2. SDP Relaxations for Quadratic Programming

- LQR with binary inputs
- Boolean optimization
- Primal and dual SDP relaxations
- Interpretations
- Examples
- S-procedure

LQR with Binary Inputs

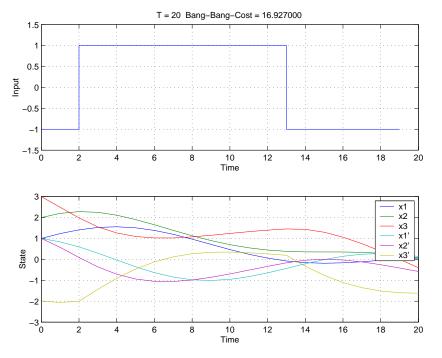
Consider the discrete-time LQR problem

minimize
$$\|y(t) - y_r(t)\|^2$$
 subject to

$$\begin{cases} x(t+1) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

where y_r is the reference output trajectory, and the input u(t) is constrained by |u(t)| = 1 for all t = 0, ..., N.

An open-loop LQR-type problem, but with a *bang-bang* input.



LQR with Binary Inputs (continued)

The objective $||y(t) - y_r(t)||^2$ is a *quadratic* function of the input u:

$$\begin{bmatrix} y(0) \\ y(1) \\ y(2) \\ \vdots \\ y(t) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 \\ CB & 0 & 0 & \dots & 0 \\ CAB & CB & 0 & \dots & 0 \\ \dots & \dots & \dots & \ddots & \vdots \\ CA^{t}B & CA^{t-1}B & \dots & CB & 0 \end{bmatrix} \begin{bmatrix} u(0) \\ u(1) \\ u(2) \\ \vdots \\ u(t) \end{bmatrix}$$

So the problem can be written as:

$$\begin{array}{ll} \text{minimize} & \begin{bmatrix} u \\ 1 \end{bmatrix}^T \begin{bmatrix} Q & r \\ r^T & s \end{bmatrix} \begin{bmatrix} u \\ 1 \end{bmatrix} \\ \text{subject to} & u_i \in \{+1, -1\} \text{ for all } i \end{aligned}$$

where Q, r, s are functions of the problem data. This is a quadratic *boolean optimization* problem.

Boolean Minimization

A classic combinatorial problem:

 $\begin{array}{ll} \mbox{minimize} & x^T Q x \\ \mbox{subject to} & x_i \in \{-1,1\} \end{array}$

- Examples: MAX CUT, knapsack, LQR with binary inputs, etc.
- Can model the constraints with quadratic equations:

$$x_i^2 - 1 = 0 \quad \Longleftrightarrow \quad x_i \in \{-1, 1\}$$

- An exponential number of points. Cannot check them all!
- The problem is *NP-hard* (even if $Q \succeq 0$).

Despite the hardness of the problem, there are some very good approaches...

SDP Relaxations

minimize
$$x^T Q x$$

subject to $x_i^2 - 1 = 0$

The Lagrangian function:

$$L(x,\lambda) = x^T Q x - \sum_{i=1}^n \lambda_i (x_i^2 - 1) = x^T (Q - \Lambda) x + \mathbf{trace} \Lambda$$

For the Lagrangian to be bounded below, we require $Q - \Lambda \succeq 0$. The dual is therefore an SDP:

> maximize $\operatorname{trace} \Lambda$ subject to $Q - \Lambda \succeq 0$

From this SDP we obtain a *primal-dual pair of SDP relaxations*

SDP Relaxations

minimize
$$x^T Q x$$

subject to $x_i^2 = 1$

minimize	$\mathbf{trace}QX$	maximize	$\mathbf{trace}\Lambda$
subject to	$X \succeq 0$	subject to	$Q \succeq \Lambda$
	$X_{ii} = 1$		Λ diagonal

- We derived them from Lagrangian and SDP duality
- But, these SDP relaxations arise in *many* other ways
- Well-known in combinatorial optimization, graph theory, etc.
- Several interpretations

SDP Relaxations: Dual Side

Gives an easy, "provable" underestimator of the objective function.

maximize $\operatorname{trace} \Lambda$ subject to $Q \succeq \Lambda$ Λ diagonal

