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Example
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Example, continued

The dual problem is
maximize  g(\) T
subject to A >0 o
Ao >0 : :
1 —1.25\"’
Aa > —
=2 y

e By symmetry, if the maximum g¢(\) is attained, then A\; = A9 at
optimality

e The optimal g(\*) = —% at A* = (0,0, %)

e Here we see an example of a duality gap; the primal optimal is strictly
greater than the dual optimal
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Example, continued
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It turns out that, using the Schur complement, the dual problem may be

written as
maximize Y
subject to Al
X
A1 >0
Ao > ()

27 —2X3 A\ A9 |

oAy 1

1 2A3

> ()

In this workshop we'll see a systematic way to convert a dual problem to
an SDP, whenever the objective and constraint functions are polynomials.
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The Dual is Not Intrinsic

e The dual problem, and its corresponding optimal value, are not prop-
erties of the primal feasible set and objective function alone.

e Instead, they depend on the particular equations and inequalities used

To construct equivalent primal optimization problems with different duals:
e replace the objective fy(x) by h(fo(x)) where h is increasing
e introduce new variables and associated constraints, e.g.

minimize (21 — 5132)2 + (29 — 5’33)2

is replaced by
minimize (21 — 5132)2 + (14 — xS)Q

subject to ro = T4

e add redundant constraints
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Example
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Adding the

L1L2

minimize

x1 >0

subject to

xo > ()

<1

2
2

3+ 1

r1T9 > 0

Clearly, this has the same primal feasible set and same optimal value as

before
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Example Continued

The Lagrange dual function is
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g()\) — igf (51315132 — AMx] — Aoxo + )\3(56% + :C% — 1) — )\41‘1:132)
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if 2X3 > 1 — \y

otherwise, except bdry

e Again, this problem may also be written as an SDP. The optimal value
is g(A\*) =0 at \*=(0,0,0,1)

e Adding redundant constraints makes the dual bound tighter

e This always happens!
inequalities.

Such redundant constraints are called valid
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Constructing Valid Inequalities

The function f : R" — R is called a valid inequality if

f(x) >0  for all feasible x

Given a set of inequality constraints, we can generate others as follows.
(i) If fi and fo define valid inequalities, then so does h(x) = fi(x)+ fo(x)
(ii) If f{ and fo define valid inequalities, then so does h(x) = fi(x) fa(x)
(iii) For any £, the function h(z) = f(z)? defines a valid inequality

Now we can use algebra to generate valid inequalities.
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The Cone of Valid Inequalities

e The set of polynomial functions on R" with real coefficients is denoted
Rlzq, ...,z

e Computationally, they are easy to parametrize. We will consider poly-
nomial constraint functions.
A set of polynomials P C R|xq,...,xy| is called a cone if
(i) f1 € Pand fy € Pimplies fifo € P
(i) fi € Pand fy € P implies fi + fo € P
(i) f € Rzy,...,zp] implies f2 € P
It is called a proper coneif —1 ¢ P

By applying the above rules to the inequality constraint functions, we can
generate a cone of valid inequalities
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Algebraic Geometry

There is a correspondence between the geometric object (the feasible
subset of R") and the algebraic object (the cone of valid inequalities)

This is a dual relationship; we'll see more of this later.
The dual problem is constructed from the cone.

For equality constraints, there is another algebraic object; the ideal
generated by the equality constraints.

For optimization, we need to look both at the geometric objects (for
the primal) and the algebraic objects (for the dual problem)
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Cones

e For S C R", the cone defined by S is

C(S):{fER[xl,...,ajn]|f(x)20fora|lx€5}

e If P, and P are cones, then sois P| N P

e A polynomial f € Rlzy,...,xy] is called a sum-of-squares (SOS) if

r

fla) = si(z)’

1=1

for some polynomials sq,...,s, and some r > 0. The set of SOS
polynomials X is a cone.

e Every cone contains 2.
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Cones

The set monoid{ f{,..., fm} C Rlxy,...,zy| is the set of all finite
products of polynomials f;, together with 1.

The smallest cone containing the polynomials fi,..., f;;, is
T
Cone{f17'°°7fm}: Zsigi|507°"787“€27
1=1

gi € monoid{ fi,..., fm}

cone{ f{,..., fm} is called the cone generated by f1,..., fm
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Explicit Parametrization of the Cone

e If f1,..., f;, are valid inequalities, then so is every polynomial

in cone{ fi,..., fm}

e The polynomial h is an element of cone{f,..., fi,} if and only if
h(z) Jrz:sZ V@) + Y rijla) fil@) fi(z) + .
7]

where the s; and r;; are sums-of-squares.
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An Algebraic Approach to Duality

Suppose f1, ..., fm are polynomials, and consider the feasibility problem

does there exist x € R" such that

file) >0  foralli=1,...,m

Every polynomial in cone{ f1, ..., fi,} is non-negative on the feasible set.

So if there is a polynomial ¢ € cone{ f1, ..., fin} which satisfies
g(z) < —e <0 for all z € R"

then the primal problem is infeasible.
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Example

Let's look at the feasibility version of the previous problem. Given ¢t € R,
does there exist € R? such that

129 <1
x%+az%§1
x1 >0
xo >

Equivalently, is the set .S nonempty, where
S = {CIJE]Rn | fi(x) zOforaIIizl,...,m}
where

— 27 — 23

filz) =t — z19 fo(x)
falz) =z falz)

1
L2
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Example Continued

Let ¢(z) = fi(x) + %fg(x). Then clearly ¢ € cone{ f{, fo, f3, f4} and

q(x) =1t — x129 + %(1 — x% — x%)

So for any t < —%, the primal problem is infeasible.

