2. SDP Relaxations for Quadratic Programming

- LQR with binary inputs
- \bullet Boolean optimization
- Primal and dual SDP relaxations
- **•** Interpretations
- Examples
- S-procedure

LQR with Binary Inputs

Consider the discrete-time LQR problem

$$
\text{minimize} \quad \|y(t) - y_r(t)\|^2 \qquad \text{subject to} \quad
$$

$$
\text{minimize} \quad ||y(t) - y_r(t)||^2 \qquad \text{subject to} \qquad \begin{cases} x(t+1) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}
$$

where y_r is the reference output trajectory, and the input $u(t)$ is constrained by $|u(t)| = 1$ for all $t = 0, ..., N$.

An open-loop LQR-type problem, but with a *bang-bang* input.

LQR with Binary Inputs (continued)

The objective $||y(t) - y_r(t)||^2$ is a *quadratic* function of the input u:

$$
\begin{bmatrix} y(0) \\ y(1) \\ y(2) \\ \vdots \\ y(t) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 \\ CB & 0 & 0 & \dots & 0 \\ CAB & CB & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \vdots \\ CA^{t}B & CA^{t-1}B & \dots & CB & 0 \end{bmatrix} \begin{bmatrix} u(0) \\ u(1) \\ u(2) \\ \vdots \\ u(t) \end{bmatrix}
$$

So the problem can be written as:

$$
\begin{array}{ll}\text{minimize} & \begin{bmatrix} u \\ 1 \end{bmatrix}^T \begin{bmatrix} Q & r \\ r^T & s \end{bmatrix} \begin{bmatrix} u \\ 1 \end{bmatrix} \\ \text{subject to} & u_i \in \{+1, -1\} \text{ for all } i \end{array}
$$

where Q, r, s are functions of the problem data. This is a quadratic *boolean optimization* problem.

Boolean Minimization

A classic combinatorial problem:

minimize x^TQx subject to $x_i \in \{-1, 1\}$

- Examples: MAX CUT, knapsack, LQR with binary inputs, etc.
- Can model the constraints with quadratic equations:

$$
x_i^2 - 1 = 0 \iff x_i \in \{-1, 1\}
$$

- An exponential number of points. Cannot check them all!
- The problem is *NP-hard* (even if $Q \succeq 0$).

Despite the hardness of the problem, there are some very good approaches...

SDP Relaxations

$$
\begin{array}{ll}\text{minimize} & x^T Q x\\ \text{subject to} & x_i^2 - 1 = 0 \end{array}
$$

The Lagrangian function:

$$
L(x, \lambda) = x^T Q x - \sum_{i=1}^n \lambda_i (x_i^2 - 1) = x^T (Q - \Lambda) x + \text{trace} \Lambda
$$

For the Lagrangian to be bounded below, we require $Q - \Lambda \succeq 0$. The dual is therefore an SDP:

> maximize $trace \wedge$ subject to $Q - \Lambda \succeq 0$

From this SDP we obtain a *primal-dual pair of SDP relaxations*

SDP Relaxations

$$
\begin{array}{ll}\text{minimize} & x^T Q x\\ \text{subject to} & x_i^2 = 1 \end{array}
$$

minimize $trace QX$ subject to $X \succeq 0$ $X_{ii} = 1$ maximize trace Λ subject to $Q \succeq \Lambda$ Λ diagonal

- We derived them from Lagrangian and SDP duality
- \bullet But, these SDP relaxations arise in *many* other ways
- Well-known in combinatorial optimization, graph theory, etc.
- **•** Several interpretations

SDP Relaxations: Dual Side

Gives an easy, "provable" *underestimator* of the objective function.

maximize $trace \wedge$ subject to $Q \succeq \Lambda$ Λ diagonal

Directly provides a *lower bound* on the objective: for any feasible x :

$$
x^T Q x \ge x^T \Lambda x = \sum_{i=1}^n \Lambda_{ii} x_i^2 = \text{trace}\,\Lambda
$$

- $\bullet~$ The first inequality follows from $Q \succeq \Lambda$
- \bullet The second equation from Λ being diagonal
- The third, from $x_i \in \{+1, -1\}$

2 - 8 SDP Relaxations for Quadratic Programming P. Parrilo and S. Lall, ECC 2003 2003.09.02.03

SDP Relaxations: Primal Side

The original problem is:

$$
\begin{array}{ll}\text{minimize} & x^T Q x\\ \text{subject to} & x_i^2 = 1 \end{array}
$$

Let $X := xx^T$. Then

$$
x^TQx = \mathbf{trace}\, Qxx^T = \mathbf{trace}\, QX
$$

Therefore, $X \succeq 0$, has rank one, and $X_{ii} = x_i^2 = 1$.

Conversely, any matrix X with

$$
X \succeq 0, \quad X_{ii} = 1, \quad \text{rank } X = 1
$$

necessarily has the form $X = xx^T$ for some ± 1 vector x.

Primal Side (continued)

Therefore, the original problem can be exactly rewritten as:

minimize $trace QX$ subject to $X \succeq 0$ $X_{ii} = 1$ $\mathbf{rank}(X)=1$

Interpretation: "lift" to a higher dimensional space, from \mathbb{R}^n to \mathbb{S}^n . Dropping the (nonconvex) rank constraint, we obtain the relaxation.

