3. Algebra and Duality

- Example: non-convex polynomial optimization
- Weak duality and duality gap
- The dual is not intrinsic
- The cone of valid inequalities
- Algebraic geometry
- The cone generated by a set of polynomials
- An algebraic approach to duality
- Example: feasibility
- Searching the cone
- Interpretation as formal proof
- Example: linear inequalities and Farkas lemma

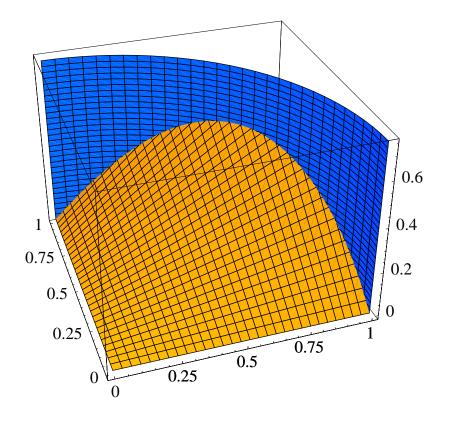
3 - 2 Algebra and Duality

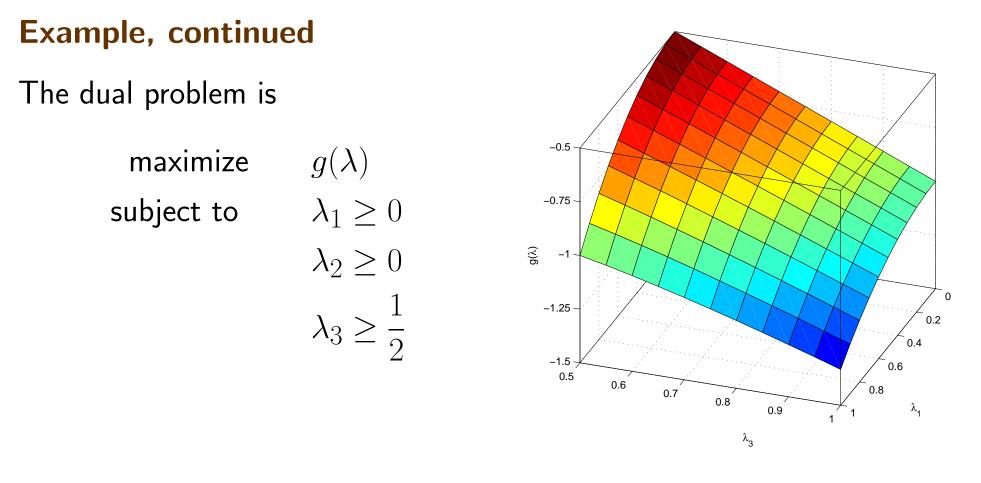
Example

 $\begin{array}{ll} \mbox{minimize} & x_1 x_2 \\ \mbox{subject to} & x_1 \geq 0 \\ & x_2 \geq 0 \\ & x_1^2 + x_2^2 \leq 1 \end{array}$

- The objective is not convex.
- The Lagrange dual function is

$$\begin{split} g(\lambda) &= \inf_{x} \left(x_1 x_2 - \lambda_1 x_1 - \lambda_2 x_2 + \lambda_3 (x_1^2 + x_2^2 - 1) \right) \\ &= \begin{cases} -\lambda_3 - \frac{1}{2} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}^T \begin{bmatrix} 2\lambda_3 & 1 \\ 1 & 2\lambda_3 \end{bmatrix}^{-1} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} & \text{if } \lambda_3 > \frac{1}{2} \\ -\infty & \text{otherwise, except bdry} \end{cases} \end{split}$$

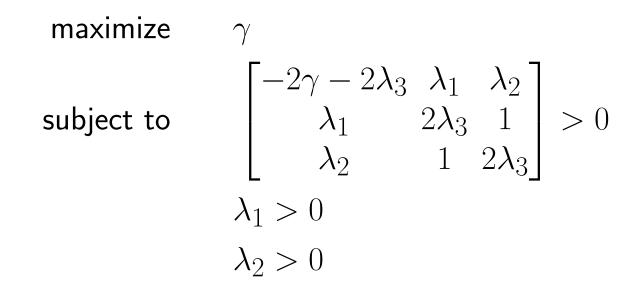




- By symmetry, if the maximum $g(\lambda)$ is attained, then $\lambda_1=\lambda_2$ at optimality
- The optimal $g(\lambda^{\star}) = -\frac{1}{2}$ at $\lambda^{\star} = (0, 0, \frac{1}{2})$
- Here we see an example of a *duality gap*; the primal optimal is strictly greater than the dual optimal

