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4. The Algebraic-Geometric Dictionary

• Equality constraints

• Ideals and Varieties

• Feasibility problems and duality

• The Nullstellensatz and strong duality

• The Bézout identity and fundamental theorem of algebra

• Partition of unity

• Certificates

• Abstract duality

• The ideal-variety correspondence

• Computation and Groebner bases

• Real variables and inequalities
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Equality Constraints

Consider the feasibility problem

does there exist x ∈ Rn such that

fi(x) = 0 for all i = 1, . . . ,m

The function f : Rn→ R is called a valid equality constraint if

f (x) = 0 for all feasible x

Given a set of equality constraints, we can generate others as follows.

(i) If f1 and f2 are valid equalities, then so is f1 + f2

(ii) For any h ∈ R[x1, . . . , xn], if f is a valid equality, then so is hf
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The Ideal of Valid Equality Constraints

A set of polynomials I ⊂ R[x1, . . . , xn] is called an ideal if

(i) f1 + f2 ∈ I for all f1, f2 ∈ I
(ii) fh ∈ I for all f ∈ I and h ∈ R[x1, . . . , xn]

• Given f1, . . . , fm, we can generate an ideal of valid equalities by re-
peatedly applying these rules.

• This gives the ideal generated by f1, . . . , fm, written ideal{f1, . . . , fm}.

ideal{f1, . . . , fm} =

{
m∑

i=1

hifi | hi ∈ R[x1, . . . , xn]

}

This is also written 〈f1, . . . , fm〉.
• Every polynomial in ideal{f1, . . . , fm} is a valid equality.
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More on Ideals

• For S ⊂ Rn, the ideal of S is

I(S) =
{
f ∈ R[x1, . . . , xn] | f (x) = 0 for all x ∈ S

}

• ideal{f1, . . . , fm} is the smallest ideal containing f1, . . . , fm. The
polynomials f1, . . . , fm are called the generators of the ideal.

• If I1 and I2 are ideals, then so is I1 ∩ I2

• Every ideal in R[x1, . . . , xn] is finitely generated. (This does not hold
for non-commutative polynomials)

• An ideal generated by one polynomial is called a principal ideal.
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Varieties

We’ll need to work over both R and C; we’ll use K to denote either.

The variety defined by polynomials f1, . . . , fm ∈ K[x1, . . . , xm] is

V{f1, . . . , fm} =
{
x ∈ Kn | fi(x) = 0 for all i = 1, . . . ,m

}

A variety is also called an algebraic set.

• V{f1, . . . , fm} is the set of all solutions x to the feasibility problem

fi(x) = 0 for all i = 1, . . . ,m
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Examples of Varieties

• If f (x) = x2
1 + x2

2 − 1 then V(f ) is the unit circle in R2.

• The graph of a polynomial function h : R → R is the variety of
f (x) = x2 − h(x1).

• The affine set {
x ∈ Rn | Ax = b

}

is the variety of the polynomials aTi x− bi
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Properties of Varieties

• If V,W are varieties, then so is V ∩W

because if V = V{f1, . . . , fm} and W = V{g1, . . . , gn} then

V ∩W = V{f1, . . . , fm, g1, . . . , gn}

• so is V ∪W , because

V ∪W = V
{
figj | i = 1, . . . ,m, j = 1, . . . , n

}

• If V is a variety, the projection of V onto a subspace may not be a
variety.

• The set-theoretic difference of two varieties may not be a variety.
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Feasibility Problems and Duality

Suppose f1, . . . , fm are polynomials, and consider the feasibility problem

does there exist x ∈ Kn such that

fi(x) = 0 for all i = 1, . . . ,m

Every polynomial in ideal{f1, . . . , fm} is zero on the feasible set.

So if 1 ∈ ideal{f1, . . . , fm}, then the primal problem is infeasible. Again,
this is proof by contradiction.