If the solution X has rank 1, then we have solved the original problem.

Otherwise, rounding schemes to project solutions. In some cases, approximation guarantees (e.g. Goemans-Williamson for MAX CUT).

• Dual relaxations give *certified* bounds.

- **•** Primal relaxations give information about possible *feasible* points.
- Both are solved *simultaneously* by primal-dual SDP solvers

Example

$$
\begin{array}{ll}\text{minimize} & 2x_1x_2 + 4x_1x_3 + 6x_2x_3\\ \text{subject to} & x_i^2 = 1 \end{array}
$$

The associated matrix is $Q = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 2 & 3 & 0 \end{bmatrix}$. The SDP solutions are:

$$
X = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix}, \qquad \Lambda = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -5 \end{bmatrix}
$$

We have $X \succeq 0$, $X_{ii} = 1$, $Q - \Lambda \succeq 0$, and

$$
trace\,QX = \mathbf{trace}\,\Lambda = -8
$$

Since X is rank 1, from $X = xx^T$ we recover the optimal $x = \begin{bmatrix} 1 & 1 & -1 \end{bmatrix}^T$,

We can visualize this (in 3×3):

$$
X = \begin{bmatrix} 1 & p_1 & p_2 \\ p_1 & 1 & p_3 \\ p_2 & p_3 & 1 \end{bmatrix} \succeq 0
$$

in (p_1, p_2, p_3) space.

When optimizing the linear objective function

$$
trace\,QX=2p_1+4p_2+6p_3,
$$

the optimal solution is at the "vertex" $(1, -1, -1)$.

We can solve SDP relaxations of boolean QPs for problems of fairly large size (approx. 500 vars with interior point, $5000+$ with special techniques). Random example in 50 vars, computation time is around 1.5 sec.

SDP lower bound: -476.3198 . G-W expected value: -352.9414 .

A General Scheme

- •The "relaxed" X suggests candidate points.
- \bullet The diagonal matrix Λ certifies a lower bound.

Ubiquitous scheme in optimization (convex hulls, fractional colorings, etc. . .) We will learn systematic ways of constructing these, and more...

2 - 15 SDP Relaxations for Quadratic Programming P. Parrilo and S. Lall, ECC 2003 2003.09.02.03

LQR with Binary Inputs (continued)

minimize
$$
\begin{bmatrix} u \\ 1 \end{bmatrix}^T \begin{bmatrix} Q & r \\ r^T & s \end{bmatrix} \begin{bmatrix} u \\ 1 \end{bmatrix}
$$

subject to $u_i \in \{+1, -1\}$ for all i

for some matrices (Q, r, s) function of the problem data (A, B, C, N) .

An SDP dual bound:

maximize
$$
\mathbf{trace}(\Lambda) + \mu
$$

subject to
$$
\begin{bmatrix} Q - \Lambda & r \\ r^T & s - \mu \end{bmatrix} \succeq 0, \qquad \Lambda \text{ diagonal}
$$

Let q^*, q_* be the optimal value of both problems. Then, $q^* \geq q_*$:

$$
\begin{bmatrix} u \\ 1 \end{bmatrix}^T \begin{bmatrix} Q & r \\ r^T & s \end{bmatrix} \begin{bmatrix} u \\ 1 \end{bmatrix} \ge \begin{bmatrix} u \\ 1 \end{bmatrix}^T \begin{bmatrix} \Lambda & 0 \\ 0 & \mu \end{bmatrix} \begin{bmatrix} u \\ 1 \end{bmatrix} = \text{trace} \Lambda + \mu
$$

LQR with Binary Inputs (continued)

maximize
$$
\mathbf{trace}(\Lambda) + \mu
$$

subject to
$$
\begin{bmatrix} Q - \Lambda & r \\ r^T & s - \mu \end{bmatrix} \succeq 0, \qquad \Lambda \text{ diagonal}
$$

Since $(\Lambda, \mu) = (0, 0)$ is always feasible, $q_* \geq 0$.

Furthermore, the bound is never worse than the LQR solution obtained by dropping the ± 1 constraint, since

$$
\Lambda = 0, \quad \mu = s - r^T Q^{-1} r
$$

is ^a feasible point.

Example:

The S-procedure

A *sufficient* condition for the infeasibility of quadratic inequalities:

$$
\{x \in \mathbb{R}^n \mid x^T A_i x \ge 0\}
$$

Again, ^a primal-dual pair of SDP relaxations:

 $X \succ 0$ trace $X = 1$ trace $A_i X \geq 0$

$$
\sum_{i} \lambda_i A_i \preceq -I
$$

$$
\lambda_i \ge 0
$$

The basis of many important results in control theory.

Structured Singular Value

- A central paradigm in robust control.
- μ is a measure of robustness: how big can a structured perturbation Δ be, without losing stability.

Do the loop equations admit nontrivial solutions?

$$
y = Mx, \quad y_i^2 - x_i^2 \ge 0
$$

Applying the standard SDP relaxation:

$$
\sum_{i} d_i(y_i^2 - x_i^2) = x^T (M^T D M - D)x < 0, \qquad D = \text{diag}(d_i), \ d_i \ge 0
$$

We obtain the standard μ upper bound:

$$
M^TDM-D\prec 0, \qquad D \quad \text{diagonal}, \quad D\succeq 0
$$