Example, continued

It turns out that, using the Schur complement, the dual problem may be written as



In this workshop we'll see a systematic way to convert a dual problem to an SDP, whenever the objective and constraint functions are polynomials.

The Dual is Not Intrinsic

- The dual problem, and its corresponding optimal value, are *not prop*erties of the primal feasible set and objective function alone.
- Instead, they depend on the particular equations and inequalities used

To construct equivalent primal optimization problems with different duals:

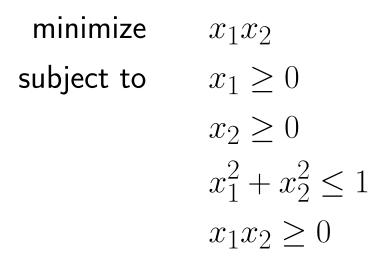
- replace the objective $f_0(x)$ by $h(f_0(x))$ where h is increasing
- introduce new variables and associated constraints, e.g.

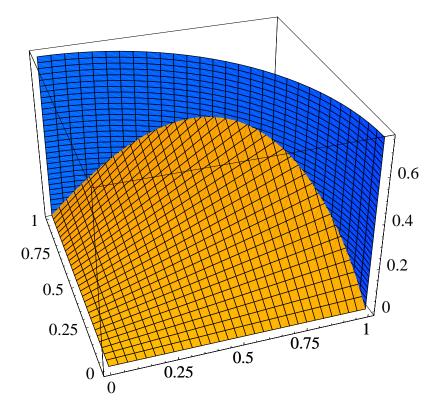
$$\begin{array}{ll} \mbox{minimize} & (x_1-x_2)^2+(x_2-x_3)^2 \\ \mbox{is replaced by} & \\ \mbox{minimize} & (x_1-x_2)^2+(x_4-x_3)^2 \\ \mbox{subject to} & x_2=x_4 \end{array}$$

• add redundant constraints

Example

Adding the redundant constraint $x_1x_2 \ge 0$ to the previous example gives





Clearly, this has the same primal feasible set and same optimal value as before

Example Continued

The Lagrange dual function is

$$\begin{split} g(\lambda) &= \inf_{x} \left(x_{1}x_{2} - \lambda_{1}x_{1} - \lambda_{2}x_{2} + \lambda_{3}(x_{1}^{2} + x_{2}^{2} - 1) - \lambda_{4}x_{1}x_{2} \right) \\ &= \begin{cases} -\lambda_{3} - \frac{1}{2} \begin{bmatrix} \lambda_{1} \\ \lambda_{2} \end{bmatrix}^{T} \begin{bmatrix} 2\lambda_{3} & 1 - \lambda_{4} \\ 1 - \lambda_{4} & 2\lambda_{3} \end{bmatrix}^{-1} \begin{bmatrix} \lambda_{1} \\ \lambda_{2} \end{bmatrix} & \text{if } 2\lambda_{3} > 1 - \lambda_{4} \\ -\infty & \text{otherwise, except bdry} \end{cases} \end{split}$$

- Again, this problem may also be written as an SDP. The optimal value is g(λ*) = 0 at λ* = (0,0,0,1)
- Adding redundant constraints makes the dual bound *tighter*
- This always happens! Such redundant constraints are called valid inequalities.

Constructing Valid Inequalities

The function $f : \mathbb{R}^n \to \mathbb{R}$ is called a *valid inequality* if $f(x) \ge 0$ for all feasible x

Given a set of inequality constraints, we can generate others as follows. (i) If f_1 and f_2 define valid inequalities, then so does $h(x) = f_1(x) + f_2(x)$ (ii) If f_1 and f_2 define valid inequalities, then so does $h(x) = f_1(x)f_2(x)$ (iii) For any f, the function $h(x) = f(x)^2$ defines a valid inequality

Now we can use *algebra* to generate valid inequalities.