Equivalently, the primal is infeasible if there exist polynomials h1, . . . , hm ∈
K[x1, . . . , xn] such that

1 = h1(x)f1(x) + · · · + hm(x)fm(x) for all x ∈ Kn
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Strong Duality

So far, we have seen examples of weak duality. The Hilbert Nullstellensatz
gives a strong duality result for polynomials over the complex field.

The Nullstellensatz

Suppose f1, . . . , fm ∈ C[x1, . . . , xn]. Then

1 ∈ ideal{f1, . . . , fm} ⇐⇒ VC{f1, . . . , fm} = ∅
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Algebraically Closed Fields

For complex polynomials f1, . . . , fm ∈ C[x1, . . . , xn], we have

1 ∈ ideal{f1, . . . , fm} ⇐⇒ V{f1, . . . , fm} = ∅

This does not hold for polynomials and varieties over the real numbers.

For example, suppose f (x) = x2 + 1. Then

VR{f} =
{
x ∈ R | f (x) = 0

}

= ∅

But 1 6∈ ideal{f}, since any multiple of f will have degree ≥ 2.

The above results requires an algebraically closed field. Later, we will see
a version of this result that holds for real varieties.
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The Nullstellensatz and Feasibility Problems

The primal problem:

does there exist x ∈ Cn such that

fi(x) = 0 for all i = 1, . . . ,m

The dual problem:

do there exist h1, . . . , hm ∈ C[x1, . . . , xn] such that

1 = h1f1 + · · · + hmfm

The Nullstellensatz implies that these are strong alternatives. Exactly one
of the above problems is feasible.
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Example: Nullstellensatz

Consider the polynomials

f1(x) = x2
1 f2(x) = 1− x1x2

There is no x ∈ C2 which simultaneously satisfies f1(x) = 0 and f2(x) = 0;
i.e.,

V{f1, f2} = ∅

Hence the Nullstellensatz implies there exists h1, h2 such that

1 = h1(x)f1(x) + h2(x)f2(x)

One such pair is

h1(x) = x2
2 h2(x) = 1 + x1x2
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Interpretations of the Nullstellensatz

• The feasibility question asks; do the polynomials f1, . . . , fm have a
common root?

The Nullstellensatz is a Bézout identity. In the scalar case, the dual
problem is: do the polynomials have a common factor?

• Suppose we look at f ∈ C[x], a scalar polynomial with complex coef-
ficients. The feasibility problem is: does it have a root?

The Nullstellensatz says it has a root if and only if there is no polyno-
mial h ∈ C[x] such that 1 = hf

Since degree(hf ) ≥ degree(f ), there is no such h if degree(f ) ≥
1; i.e. all polynomials f with degree(f ) ≥ 1 have a root.

So the Nullstellensatz generalizes the fundamental theorem of algebra.
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Interpretation: Partition of Unity

The equation
1 = h1f1 + · · · + hmfm

is called a partition of unity.

For example, when m = 2, we have

1 = h1(x)f1(x) + h2(x)f2(x) for all x

Let Vi =
{
x ∈ Cn | fi(x) = 0

}
.

Let q(x) = h1(x)f1(x). Then for x ∈ V1, we have q(x) = 0, and hence
the second term h2(x)f2(x) equals one. Conversely, for x ∈ V2, we must
have q(x) = 1.

Since q(x) cannot be both zero and one, we must have V1 ∩ V2 = ∅.
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Interpretation: Certificates

The functions h1, . . . , hm give a certificate of infeasibility for the primal
problem.

Given the hi, one may immediately computationally verify that

1 = h1f1 + · · · + hmfm

and this proves that V{f1, . . . , fm} = ∅
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Duality

The notion of duality here is parallel to that for linear functionals.

