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5. Sum of Squares

• Polynomial nonnegativity

• Sum of squares (SOS) decompositions

• Computing SOS using semidefinite programming

• Liftings

• Dual side: moments

• Applications

• Global optimization

• Optimizing in parameter space

• Lyapunov functions

• Density functions and control synthesis
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Polynomial Nonnegativity

Before dealing with systems of polynomial inequalities, we study the sim-
plest nontrivial problem: one inequality.

Given f (x1, . . . , xn) (of even degree), is it globally nonnegative?

f (x1, x2, . . . , xn) ≥ 0, ∀x ∈ Rn

• For quadratic polynomials (d = 2), very easy. Essentially, checking if
a matrix is PSD.

• The problem is NP-hard when d ≥ 4.

• Problem is decidable, algorithms exist (more later). Very powerful,
but bad complexity properties.

• Many applications. We’ll see a few. . .
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Sum of Squares Decomposition

A “simple” sufficient condition: a sum of squares (SOS) decomposition:

f (x) =
∑

i

g2
i (x), gi ∈ R[x]

If f (x) can be written as above, then f (x) ≥ 0.

A purely syntactic, easily verifiable certificate.

Always a sufficient condition for nonnegativity.

In some cases (univariate, quadratic, etc.), also necessary.

But in general, SOS is not equivalent to nonnegativity.

However, a very good thing: we can compute this efficiently using SDP.
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Sum of Squares and SDP

Consider a polynomial f (x1, . . . , xn) of degree 2d.

Let z be a vector with all monomials of degree less than or equal to d.

The number of components of z is
(n+d
d

)
.

Then, f is SOS iff:

f (x) = zTQz, Q º 0

• Factorize Q = LTL. Then

f (x) = zTLTLz = ||Lz||2 =
∑

i

(Lz)2
i

• The terms in the SOS decomposition are given by gi = (Lz)i.

• The number of squares is equal to the rank of Q.
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f (x) = zTQz, Q º 0

• Comparing terms, we obtain linear equations for the elements of Q.

• The desired matrices Q lie in the intersection of an affine set of ma-
trices, and the PSD cone.

• In general, Q is not unique.

• Can be solved as semidefinite program in the standard primal form.

{Q º 0, traceAiQ = bi}
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Multivariate SOS Example

f (x, y) = 2x4 + 5y4 − x2y2 + 2x3y

=



x2

y2

xy



T 

q11 q12 q13
q12 q22 q23
q13 q23 q33





x2

y2

xy




= q11x
4 + q22y

4 + (q33 + 2q12)x2y2 + 2q13x
3y + 2q23xy

3

The existence of a PSD Q is exactly equivalent to feasibility of an SDP in
the standard primal form:

Q º 0, subject to





q11 = 2 q22 = 5

2q23 = 0 2q13 = 2

q33 + 2q12 = −1
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Multivariate SOS Example (continued)

Solving numerically, we obtain a particular solution:

Q =




2 −3 1
−3 5 0

1 0 5


 = LTL, L =

1√
2

[
2 −3 1
0 1 3

]

This Q has rank two, therefore f (x, y) is the sum of two squares:

f (x, y) =
1

2
(2x2 − 3y2 + xy)2 +

1

2
(y2 + 3xy)2

This representation certifies nonnegativity of f .

Using SOSTOOLS: [Q,Z]=findsos(2*x^4+5*y^4-x^2*y^2+2*x^3*y)
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Some Background

• In 1888, Hilbert showed that PSD=SOS if and only if

• d = 2. Quadratic polynomials. SOS decomposition follows from
Cholesky, square root, or eigenvalue decomposition.

• n = 1. Univariate polynomials.

• d = 4, n = 2. Quartic polynomials in two variables.

• Connections with Hilbert’s 17th problem, solved by Artin: every PSD
polynomial is a SOS of rational functions.

• If f is not SOS, then can try with gf , for some g.

• For fixed f , can optimize over g too

• Otherwise, can use a “universal” construction of Pólya-Reznick.

More about this later.
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The Motzkin Polynomial

A positive semidefinite polynomial,
that is not a sum of squares.

M(x, y) = x2y4 + x4y2 + 1− 3x2y2

• Nonnegativity follows from the arithmetic-geometric inequality
applied to (x2y4, x4y2, 1)

• Introduce a nonnegative factor x2 + y2 + 1

• Solving the SDPs we obtain the decomposition:

(x2 + y2 + 1)M(x, y) = (x2y − y)2 + (xy2 − x)2 + (x2y2 − 1)2+

+
1

4
(xy3 − x3y)2 +

3

4
(xy3 + x3y − 2xy)2
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The Univariate Case:

f (x) = a0 + a1x + a2x
2 + a3x

3 + · · · + a2dx
2d

=




1
x
...

xd




T 


q00 q01 . . . q0d
q01 q11 . . . q1d

... ... . . . ...
q00 q1d . . . qdd







1
x
...

xd




=

d∑

i=0

( ∑

j+k=i

qjk

)
xi

• In the univariate case, the SOS condition is exactly equivalent to non-
negativity.