The Cone of Valid Inequalities

- The set of *polynomial* functions on \mathbb{R}^n with real coefficients is denoted $\mathbb{R}[x_1, \ldots, x_n]$
- Computationally, they are easy to *parametrize*. We will consider polynomial constraint functions.

A set of polynomials $P \subset \mathbb{R}[x_1, \ldots, x_n]$ is called a *cone* if

(i)
$$f_1 \in P$$
 and $f_2 \in P$ implies $f_1 f_2 \in P$

(ii)
$$f_1 \in P$$
 and $f_2 \in P$ implies $f_1 + f_2 \in P$

(iii)
$$f \in \mathbb{R}[x_1, \dots, x_n]$$
 implies $f^2 \in P$

It is called a *proper cone* if $-1 \notin P$

By applying the above rules to the inequality constraint functions, we can generate a *cone of valid inequalities*

Algebraic Geometry

- There is a correspondence between the *geometric object* (the feasible subset of \mathbb{R}^n) and the *algebraic object* (the cone of valid inequalities)
- This is a *dual* relationship; we'll see more of this later.
- The dual problem is constructed from the *cone*.
- For equality constraints, there is another algebraic object; the *ideal* generated by the equality constraints.
- For optimization, we need to look both at the geometric objects (for the primal) and the algebraic objects (for the dual problem)

Cones

• For
$$S \subset \mathbb{R}^n$$
, the cone defined by S is

$$\mathcal{C}(S) = \left\{ f \in \mathbb{R}[x_1, \dots, x_n] \mid f(x) \ge 0 \text{ for all } x \in S \right\}$$

• If P_1 and P_2 are cones, then so is $P_1 \cap P_2$

• A polynomial $f \in \mathbb{R}[x_1, \dots, x_n]$ is called a *sum-of-squares* (SOS) if

$$f(x) = \sum_{i=1}^{r} s_i(x)^2$$

for some polynomials s_1, \ldots, s_r and some $r \ge 0$. The set of SOS polynomials Σ is a cone.

• Every cone contains Σ .

3 - 12 Algebra and Duality

Cones

The set monoid $\{f_1, \ldots, f_m\} \subset \mathbb{R}[x_1, \ldots, x_n]$ is the set of all finite products of polynomials f_i , together with 1.

The smallest cone containing the polynomials f_1, \ldots, f_m is

$$\mathbf{cone}\{f_1, \dots, f_m\} = \left\{ \sum_{i=1}^r s_i g_i \mid s_0, \dots, s_r \in \Sigma, \\ g_i \in \mathbf{monoid}\{f_1, \dots, f_m\} \right\}$$

 $\mathbf{cone}{f_1, \ldots, f_m}$ is called the *cone generated by* f_1, \ldots, f_m

Explicit Parametrization of the Cone

- If f_1, \ldots, f_m are valid inequalities, then so is every polynomial in $\mathbf{cone}\{f_1, \ldots, f_m\}$
- The polynomial h is an element of $cone\{f_1, \ldots, f_m\}$ if and only if

$$h(x) = s_0(x) + \sum_{i=1}^m s_i(x)f_i(x) + \sum_{i \neq j} r_{ij}(x)f_i(x)f_j(x) + \dots$$

where the s_i and r_{ij} are sums-of-squares.

3 - 14 Algebra and Duality

An Algebraic Approach to Duality

Suppose f_1, \ldots, f_m are polynomials, and consider the feasibility problem

does there exist $x \in \mathbb{R}^n$ such that $f_i(x) \ge 0$ for all $i = 1, \dots, m$

Every polynomial in $cone{f_1, \ldots, f_m}$ is non-negative on the feasible set.

So if there is a polynomial $q \in \mathbf{cone}\{f_1, \ldots, f_m\}$ which satisfies

$$q(x) \leq -\varepsilon < 0 \qquad \text{for all } x \in \mathbb{R}^n$$

then the primal problem is infeasible.

