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3. Algebra and Duality

• Example: non-convex polynomial optimization

• Weak duality and duality gap

• The dual is not intrinsic

• The cone of valid inequalities

• Algebraic geometry

• The cone generated by a set of polynomials

• An algebraic approach to duality

• Example: feasibility

• Searching the cone

• Interpretation as formal proof

• Example: linear inequalities and Farkas lemma
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Example

minimize x1x2

subject to x1 ≥ 0

x2 ≥ 0

x2
1 + x2

2 ≤ 1

• The objective is not convex.

• The Lagrange dual function is

g(λ) = inf
x

(
x1x2 − λ1x1 − λ2x2 + λ3(x2

1 + x2
2 − 1)

)

=




−λ3 − 1

2

[
λ1

λ2

]T [
2λ3 1

1 2λ3

]−1 [
λ1

λ2

]
if λ3 >

1
2

−∞ otherwise, except bdry



0

0.2

0.4

0.6

0.8

1

0.5
0.6

0.7
0.8

0.9
1

−1.5

−1.25

−1

−0.75

−0.5

λ
1

λ
3

g(
λ)

3 - 3 Algebra and Duality P. Parrilo and S. Lall, ECC 2003 2003.09.03.01

Example, continued

The dual problem is

maximize g(λ)

subject to λ1 ≥ 0

λ2 ≥ 0

λ3 ≥
1

2

• By symmetry, if the maximum g(λ) is attained, then λ1 = λ2 at
optimality

• The optimal g(λ?) = −1
2 at λ? = (0, 0, 1

2)

• Here we see an example of a duality gap; the primal optimal is strictly
greater than the dual optimal
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Example, continued

It turns out that, using the Schur complement, the dual problem may be
written as

maximize γ

subject to



−2γ − 2λ3 λ1 λ2

λ1 2λ3 1
λ2 1 2λ3


 > 0

λ1 > 0

λ2 > 0

In this workshop we’ll see a systematic way to convert a dual problem to
an SDP, whenever the objective and constraint functions are polynomials.
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The Dual is Not Intrinsic

• The dual problem, and its corresponding optimal value, are not prop-
erties of the primal feasible set and objective function alone.

• Instead, they depend on the particular equations and inequalities used

To construct equivalent primal optimization problems with different duals:

• replace the objective f0(x) by h(f0(x)) where h is increasing

• introduce new variables and associated constraints, e.g.

minimize (x1 − x2)2 + (x2 − x3)2

is replaced by
minimize (x1 − x2)2 + (x4 − x3)2

subject to x2 = x4

• add redundant constraints
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Example

Adding the redundant constraint
x1x2 ≥ 0 to the previous example
gives

minimize x1x2

subject to x1 ≥ 0

x2 ≥ 0

x2
1 + x2

2 ≤ 1

x1x2 ≥ 0

Clearly, this has the same primal feasible set and same optimal value as
before
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Example Continued

The Lagrange dual function is

g(λ) = inf
x

(
x1x2 − λ1x1 − λ2x2 + λ3(x2

1 + x2
2 − 1)− λ4x1x2

)

=





−λ3 − 1
2

[
λ1

λ2

]T [
2λ3 1− λ4

1− λ4 2λ3

]−1 [
λ1

λ2

]
if 2λ3 > 1− λ4

−∞ otherwise, except bdry

• Again, this problem may also be written as an SDP. The optimal value
is g(λ?) = 0 at λ? = (0, 0, 0, 1)

• Adding redundant constraints makes the dual bound tighter

• This always happens! Such redundant constraints are called valid
inequalities.
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Constructing Valid Inequalities

The function f : Rn→ R is called a valid inequality if

f (x) ≥ 0 for all feasible x

Given a set of inequality constraints, we can generate others as follows.

(i) If f1 and f2 define valid inequalities, then so does h(x) = f1(x)+f2(x)

(ii) If f1 and f2 define valid inequalities, then so does h(x) = f1(x)f2(x)

(iii) For any f , the function h(x) = f (x)2 defines a valid inequality

Now we can use algebra to generate valid inequalities.
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The Cone of Valid Inequalities

• The set of polynomial functions on Rn with real coefficients is denoted
R[x1, . . . , xn]

• Computationally, they are easy to parametrize. We will consider poly-
nomial constraint functions.