• The matrices Ai in the SDP have a Hankel structure. This can be
exploited for efficient computation.
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A General Method: Liftings

Consider this polytope in R3 (a zonotope).
It has 56 facets, and 58 vertices.

Optimizing a linear function over this set, re-
quires a linear program with 56 constraints
(one per face).

However, this polyhedron is a three-
dimensional projection of the 8-dimensional
hypercube {x ∈ R8,−1 ≤ xi ≤ 1}.

Therefore, by using additional variables, we
can solve the same problem, by using an LP
with only 16 constraints.
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Liftings

By going to higher dimensional representations, things may become easier:

• “Complicated” sets can be the projection of much simpler ones.

• A polyhedron in Rn with a “small” number of faces can project to a
lower dimensional space with exponentially many faces.

• Basic semialgebraic sets can project into non-basic semialgebraic sets.

An essential technique in integer programming.

Advantages: compact representations, avoiding “case distinctions,” etc.
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Example

minimize (x− 3)2

subject to x (x− 4) ≥ 0

The feasible set is [−∞, 0] ∪ [4,∞]. Not convex, or even connected.

Consider the lifting L : R→ R2, with L(x) = (x, x2) =: (x, y).

Rewrite the problem in terms of the lifted variables.

• For every lifted point,

[
1 x
x y

]
º 0.

• Constraint becomes: y − 4x ≥ 0

• Objective is now: y − 6x + 9

We “get around” nonconvexity: interior points are now on the boundary.
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The Dual Side of SOS: Moment Sequences

The SDP dual of the SOS construction gives efficient semidefinite liftings.

For the univariate case: L : R→ Sd+1, with

L(x) =




1 x . . . xd

x x2 . . . xd+1

... ... . . . ...

xd xd+1 . . . x2d




The matrices L(x) are Hankel, positive semidefinite, and rank one.

The convex hull coL(x) therefore contains only PSD Hankel matrices.

Hankel(w) :=




1 w1 . . . wd
w1 w2 . . . wd+1
... ... . . . ...
wd wd+1 . . . w2d




(in fact, in the univariate case every PSD Hankel is in the convex hull)
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SOS Dual (continued)

For nonnegativity, want to rule out the existence of x with f (x) < 0.

In the lifted variables, we can look at:

{
Hankel(w) º 0,

∑

i

aiwi < 0

}

This is exactly the SDP dual of the univariate SOS construction.

{
Q º 0,

∑

j+k=i

qjk = ai

}

• If the first problem is feasible, there is always aw such that Hankel(w)
is rank one. It corresponds directly to the lifting of a primal point.

Direct extensions to the multivariate case. Though in general, PSD 6= SOS.
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A General Scheme

Nonnegativity

Lifted problem Sum of squares
SDP

Duality

Lifting and
convex hull

Relaxation

• Lifting corresponds to a classical problem of moments.

• The solution to the lifted problem may suggest candidate points where
the polynomial is negative.

• The sums of squares certify or prove polynomial nonnegativity.

We’ll be generalizing this. . .
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About SOS/SDP

• The resulting SDP problem is polynomially sized (in n).

• By properly choosing the monomials, we can exploit structure (sparsity,
symmetries, ideal structure).

• An important feature: the problem is still a SDP if the coefficients of
F are variable, and the dependence is affine.

• Can optimize over SOS polynomials in affinely described families.

For instance, if we have p(x) = p0(x) + αp1(x) + βp2(x), we can
“easily” find values of α, β for which p(x) is SOS.

This fact will be crucial in everything that follows. . .
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Global Optimization

Consider the problem
min
x,y

f (x, y)

with

f (x, y) := 4x2 − 21

10
x4 +

1

3
x6 + xy − 4y2 + 4y4

• Not convex. Many local minima. NP-hard.

• Find the largest γ s.t. f (x, y)− γ is SOS

• Essentially due to Shor (1987).

• A semidefinite program (convex!).

• If exact, can recover optimal solution.

• Surprisingly effective.

Solving, the maximum γ is -1.0316. Exact value.
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Why Does This Work?

Three independent facts, theoretical and experimental:

• The existence of efficient algorithms for SDP.

• The size of the SDPs grows much slower than the Bézout number µ.

• A bound on the number of (complex) critical points.