Example

Let's look at the feasibility version of the previous problem. Given $t \in \mathbb{R}$, does there exist $x \in \mathbb{R}^2$ such that

$$x_1 x_2 \le t$$
$$x_1^2 + x_2^2 \le 1$$
$$x_1 \ge 0$$
$$x_2 \ge 0$$

Equivalently, is the set ${\boldsymbol{S}}$ nonempty, where

$$S = \left\{ x \in \mathbb{R}^n \mid f_i(x) \ge 0 \text{ for all } i = 1, \dots, m \right\}$$

where

$$f_1(x) = t - x_1 x_2 \qquad f_2(x) = 1 - x_1^2 - x_2^2$$

$$f_3(x) = x_1 \qquad f_4(x) = x_2$$

Example Continued

Let $q(x) = f_1(x) + \frac{1}{2}f_2(x)$. Then clearly $q \in \operatorname{cone}\{f_1, f_2, f_3, f_4\}$ and $q(x) = t - x_1x_2 + \frac{1}{2}(1 - x_1^2 - x_2^2)$ $= t + \frac{1}{2} - \frac{1}{2}(x_1 + x_2)^2$ $\leq t + \frac{1}{2}$

So for any $t \leq -\frac{1}{2}$, the primal problem is infeasible. This corresponds to Lagrange multipliers $(1, \frac{1}{2})$ for the thm. of alternatives.

Alternatively, this is a proof by contradiction.

• If there exists x such that $f_i(x) \ge 0$ for i = 1, ..., 4 then we must also have $q(x) \ge 0$, since $q \in \operatorname{cone}\{f_1, ..., f_4\}$

• But we proved that
$$q$$
 is negative if $t < -\frac{1}{2}$

Example Continued

We can also do better by using other functions in the cone. Try

$$q(x) = f_1(x) + f_3(x)f_4(x)$$

= t

giving the stronger result that for any t < 0 the inequalities are infeasible. Again, this corresponds to Lagrange multipliers (1, 1)

- In both of these examples, we found q in the cone which was globally negative. We can view q as the Lagrangian function evaluated at a particular value of λ
- The Lagrange multiplier procedure is *searching* over a *particular subset* of functions in the cone; those which are generated by *linear combinations* of the original constraints.
- By searching over more functions in the cone we can do better

Normalization

In the above example, we have

$$q(x) = t + \frac{1}{2} - \frac{1}{2}(x_1 + x_2)^2$$

We can also show that $-1 \in \mathbf{cone}\{f_1, \ldots, f_4\}$, which gives a very simple proof of primal infeasibility.

Because, for $t < -\frac{1}{2}$, we have

$$-1 = a_0 q(x) + a_1 (x_1 + x_2)^2$$

and by construction q is in the cone, and $(x_1 + x_2)^2$ is a sum of squares.

Here a_0 and a_1 are positive constants

$$a_0 = \frac{-2}{2t+1} \qquad a_1 = \frac{-1}{2t+1}$$

An Algebraic Dual Problem

Suppose f_1, \ldots, f_m are polynomials. The primal feasibility problem is

does there exist $x \in \mathbb{R}^n$ such that $f_i(x) \ge 0$ for all $i = 1, \dots, m$

The *dual feasibility problem* is

Is it true that
$$-1 \in \operatorname{cone}{f_1, \ldots, f_m}$$

If the dual problem is feasible, then the primal problem is infeasible.

In fact, a result called the *Positivstellensatz* implies that *strong duality* holds here.

3 - 20 Algebra and Duality

Interpretation: Searching the Cone

 Lagrange duality is searching over *linear combinations* with nonnegative coefficients

$$\lambda_1 f_1 + \dots + \lambda_m f_m$$

to find a globally negative function as a certificate

• The above algebraic procedure is searching over *conic combinations*

$$s_0(x) + \sum_{i=1}^m s_i(x)f_i(x) + \sum_{i \neq j} r_{ij}(x)f_i(x)f_j(x) + \dots$$

where the s_i and r_{ij} are sums-of-squares

Interpretation: Formal Proof

We can also view this as a type of *formal proof*:

- View f_1, \ldots, f_m are *predicates*, with $f_i(x) \ge 0$ meaning that x satisfies f_i .
- Then $\operatorname{cone}{f_1, \ldots, f_m}$ consists of predicates which are *logical consequences* of f_1, \ldots, f_m .
- If we find -1 in the cone, then we have a proof by contradiction.

