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5. Sum of Squares
e Polynomial nonnegativity
e Sum of squares (SOS) decompositions
e Computing SOS using semidefinite programming
e Liftings
e Dual side: moments
e Applications

e Global optimization
e Optimizing in parameter space
e Lyapunov functions

e Density functions and control synthesis
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Polynomial Nonnegativity

Before dealing with systems of polynomial inequalities, we study the sim-
plest nontrivial problem: one inequality.

Given f(x1,...,xp) (of even degree), is it globally nonnegative?

flzy,z9,...,2pn) >0, VreR"

e For quadratic polynomials (d = 2), very easy. Essentially, checking if
a matrix is PSD.

e The problem is NP-hard when d > 4.

e Problem is decidable, algorithms exist (more later). Very powerful,
but bad complexity properties.

e Many applications. We'll see a few. ..
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Sum of Squares Decomposition

A “simple” sufficient condition: a sum of squares (SOS) decomposition:

flx) = Zg?(x)a g; € Rlz]

If f(x) can be written as above, then f(x) > 0.

A purely syntactic, easily verifiable certificate.

Always a sufficient condition for nonnegativity.
In some cases (univariate, quadratic, etc.), also necessary.

But in general, SOS is not equivalent to nonnegativity.

However, a very good thing: we can compute this efficiently using SDP.
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Sum of Squares and SDP

Consider a polynomial f(x1,...,xy) of degree 2d.

Let z be a vector with all monomials of degree less than or equal to d.

The number of components of z is (nji_d)

Then, f is SOS iff:

flz)=21Qz, Q=0
o Factorize Q = LL'L. Then

fla)=2"L' Lz = ||Lz|| = ) _(L2);

1

e The terms in the SOS decomposition are given by g; = (Lz);.

e The number of squares is equal to the rank of ().
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e Comparing terms, we obtain linear equations for the elements of ().

e The desired matrices () lie in the intersection of an affine set of ma-
trices, and the PSD cone.

e |n general, () is not unique.

e Can be solved as semidefinite program in the standard primal form.

{Q =0, traceA;Q =10;}
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Multivariate SOS Example

f(z,y)

_;EQ_
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20 + 5y4 — x2y2 + 2x3y

q11 912 q13 |
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413 923 933
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4 4 2 9
gzt + oyt + (¢33 + 2q12)7°Y° + 2q133%y + 2qo37y°

The existence of a PSD () is exactly equivalent to feasibility of an SDP in
the standard primal form:

Q= 0,

subject to

qi1 = 2 q22 = O

2¢o3 =0 2q13 = 2

q33 + 2912 = —1
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Multivariate SOS Example (continued)

Solving numerically, we obtain a particular solution:

2 —31]
1 [2-31
= | -3 50|=L"L, L=—
¢ Lo \/5[0 13]

This @ has rank two, therefore f(x,y) is the sum of two squares:

| |
fla,y) = 5227 = 39" + ay)? + (v + 3ay)?

This representation certifies nonnegativity of f.

Using SOSTOOLS: [Q,Z]=findsos (2%x"4+5*%y~4-x"2%y~2+2xx"3%*y)



5-8 Sum of Squares P. Parrilo and S. Lall, ECC 2003 2003.09.02.03

Some Background
e |n 1888, Hilbert showed that PSD=SOS if and only if

e d = 2. Quadratic polynomials. SOS decomposition follows from
Cholesky, square root, or eigenvalue decomposition.

e n = 1. Univariate polynomials.

e d=4,n=2. Quartic polynomials in two variables.

e Connections with Hilbert's 17th problem, solved by Artin: every PSD
polynomial is a SOS of rational functions.

e If fis not SOS, then can try with gf, for some g.

e For fixed f, can optimize over g too

e Otherwise, can use a “universal’ construction of Pdlya-Reznick.

More about this later.
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M(x.y,1)

The Motzkin Polynomial

A positive semidefinite polynomial,
that is not a sum of squares.

SIS IS
et e% et
SSSSIRKSS

M(x,y) = x2y4 + :C4y2 +1— 3x2y2

il
Ul

e Nonnegativity follows from the arithmetic—gyeometric inequality
applied to (z%y*, z%y?, 1)

e Introduce a nonnegative factor 2+ y2 + 1

e Solving the SDPs we obtain the decomposition:

(2% + 9> + 1) M(z,y) = (z°y — y)* + (xy° — 2)° + (z°y° — 1)+
1 3
+ 1(93@/3 — 29y)° + Z(xy?’ + 2y — 2ay)?
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The Univariate Case:

Flz) = ap+ a1z + aox” + azz> + - - - + aggz®
T - o - -
1 qo0 qo1 --- qod | | 1
_ | 7 q01 411 --- q1d L
2] Lao0 @ - qaa] |2t
d .
OWIE
i=0 Njtk=i

e In the univariate case, the SOS condition is exactly equivalent to non-
negativity.

e The matrices A; in the SDP have a Hankel structure. This can be
exploited for efficient computation.
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A General Method: Liftings

Consider this polytope in R3 (a zonotope).
It has 56 facets, and 58 vertices.