Compare, for S ⊂ Rn

I(S) =
{
f ∈ R[x1, . . . , xn]

∣∣ f (x) = 0 for all x ∈ S
}

with
S⊥ =

{
p ∈ (Rn)∗

∣∣ 〈p, x〉 = 0 for all x ∈ S
}

• There is a pairing between Rn and (Rn)∗; we can view either as a
space of functionals on the other

• The same holds between Rn and R[x1, . . . , xn]

• If S ⊂ T , then S⊥ ⊃ T⊥ and I(S) ⊃ I(T )
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The Ideal-Variety Correspondence

Given S ⊂ Kn, we can construct the ideal

I(S) =
{
f ∈ K[x1, . . . , xn]

∣∣ f (x) = 0 for all x ∈ S
}

Also given an ideal I ⊂ K[x1, . . . , xn] we can construct the variety

V(I) =
{
x ∈ Kn | f (x) = 0 for all f ∈ I

}

If S is a variety, then

V
(
I(S)

)
= S

This implies I is one-to-one (since V is a left-inverse); i.e., no two distinct
varieties give the same ideal.
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The Ideal-Variety Correspondence

We’d like to consider the converse; do every two distinct ideals map to
distinct varieties? i.e. is V one-to-one on the set of ideals?

The answer is no; for example

I1 = ideal{(x− 1)(x− 3)} I2 = ideal{(x− 1)2(x− 3)}

Both give variety V(Ii) = {1, 3} ⊂ C.

But (x− 1)(x− 3) 6∈ I2, so I1 6= I2
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The Ideal-Variety Correspondence

It turns out that that, except for multiplicities, ideals are uniquely defined
by varieties.To make this precise, define the radical of an ideal

√
I =

{
f | fr ∈ I for some integer r ≥ 1

}

An ideal is called radical if I =
√
I .

One can show, using the Nullstellensatz, that for any ideal I ⊂ C[x1, . . . , xn]
√
I = I

(
V(I)

)

This implies

There is a one-to-one correspondence between radical ideals and varieties
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Feasibility and the Ideal-Variety Correspondence

Given polynomials f1, . . . , fm ∈ C[x1, . . . , xn], we define two objects

• the ideal I = ideal{f1, . . . , fm}
• the variety V = V{f1, . . . , fm}

We have the following results:

(i) weak duality:
V = ∅ ⇐= 1 ∈ I

(ii) Nullstellensatz (strong duality):

V = ∅ =⇒ 1 ∈ I

(iii) Strong Nullstellensatz: √
I = I(V )
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Computation

The feasibility problem is equivalent to the ideal membership problem; is it
true that

1 ∈ ideal{f1, . . . , fm}

Equivalently, are there polynomials h1, . . . , hm ∈ C[x1, . . . , xn] such that

1 = h1f1 + · · · + hmfm

How do we compute this?

• The above equation is linear in the coefficients of h; so if we have a
bound on the degree of the hi we can easily find them.

• Since the feasibility problem is NP-hard, the bound must grow expo-
nentially with the size of the fi.
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Groebner Bases

We have seen that testing feasibility of a set of polynomial equations over
Cn can be solved if we can test ideal membership.

given g, f1, . . . , fm ∈ C[x1, . . . , xn], is it true that

g ∈ ideal{f1, . . . , fm}

We would like to divide the polynomial g by the fi; i.e. find quotients
q1, . . . , qm and remainder r such that

g = q1f1 + · · · + qmfm + r

Clearly, if r = 0 then g ∈ ideal{f1, . . . , fm}.

The converse is not true, unless we use a special generating set for the ideal,
called a Groebner basis. This is computationally expensive to compute in
general.



4 - 23 The Algebraic-Geometric Dictionary P. Parrilo and S. Lall, ECC 2003 2003.09.02.02

Real Variables, and Inequalities

So far

• We have discussed the one-to-one correspondence between ideals and
varieties.

• This allows us to convert questions about feasibility of varieties into
questions about ideal membership

But this does not deal with

• inequality constraints

• real-valued polynomials

As we shall see, these questions are linked.