A set of polynomials P ⊂ R[x1, . . . , xn] is called a cone if

(i) f1 ∈ P and f2 ∈ P implies f1f2 ∈ P
(ii) f1 ∈ P and f2 ∈ P implies f1 + f2 ∈ P

(iii) f ∈ R[x1, . . . , xn] implies f2 ∈ P
It is called a proper cone if −1 6∈ P

By applying the above rules to the inequality constraint functions, we can
generate a cone of valid inequalities
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Algebraic Geometry

• There is a correspondence between the geometric object (the feasible
subset of Rn) and the algebraic object (the cone of valid inequalities)

• This is a dual relationship; we’ll see more of this later.

• The dual problem is constructed from the cone.

• For equality constraints, there is another algebraic object; the ideal
generated by the equality constraints.

• For optimization, we need to look both at the geometric objects (for
the primal) and the algebraic objects (for the dual problem)



3 - 11 Algebra and Duality P. Parrilo and S. Lall, ECC 2003 2003.09.03.01

Cones

• For S ⊂ Rn, the cone defined by S is

C(S) =
{
f ∈ R[x1, . . . , xn]

∣∣ f (x) ≥ 0 for all x ∈ S
}

• If P1 and P2 are cones, then so is P1 ∩ P2

• A polynomial f ∈ R[x1, . . . , xn] is called a sum-of-squares (SOS) if

f (x) =

r∑

i=1

si(x)2

for some polynomials s1, . . . , sr and some r ≥ 0. The set of SOS
polynomials Σ is a cone.

• Every cone contains Σ.
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Cones

The set monoid{f1, . . . , fm} ⊂ R[x1, . . . , xn] is the set of all finite
products of polynomials fi, together with 1.

The smallest cone containing the polynomials f1, . . . , fm is

cone{f1, . . . , fm} =

{
r∑

i=1

sigi | s0, . . . , sr ∈ Σ,

gi ∈monoid{f1, . . . , fm}
}

cone{f1, . . . , fm} is called the cone generated by f1, . . . , fm
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Explicit Parametrization of the Cone

• If f1, . . . , fm are valid inequalities, then so is every polynomial
in cone{f1, . . . , fm}

• The polynomial h is an element of cone{f1, . . . , fm} if and only if

h(x) = s0(x) +

m∑

i=1

si(x)fi(x) +
∑

i6=j
rij(x)fi(x)fj(x) + . . .

where the si and rij are sums-of-squares.



3 - 14 Algebra and Duality P. Parrilo and S. Lall, ECC 2003 2003.09.03.01

An Algebraic Approach to Duality

Suppose f1, . . . , fm are polynomials, and consider the feasibility problem

does there exist x ∈ Rn such that

fi(x) ≥ 0 for all i = 1, . . . ,m

Every polynomial in cone{f1, . . . , fm} is non-negative on the feasible set.

So if there is a polynomial q ∈ cone{f1, . . . , fm} which satisfies

q(x) ≤ −ε < 0 for all x ∈ Rn

then the primal problem is infeasible.
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Example

Let’s look at the feasibility version of the previous problem. Given t ∈ R,
does there exist x ∈ R2 such that

x1x2 ≤ t

x2
1 + x2

2 ≤ 1

x1 ≥ 0

x2 ≥ 0

Equivalently, is the set S nonempty, where

S =
{
x ∈ Rn | fi(x) ≥ 0 for all i = 1, . . . ,m

}

where

f1(x) = t− x1x2 f2(x) = 1− x2
1 − x2

2

f3(x) = x1 f4(x) = x2
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Example Continued

Let q(x) = f1(x) + 1
2f2(x). Then clearly q ∈ cone{f1, f2, f3, f4} and

q(x) = t− x1x2 + 1
2(1− x2

1 − x2
2)

= t + 1
2 − 1

2(x1 + x2)2

≤ t + 1
2

So for any t ≤ −1
2, the primal problem is infeasible.

This corresponds to Lagrange multipliers (1, 1
2) for the thm. of alternatives.

Alternatively, this is a proof by contradiction.

• If there exists x such that fi(x) ≥ 0 for i = 1, . . . , 4 then we must
also have q(x) ≥ 0, since q ∈ cone{f1, . . . , f4}

• But we proved that q is negative if t < −1
2
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Example Continued

We can also do better by using other functions in the cone. Try

q(x) = f1(x) + f3(x)f4(x)

= t

giving the stronger result that for any t < 0 the inequalities are infeasible.

Again, this corresponds to Lagrange multipliers (1, 1)

• In both of these examples, we found q in the cone which was globally
negative. We can view q as the Lagrangian function evaluated at a
particular value of λ

• The Lagrange multiplier procedure is searching over a particular subset
of functions in the cone; those which are generated by linear combi-
nations of the original constraints.