• A reasonable estimate of complexity.

• The bad news: µ = (2d− 1)n (for dense polynomials).

• Almost all (exact) algebraic techniques scale as µ.

• The lower bound fSOS very often coincides with f∗.
(Why? what does often mean?)

SOS provides short proofs, even though they’re not guaranteed to exist.
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Coefficient Space

Let fαβ(x) = x4 + (α + 3β)x3 + 2βx2 − αx + 1.

What is the set of values of (α, β) ∈ R2 for which fαβ is PSD? SOS?

To find a SOS decomposition:

fα,β(x) = 1− αx + 2βx2 + (α + 3β)x3 + x4

=




1
x

x2



T 

q11 q12 q13
q12 q22 q23
q13 q23 q33






1
x

x2




= q11 + 2q12x + (q22 + 2q13)x2 + 2q23x
3 + q33x

4

The matrix Q should be PSD and satisfy the affine constraints.



5 - 21 Sum of Squares P. Parrilo and S. Lall, ECC 2003 2003.09.02.03

The feasible set is given by:





(α, β) | ∃λ s.t.




1 −1
2 α β − λ

−1
2 α 2λ 1

2 (α + 3β)

β − λ 1
2 (α + 3β) 1


 º 0




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What is the set of values of (α, β) ∈ R2 for which fαβ PSD? SOS?

Recall: in the univariate case PSD=SOS, so here the sets are the same.

• Convex and
semialgebraic.

• It is the projection of a
spectrahedron in R3.

• We can easily test mem-
bership, or even optimize
over it!
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Lyapunov Stability Analysis

To prove asymptotic stability of ẋ = f (x),

V (x) > 0 x 6= 0

V̇ (x) =
(
∂V
∂x

)T
f (x) < 0, x 6= 0

• For linear systems ẋ = Ax, quadratic Lyapunov functions V (x) =
xTPx

P > 0, ATP + PA < 0.

• With an affine family of candidate polynomial V , V̇ is also affine.

• Instead of checking nonnegativity, use a SOS condition.

• Therefore, for polynomial vector fields and Lyapunov functions, we can
check the conditions using the theory described before.
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Lyapunov Example

A jet engine model (derived from Moore-Greitzer),
with controller:

ẋ = −y +
3

2
x2 − 1

2
x3

ẏ = 3x− y

Try a generic 4th order polynomial Lyapunov function.

V (x, y) =
∑

0≤j+k≤4

cjkx
jyk

Find a V (x, y) that satisfies the conditions:

• V (x, y) is SOS.

• −V̇ (x, y) is SOS.

Both conditions are affine in the cjk. Can do this directly using SOS/SDP!
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After solving the SDPs, we obtain a Lyapunov function.
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Lyapunov Example (2)

(M. Krstić) Find a Lyapunov function for global asymptotic stability:

ẋ = −x + (1 + x) y

ẏ = −(1 + x)x.

Using SOSTOOLS we easily find a quartic polynomial:

V (x, y) = 6x2 − 2xy + 8y2 − 2y3 + 3x4 + 6x2y2 + 3y4.

Both V (x, y) and (−V̇ (x, y)) are SOS:

V (x, y) =




x
y
x2

xy
y2




T 


6 −1 0 0 0
−1 8 0 0 −1

0 0 3 0 0
0 0 0 6 0
0 −1 0 0 3







x
y
x2

xy
y2



, −V̇ (x, y) =




x
y
x2

xy




T 


10 1 −1 1
1 2 1 −2
−1 1 12 0

1 −2 0 6







x
y
x2

xy




The matrices are positive definite; this proves asymptotic stability.
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Extensions

• Other linear differential inequalities (e.g. Hamilton-Jacobi).

• Many possible variations: nonlinear H∞ analysis, parameter depen-
dent Lyapunov functions, etc.

• Can also do local results (for instance, on compact domains).

• Polynomial and rational vector fields, or functions with an underlying
algebraic structure.

• Natural extension of the LMIs for the linear case.

• Only for analysis. Proper synthesis is trickier. . .



x ’ = y − x3 + x2

y ’ = u            
u = − 1.22 x − 0.57 y − .129 y3
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Nonlinear Control Synthesis

Recently, Rantzer provided an alternative stability criterion, in some sense
“dual” to the standard Lyapunov one.

∇ · (ρf ) > 0

• The synthesis problem is now convex in (ρ, uρ).

∇ · [ρ(f + gu)] > 0

• Parametrizing (ρ, uρ), can apply SOS methods.

Example:

ẋ = y − x3 + x2

ẏ = u

A stabilizing controller is:

u(x, y) = −1.22x− 0.57y− 0.129y3