This corresponds to Lagrange multipliers (1, %) for the thm. of alternatives.

Alternatively, this is a proof by contradiction.

e If there exists = such that f;(z) > 0 for ¢+ = 1,...,4 then we must
also have g(x) > 0, since g € cone{fi,..., f1}

e But we proved that ¢ is negative if ¢ < —%
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Example Continued
We can also do better by using other functions in the cone. Try

q(x) = filz) + f3(@) falz)
— t

giving the stronger result that for any ¢ < 0 the inequalities are infeasible.

Again, this corresponds to Lagrange multipliers (1,1)

e |n both of these examples, we found ¢ in the cone which was globally
negative. We can view ¢ as the Lagrangian function evaluated at a
particular value of A

e The Lagrange multiplier procedure is searching over a particular subset
of functions in the cone; those which are generated by /inear combi-
nations of the original constraints.

e By searching over more functions in the cone we can do better
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Normalization
In the above example, we have
1 1
q(x) =1t+5—5(z1 + 9)?

We can also show that —1 € cone{fy,..., f4}, which gives a very simple
proof of primal infeasibility.

Because, for t < —%, we have

2
—1 = apq(z) + a1(z1 + x2)
and by construction ¢ is in the cone, and (z1 + 562)2 is a sum of squares.

Here ag and aq are positive constants

—2 —1
awp=——— a]=——
0" 91 L ori



3-19 Algebra and Duality P. Parrilo and S. Lall, ECC 2003 2003.09.03.01

An Algebraic Dual Problem

Suppose f1,..., fm are polynomials. The primal feasibility problem is

does there exist x € R" such that
file) >0  foralli=1,...,m

The dual feasibility problem is

Is it true that — 1 &€ cone{fl, e fm}

If the dual problem is feasible, then the primal problem is infeasible.

In fact, a result called the Positivstellensatz implies that strong duality holds
here.
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Interpretation: Searching the Cone

e Lagrange duality is searching over linear combinations with nonnega-
tive coefficients

Afi1+ -+ Amfm
to find a globally negative function as a certificate

e The above algebraic procedure is searching over conic combinations

+Zsz Vi(m) + > i) fil) filz) + ..

1#]

where the s; and r;; are sums-of-squares
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Interpretation: Formal Proof

We can also view this as a type of formal proof:

o View fi,..., fm are predicates, with f;(x) > 0 meaning that x satis-
fies f;.

e Then cone{fy,..., fim} consists of predicates which are logical con-
sequences of f1,..., fm.

e |f we find —1 in the cone, then we have a proof by contradiction.

Our objective is to automatically search the cone for negative functions;
I.e., proofs of infeasibility.
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Example: Linear Inequalities

Does there exist z € R" such that
Ax >0
'z < —1

_alT_
Write A in terms of its rows A = | : |,

i

then we have inequality constraints defined by linear polynomials
filz) =alz fori=1,...,m

i
fm1(x) = —1— '



3-23 Algebra and Duality P. Parrilo and S. Lall, ECC 2003 2003.09.03.01

Example: Linear Inequalities

We'll search over functions g € cone{fi,..., fi,11} of the form

q(z) = > Nifilx) + pfmi1 (@)
i=1

Then the algebraic form of the dual is:

does there exist \; > 0, > 0 such that
q(x)=—1  forall x

if the dual is feasible, then the primal problem is infeasible
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Example: Linear Inequalities

The above dual condition is
A Az + pu(—1 — ¢! ) =—1 for all
which holds if and only if A\ = uc and = 1.

So we can state the duality result as follows.

Farkas Lemma

If there exists A € R™ such that
Al ) =¢ and A > ()
then there does not exist £ € R" such that

Az >0 and e <1
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Farkas Lemma

Farkas Lemma states that the following are strong alternatives
(i) there exists A € R™ such that A’A = ¢ and A > 0

(i) there exists 2 € R” such that Az > 0 and ¢!z < 0

Since this is just Lagrangian duality, there is a geometric interpretation

(i) cis in the convex cone

A
{ATA | A>0} €2
(i) « defines the hyperplane C a1
L
{yeR" [y z=0} i

which separates ¢ from the cone
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Optimization Problems

Let's return to optimization problems instead of feasibility problems.

minimize  fy(x)

subject to filx) >0 foralli=1,...,m

The corresponding feasibility problem is

foralli=1,....,m

One simple dual is to find polynomials s; and r;; such that

t— folw)+ ) si(@)filz)+ ) rij(@) filz)fi(z) + ...
i—1 i#]

is globally negative, where the s; and r;; are sums-of-squares
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Optimization Problems

We can combine this with a maximization over ¢

maximize t
subject to ¢ — fo(z) + )_ sif) i)+
1=1
Z er(f)fz(ﬂ?)fj(x) < 0 for all x
i=1 j=1

Si,Tij are sums-of-squares

e The variables here are (coefficients of) the polynomials s;, r;

e We will see later how to approach this kind of problem using semidef-
Inite programming