Directly provides a *lower bound* on the objective: for any feasible x:

$$x^T Q x \ge x^T \Lambda x = \sum_{i=1}^n \Lambda_{ii} x_i^2 = \operatorname{trace} \Lambda$$

- The first inequality follows from $Q \succeq \Lambda$
- The second equation from Λ being diagonal
- The third, from $x_i \in \{+1, -1\}$

2 - 8 SDP Relaxations for Quadratic Programming

SDP Relaxations: Primal Side

The original problem is:

$$\begin{array}{ll} \mbox{minimize} & x^T Q x \\ \mbox{subject to} & x_i^2 = 1 \end{array}$$

Let $X := xx^T$. Then

$$x^T Q x = \mathbf{trace} \, Q x x^T = \mathbf{trace} \, Q X$$

Therefore, $X \succeq 0$, has *rank one*, and $X_{ii} = x_i^2 = 1$.

Conversely, any matrix X with

$$X \succeq 0, \quad X_{ii} = 1, \quad \operatorname{rank} X = 1$$

necessarily has the form $X = xx^T$ for some ± 1 vector x.

Primal Side (continued)

Therefore, the original problem can be exactly rewritten as:

minimize $\operatorname{trace} QX$ subject to $X \succeq 0$ $X_{ii} = 1$ $\operatorname{rank}(X) = 1$

Interpretation: "lift" to a higher dimensional space, from \mathbb{R}^n to \mathbb{S}^n . Dropping the (nonconvex) rank constraint, we obtain the relaxation.

If the solution X has rank 1, then we have solved the original problem.

Otherwise, *rounding schemes* to project solutions. In some cases, approximation guarantees (e.g. Goemans-Williamson for MAX CUT).

• Dual relaxations give *certified* bounds.

- Primal relaxations give information about possible *feasible* points.
- Both are solved *simultaneously* by primal-dual SDP solvers

Example

minimize
$$2x_1x_2 + 4x_1x_3 + 6x_2x_3$$

subject to $x_i^2 = 1$
The associated matrix is $Q = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 2 & 3 & 0 \end{bmatrix}$. The SDP solutions are:

$$X = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix}, \qquad \Lambda = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -5 \end{bmatrix}$$

We have $X \succeq 0$, $X_{ii} = 1$, $Q - \Lambda \succeq 0$, and

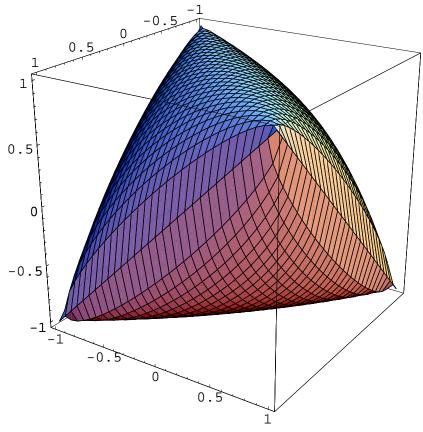
trace
$$QX = \text{trace } \Lambda = -8$$

Since X is rank 1, from $X = xx^T$ we recover the optimal $x = \begin{bmatrix} 1 & 1 & -1 \end{bmatrix}^T$,

We can visualize this (in 3×3):

$$X = \begin{bmatrix} 1 & p_1 & p_2 \\ p_1 & 1 & p_3 \\ p_2 & p_3 & 1 \end{bmatrix} \succeq 0$$

in (p_1, p_2, p_3) space.