Optimizing a linear function over this set, re-
quires a linear program with 56 constraints
(one per face).

However, this polyhedron is a three-
dimensional projection of the 8-dimensional

hypercube {z € R®, —1 < z; < 1}.

Therefore, by using additional variables, we
can solve the same problem, by using an LP
with only 16 constraints.

P. Parrilo and S. Lall, ECC 2003 2003.09.02.03
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Liftings

By going to higher dimensional representations, things may become easier:
e “Complicated” sets can be the projection of much simpler ones.

e A polyhedron in R" with a “small” number of faces can project to a
lower dimensional space with exponentially many faces.

e Basic semialgebraic sets can project into non-basic semialgebraic sets.

An essential technique in integer programming.

Advantages: compact representations, avoiding “case distinctions,” etc.
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Example

minimize (z — 3)°

subject to x(x —4) >0

The feasible set is |[—00, 0] U |4, 0o]. Not convex, or even connected.
Consider the lifting L : R — R?, with L(z) = (z,2%) = (x, 7).

Rewrite the problem in terms of the lifted variables.

y

1 x
Ty

e Constraint becomes: y — 4x > 0

e For every lifted point, [ ] = 0.

e Objective is now: y — 6z + 9

We “get around” nonconvexity: interior points are now on the boundary.
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The Dual Side of SOS: Moment Sequences

The SDP dual of the SOS construction gives efficient semidefinite liftings.
For the univariate case: L : R — SdH, with

1 x ... ZCd

2 d+1

L(x): Tr :1:
xdderl“. £C2d

The matrices L(x) are Hankel, positive semidefinite, and rank one.

The convex hull co L(x) therefore contains only PSD Hankel matrices.

1 owy ... wy
Hankel(w) = | | ~? | atl
| Wq Wyl - Waq

(in fact, in the univariate case every PSD Hankel is in the convex hull)
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SOS Dual (continued)

P. Parrilo and S. Lall, ECC 2003 2003.09.02.03

For nonnegativity, want to rule out the existence of x with f(z) < 0.

In the lifted variables, we can look at:

{Hankel(w) = 0, Z a;w; < O}

1
This is exactly the SDP dual of the univariate SOS construction.

k=i

e |If the first problem is feasible, there is always a w such that Hankel(w)
is rank one. It corresponds directly to the lifting of a primal point.

Direct extensions to the multivariate case. Though in general, PSD £ SOS.
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A General Scheme

Nonnegativity
o Relaxation
_ifting and
convex hull
Lifted problem < SDI-D > Sum of squares
P Duality L

e Lifting corresponds to a classical problem of moments.

e The solution to the lifted problem may suggest candidate points where
the polynomial is negative.

e The sums of squares certify or prove polynomial nonnegativity.

We'll be generalizing this. ..



5-17 Sum of Squares P. Parrilo and S. Lall, ECC 2003 2003.09.02.03

About SOS/SDP

e The resulting SDP problem is polynomially sized (in n).

e By properly choosing the monomials, we can exploit structure (sparsity,
symmetries, ideal structure).

e An important feature: the problem is still a SDP if the coefficients of
F" are variable, and the dependence is affine.

e Can optimize over SOS polynomials in affinely described families.

For instance, if we have p(z) = po(z) + api(x) + Bpa(x), we can
“easily” find values of «, 3 for which p(x) is SOS.

This fact will be crucial in everything that follows. . .
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Global Optimization

Consider the problem

with

min f(z, y)

P. Parrilo and S. Lall, ECC 2003 2003.09.02.03

f(x,y) = dz® — gt 4 220 4y — 42 + 4t

e Not convex. Many local minima. NP-hard.
e Find the largest v s.t. f(x,y) — v is SOS
e Essentially due to Shor (1987).

e A semidefinite program (convex!).

e |f exact, can recover optimal solution.

e Surprisingly effective.

e
’0’-‘

|
=)
/——g&'

‘0’.05

0—

_

o
\\‘ “ 'I//,
\\\\\\\“\\l‘\ ,

‘\“

Solving, the maximum v is -1.0316. Exact value.
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Why Does This Work?
Three independent facts, theoretical and experimental:
e The existence of efficient algorithms for SDP.
e The size of the SDPs grows much slower than the Bézout number .

e A bound on the number of (complex) critical points.

e A reasonable estimate of complexity.

e The bad news: ;1 = (2d — 1)" (for dense polynomials).
e Almost all (exact) algebraic techniques scale as p.

e The lower bound fSOS very often coincides with f*.
(Why? what does often mean?)