Our objective is to *automatically search* the cone for negative functions; i.e., proofs of infeasibility.

Example: Linear Inequalities

Does there exist
$$x \in \mathbb{R}^n$$
 such that $Ax \ge 0$
 $c^T x \le -1$

Write
$$A$$
 in terms of its rows $A = \begin{bmatrix} a_1^T \\ \vdots \\ a_m^T \end{bmatrix}$,

then we have inequality constraints defined by linear polynomials

$$f_i(x) = a_i^T x \qquad \text{for } i = 1, \dots, m$$

$$f_{m+1}(x) = -1 - c^T x$$

Example: Linear Inequalities

We'll search over functions $q \in \mathbf{cone}\{f_1, \ldots, f_{m+1}\}$ of the form

$$q(x) = \sum_{i=1}^{m} \lambda_i f_i(x) + \mu f_{m+1}(x)$$

Then the algebraic form of the dual is:

does there exist $\lambda_i \ge 0$, $\mu \ge 0$ such that q(x) = -1 for all x

if the dual is feasible, then the primal problem is infeasible

3 - 24 Algebra and Duality

Example: Linear Inequalities

The above dual condition is

$$\lambda^T A x + \mu (-1 - c^T x) = -1 \qquad \text{for all } x$$

which holds if and only if $A^T \lambda = \mu c$ and $\mu = 1$.

So we can state the duality result as follows.

Farkas Lemma

If there exists $\lambda \in \mathbb{R}^m$ such that

$$A^T \lambda = c$$
 and $\lambda \ge 0$

then there does not exist $x \in \mathbb{R}^n$ such that

$$Ax \ge 0$$
 and $c^T x \le -1$

Farkas Lemma

Farkas Lemma states that the following are strong alternatives

(i) there exists $\lambda \in \mathbb{R}^m$ such that $A^T \lambda = c$ and $\lambda \ge 0$

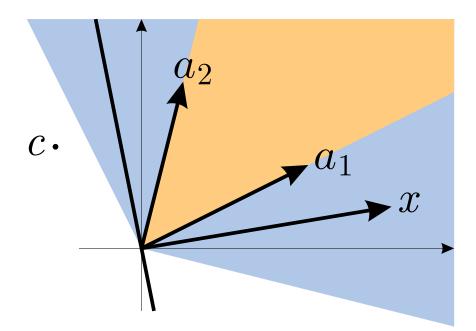
(ii) there exists
$$x \in \mathbb{R}^n$$
 such that $Ax \ge 0$ and $c^T x < 0$

Since this is just Lagrangian duality, there is a geometric interpretation

(i) c is in the convex cone $\{A^T \lambda \mid \lambda \ge 0\}$

(ii) x defines the hyperplane $\{ y \in \mathbb{R}^n \mid y^T x = 0 \}$

which separates \boldsymbol{c} from the cone



Optimization Problems

Let's return to optimization problems instead of feasibility problems.

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \geq 0 & \mbox{ for all } i=1,\ldots,m \end{array}$$

The corresponding feasibility problem is

$$t - f_0(x) \ge 0$$

 $f_i(x) \ge 0$ for all $i = 1, \dots, m$

One simple dual is to find polynomials s_i and r_{ij} such that

$$t - f_0(x) + \sum_{i=1}^m s_i(x)f_i(x) + \sum_{i \neq j} r_{ij}(x)f_i(x)f_j(x) + \dots$$

is globally negative, where the s_i and r_{ij} are sums-of-squares

Optimization Problems

We can combine this with a maximization over \boldsymbol{t}

$$\begin{array}{ll} \text{maximize} & t \\ \text{subject to} & t - f_0(x) + \sum_{i=1}^m s_i(x) f_i(x) + \\ & \sum_{i=1}^m \sum_{j=1}^m r_{ij}(x) f_i(x) f_j(x) \leq 0 \text{ for all } x \\ & s_i, r_{ij} \text{ are sums-of-squares} \end{array}$$

- The variables here are (coefficients of) the polynomials s_i, r_i
- We will see later how to approach this kind of problem using semidefinite programming