the feasibility problem

S =
{

(x, y) ∈ R2 | f (x, y) ≥ 0, h(x, y) = 0
}

where

f (x, y) = x− y2 + 3

h(x, y) = y + x2 + 2

By the P-satz, the primal is infeasible if and only if there exist polynomials
s1, s2 ∈ Σ and t ∈ R[x, y] such that

−1 = s1 + s2f + th

A certificate is given by

s1 = 1
3 + 2

(
y + 3

2

)2
+ 6
(
x− 1

6

)2
, s2 = 2, t = −6.
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Explicit Formulation of the Positivstellensatz

The primal problem is

Does there exist x ∈ Rn such that

fi(x) ≥ 0 for all i = 1, . . . ,m

hj(x) = 0 for all j = 1, . . . , p

The dual problem is

Do there exist ti ∈ R[x1, . . . , xn] and si, rij, . . . ∈ Σ such that

−1 =
∑

i

hiti + s0 +
∑

i

sifi +
∑

i6=j
rijfifj + · · ·

These are strong alternatives
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Testing the Positivstellensatz

Do there exist ti ∈ R[x1, . . . , xn] and si, rij, . . . ∈ Σ such that

−1 =
∑

i

tihi + s0 +
∑

i

sifi +
∑

i6=j
rijfifj + · · ·

• This is a convex feasibility problem in ti, si, rij, . . .

• To solve it, we need to choose a subset of the cone to search; i.e.,
the maximum degree of the above polynomial; then the problem is a
semidefinite program

• This gives a hierarchy of syntactically verifiable certificates

• The validity of a certificate may be easily checked; e.g., linear algebra,
random sampling

• Unless NP=co-NP, the certificates cannot always be polynomially sized.
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Example: Farkas Lemma

The primal problem; does there exist x ∈ Rn such that

Ax + b ≥ 0 Cx + d = 0

Let fi(x) = aTi x + bi, hi(x) = cTi x + di. Then this system is infeasible if
and only if

−1 ∈ cone{f1, . . . , fm} + ideal{h1, . . . , hp}

Searching over linear combinations, the primal is infeasible if there exist
λ ≥ 0 and µ such that

λT (Ax + b) + µT (Cx + d) = −1

Equating coefficients, this is equivalent to

λTA + µTC = 0 λT b + µTd = −1 λ ≥ 0
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Hierarchy of Certificates

• Interesting connections with logic, proof systems, etc.

• Failure to prove infeasibility (may) provide points in the set.

• Tons of applications:
optimization, copositivity, dynamical systems, quantum mechanics...

General Scheme

Primal Feasibility

Lifted Problem P-satz refutation
SDP

Duality

Lifting
Algebraic
Duality

Lifted Problem P-satz refutation
SDP

Duality
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Special Cases

Many known methods can be interpreted as fragments of P-satz refutations.

• LP duality: linear inequalities, constant multipliers.

• S-procedure: quadratic inequalities, constant multipliers

• Standard SDP relaxations for QP.

• The linear representations approach for functions f strictly positive on
the set defined by fi(x) ≥ 0.

f (x) = s0 + s1f1 + · · · + snfn, si ∈ Σ

Converse Results

• Losslessness: when can we restrict a priori the class of certificates?

• Some cases are known; e.g., additional conditions such as linearity, per-
fect graphs, compactness, finite dimensionality, etc, can ensure specific
a priori properties.
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Example: Boolean Minimization

xTQx ≤ γ

x2
i − 1 = 0

A P-satz refutation holds if there is S º 0 and λ ∈ Rn, ε > 0 such that

−ε = xTSx + γ − xTQx +

n∑

i=1

λi(x
2
i − 1)

which holds if and only if there exists a diagonal Λ such that Q º Λ,
γ = trace Λ− ε.

The corresponding optimization problem is

maximize trace Λ

subject to Q º Λ

Λ is diagonal
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Example: S-Procedure

The primal problem; does there exist x ∈ Rn such that

xTF1x ≥ 0

xTF2x ≥ 0

xTx = 1

We have a P-satz refutation if there exists λ1, λ2 ≥ 0, µ ∈ R and S º 0
such that

−1 = xTSx + λ1x
TF1x + λ2x

TF2x + µ(1− xTx)

which holds if and only if there exist λ1, λ2 ≥ 0 such that

λ1F1 + λ2F2 ≤ −I

Subject to an additional mild constraint qualification, this condition is also
necessary for infeasibility.
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Exploiting Structure

What algebraic properties of the polynomial system yield efficient compu-
tation?

• Sparseness: few nonzero coefficients.

• Newton polytopes techniques

• Complexity does not depend on the degree

• Symmetries: invariance under a transformation group

• Frequent in practice. Enabling factor in applications.

• Can reflect underlying physical symmetries, or modelling choices.

• SOS on invariant rings

• Representation theory and invariant-theoretic techniques.

• Ideal structure: Equality constraints.

• SOS on quotient rings

• Compute in the coordinate ring. Quotient bases (Groebner)
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Example: Structured Singular Value

• Structured singular value µ and related problems: provides better up-
per bounds.

• µ is a measure of robustness: how big can a structured perturbation
be, without losing stability.

• A standard semidefinite relaxation: the µ upper bound.

• Morton and Doyle’s counterexample with four scalar blocks.

• Exact value: approx. 0.8723

• Standard µ upper bound: 1

• New bound: 0.895
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Example: Matrix Copositivity

A matrix M ∈ Rn×n is copositive if

xTMx ≥ 0 ∀x ∈ Rn, xi ≥ 0.

• The set of copositive matrices is a convex closed cone, but...

• Checking copositivity is coNP-complete

• Very important in QP. Characterization of local solutions.

• The P-satz gives a family of computable SDP conditions, via:

(xTx)d(xTMx) = s0 +
∑

i

sixi +
∑

jk

sjkxjxk + · · ·
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Example: Geometric Inequalities

Ono’s inequality: For an acute triangle,

(4K)6 ≥ 27 · (a2 + b2 − c2)2 · (b2 + c2 − a2)2 · (c2 + a2 − b2)2

where K and a, b, c are the area and lengths of the edges.

The inequality is true if:

t1 := a2 + b2 − c2 ≥ 0

t2 := b2 + c2 − a2 ≥ 0

t3 := c2 + a2 − b2 ≥ 0




⇒ (4K)6 ≥ 27 · t21 · t22 · t23

A simple proof: define

s(x, y, z) = (x4 +x2y2− 2y4− 2x2z2 +y2z2 + z4)2 + 15 · (x− z)2(x+ z)2(z2 +x2−y2)2.

We have then

(4K)6 − 27 · t21 · t22 · t23 = s(a, b, c) · t1 · t2 + s(c, a, b) · t1 · t3 + s(b, c, a) · t2 · t3

therefore proving the inequality.