SOS provides short proofs, even though they're not guaranteed to exist.
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Coefficient Space

Let fo3(z) = 2* + (o + 38)27 + 282 — ax + 1.
What is the set of values of (o, 3) € R? for which fap is PSD? SO57

To find a SOS decomposition:

fap@) = 1—az+262° + (o + 38)z” + 2

_ - T _ - _ -

1 q11 912 13 1

= 9?2 q12 @22 @23 56’2
e | @13 @23 @33 | | 7

> A
= q11 + 2127 + (q22 + 2q13)7° + 2q037° + a3

The matrix () should be PSD and satisfy the affine constraints.
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The feasible set is given by:
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What is the set of values of (o, 3) € R? for which Japs PSD? 5057

Recall: in the univariate case PSD=SQ0S, so here the sets are the same.

36 a° b+4 a®+192 a?+576 a b-512 b?+..-288 b° =0

SOCSATIOTT 1}
:‘:‘:‘:‘33@&‘%\\\‘\‘“““""%
m\\\\\\\\\m ml,I’IIIII
SSSSTIIN

SN
SNy

e Convex and
semialgebraic.

. o NN
o It is the projection of a \ \\\uff,/////////
. 3 o 05¢ ~ //// ;
spectrahedron in R”. | \§§\§§§\\\\|yy///////////ﬁ///ﬁﬁ
e We can easily test mem- T S —~—~— S

. . RIS / NN
bership, or even optimize

over it!

el
i
0’3{“,";1';'0;[[;"”[,',’,"" .

0 1 2 3
a

Defined by the curve: 2883° — 36a%3* + 1164a5* + 19313* — 1320333 + 10360252 + 1956a/3% — 259233 — 112a43% +

4320332 + 11920232 — 1728082 + 51232 — 36053 + 72048 + 360038 — 576028 — 57603 — 4ab + 60at — 19202 — 256 = 0
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Lyapunov Stability Analysis

To prove asymptotic stability of x = f(x),

e For linear systems x
1 Py

P >0,

>

0 x#0

<0, z+#0

P. Parrilo and S. Lall, ECC 2003 2003.09.02.03

u=-3x+y
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Az, quadratic Lyapunov functions V(z) =

AP+ pPA <o

o With an affine family of candidate polynomial V, V is also affine.

e Instead of checking nonnegativity, use a SOS condition.

e Therefore, for polynomial vector fields and Lyapunov functions, we can
check the conditions using the theory described before.
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Lyapunov Example

A jet engine model (derived from Moore-Greitzer),
with controller:

, 3 9 13
T = —y+§x —551:
Yy = 5T —y

Try a generic 4th order polynomial Lyapunov function.
Vig,y) = Y cpaly”
0<j+k<A4
Find a V(z,y) that satisfies the conditions:
o V(x,y)is SOS.
o —V(x,y)is SOS.

Both conditions are affine in the c;;.. Can do this directly using SOS/SDP!
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After solving the SDPs, we obtain a Lyapunov function.

§:f-ﬁ-3x2/2-x3/2 U=-3x+y
sl - '/ > — ~ | — N\ ]
Al / s N
AL /7 T N A
L A / / = \ \
W e N
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Lyapunov Example (2)

(M. Krsti¢) Find a Lyapunov function for global asymptotic stability:

t=—-x+(1+2)y
y=—(1+x)x.

Using SOSTOOLS we easily find a quartic polynomial:
Vie,y) = 627 — 2xy + 8y2 — 2y3 + 3% + 6:1:2y2 + 3y4.
Both V(x,) and (—V(z,y)) are SOS:

-T r

x 6 —1 00 O x 17T 10 1 -1 1 .
Y -1 8 00 —1 Y y 1 92 1 -9 y
Vz,y) = | «* 0 030 O 2 —V(x,y) = 2 1 112 0 2
Ty 0O 006 0 Y - 1 -9 0 6 .
y? 0 -100 3|4 Y Y

The matrices are positive definite; this proves asymptotic stability.
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Extensions

Other linear differential inequalities (e.g. Hamilton-Jacobi).

Many possible variations: nonlinear H o analysis, parameter depen-
dent Lyapunov functions, etc.

Can also do local results (for instance, on compact domains).

Polynomial and rational vector fields, or functions with an underlying
algebraic structure.

Natural extension of the LMls for the linear case.

Only for analysis. Proper synthesis is trickier. . .
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Nonlinear Control Synthesis

Recently, Rantzer provided an alternative stability criterion, in some sense
“dual” to the standard Lyapunov one.

V-(pf)>0

e The synthesis problem is now convex in (p, up).
V- [o(f +gu) >0

e Parametrizing (p, up), can apply SOS methods.

Example ;:Z_x3+x2 u=-122x-057y-.129y®
T =1 — 75 + 2?
y=1u |

A stabilizing controller is: 1 A

u(x,y) = —1.222 — 0.57y — 0.129y>