• By searching over more functions in the cone we can do better
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Normalization

In the above example, we have

q(x) = t + 1
2 − 1

2(x1 + x2)2

We can also show that −1 ∈ cone{f1, . . . , f4}, which gives a very simple
proof of primal infeasibility.

Because, for t < −1
2, we have

−1 = a0q(x) + a1(x1 + x2)2

and by construction q is in the cone, and (x1 + x2)2 is a sum of squares.

Here a0 and a1 are positive constants

a0 =
−2

2t + 1
a1 =

−1

2t + 1
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An Algebraic Dual Problem

Suppose f1, . . . , fm are polynomials. The primal feasibility problem is

does there exist x ∈ Rn such that

fi(x) ≥ 0 for all i = 1, . . . ,m

The dual feasibility problem is

Is it true that − 1 ∈ cone{f1, . . . , fm}

If the dual problem is feasible, then the primal problem is infeasible.

In fact, a result called the Positivstellensatz implies that strong duality holds
here.
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Interpretation: Searching the Cone

• Lagrange duality is searching over linear combinations with nonnega-
tive coefficients

λ1f1 + · · · + λmfm

to find a globally negative function as a certificate

• The above algebraic procedure is searching over conic combinations

s0(x) +

m∑

i=1

si(x)fi(x) +
∑

i6=j
rij(x)fi(x)fj(x) + . . .

where the si and rij are sums-of-squares
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Interpretation: Formal Proof

We can also view this as a type of formal proof:

• View f1, . . . , fm are predicates, with fi(x) ≥ 0 meaning that x satis-
fies fi.

• Then cone{f1, . . . , fm} consists of predicates which are logical con-
sequences of f1, . . . , fm.

• If we find −1 in the cone, then we have a proof by contradiction.

Our objective is to automatically search the cone for negative functions;
i.e., proofs of infeasibility.
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Example: Linear Inequalities

Does there exist x ∈ Rn such that

Ax ≥ 0

cTx ≤ −1

Write A in terms of its rows A =



aT1
...

aTm


,

then we have inequality constraints defined by linear polynomials

fi(x) = aTi x for i = 1, . . . ,m

fm+1(x) = −1− cTx



3 - 23 Algebra and Duality P. Parrilo and S. Lall, ECC 2003 2003.09.03.01

Example: Linear Inequalities

We’ll search over functions q ∈ cone{f1, . . . , fm+1} of the form

q(x) =

m∑

i=1

λifi(x) + µfm+1(x)

Then the algebraic form of the dual is:

does there exist λi ≥ 0, µ ≥ 0 such that

q(x) = −1 for all x

if the dual is feasible, then the primal problem is infeasible
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Example: Linear Inequalities

The above dual condition is

λTAx + µ(−1− cTx) = −1 for all x

which holds if and only if ATλ = µc and µ = 1.

So we can state the duality result as follows.

Farkas Lemma

If there exists λ ∈ Rm such that

ATλ = c and λ ≥ 0

then there does not exist x ∈ Rn such that

Ax ≥ 0 and cTx ≤ −1



c

x

a1

a2
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Farkas Lemma

Farkas Lemma states that the following are strong alternatives

(i) there exists λ ∈ Rm such that ATλ = c and λ ≥ 0

(ii) there exists x ∈ Rn such that Ax ≥ 0 and cTx < 0

Since this is just Lagrangian duality, there is a geometric interpretation

(i) c is in the convex cone

{ATλ | λ ≥ 0 }

(ii) x defines the hyperplane

{ y ∈ Rn | yTx = 0 }

which separates c from the cone
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Optimization Problems

Let’s return to optimization problems instead of feasibility problems.

minimize f0(x)

subject to fi(x) ≥ 0 for all i = 1, . . . ,m

The corresponding feasibility problem is

t− f0(x) ≥ 0

fi(x) ≥ 0 for all i = 1, . . . ,m

One simple dual is to find polynomials si and rij such that

t− f0(x) +

m∑

i=1

si(x)fi(x) +
∑

i6=j
rij(x)fi(x)fj(x) + . . .

is globally negative, where the si and rij are sums-of-squares
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Optimization Problems

We can combine this with a maximization over t

maximize t

subject to t− f0(x) +

m∑

i=1

si(x)fi(x)+

m∑

i=1

m∑

j=1

rij(x)fi(x)fj(x) ≤ 0 for all x

si, rij are sums-of-squares

• The variables here are (coefficients of) the polynomials si, ri

• We will see later how to approach this kind of problem using semidef-
inite programming