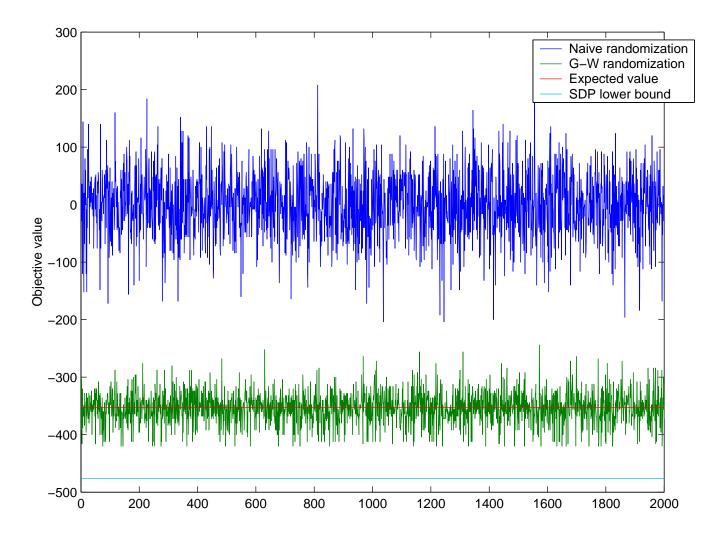


When optimizing the linear objective function

$$trace \, QX = 2p_1 + 4p_2 + 6p_3,$$

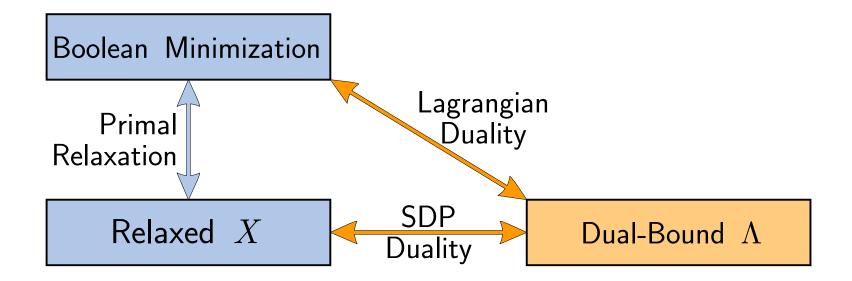
the optimal solution is at the "vertex" (1, -1, -1).

We can solve SDP relaxations of boolean QPs for problems of fairly large size (approx. 500 vars with interior point, 5000+ with special techniques). Random example in 50 vars, computation time is around 1.5 sec.



SDP lower bound: -476.3198. G-W expected value: -352.9414.

A General Scheme



- The "relaxed" X suggests candidate points.
- The diagonal matrix Λ *certifies* a lower bound.

Ubiquitous scheme in optimization (convex hulls, fractional colorings, etc. . .) We will learn systematic ways of constructing these, and more. . . 2 - 15 SDP Relaxations for Quadratic Programming

LQR with Binary Inputs (continued)

minimize
$$\begin{bmatrix} u \\ 1 \end{bmatrix}^T \begin{bmatrix} Q & r \\ r^T & s \end{bmatrix} \begin{bmatrix} u \\ 1 \end{bmatrix}$$

subject to $u_i \in \{+1, -1\}$ for all i

for some matrices (Q, r, s) function of the problem data (A, B, C, N).

An SDP dual bound:

$$\begin{array}{ll} \mathsf{maximize} & \mathbf{trace}(\Lambda) + \mu \\ \mathsf{subject to} & \begin{bmatrix} Q - \Lambda & r \\ r^T & s - \mu \end{bmatrix} \succeq 0, \qquad \Lambda \text{ diagonal} \end{array}$$

Let q^*, q_* be the optimal value of both problems. Then, $q^* \ge q_*$:

$$\begin{bmatrix} u \\ 1 \end{bmatrix}^T \begin{bmatrix} Q & r \\ r^T & s \end{bmatrix} \begin{bmatrix} u \\ 1 \end{bmatrix} \ge \begin{bmatrix} u \\ 1 \end{bmatrix}^T \begin{bmatrix} \Lambda & 0 \\ 0 & \mu \end{bmatrix} \begin{bmatrix} u \\ 1 \end{bmatrix} = \mathbf{trace} \Lambda + \mu$$

LQR with Binary Inputs (continued)

maximize
$$\operatorname{trace}(\Lambda) + \mu$$

subject to $\begin{bmatrix} Q - \Lambda & r \\ r^T & s - \mu \end{bmatrix} \succeq 0, \quad \Lambda \text{ diagonal}$

Since $(\Lambda, \mu) = (0, 0)$ is always feasible, $q_* \ge 0$.

Furthermore, the bound is never worse than the LQR solution obtained by dropping the ± 1 constraint, since

$$\Lambda = 0, \quad \mu = s - r^T Q^{-1} r$$

is a feasible point.

Example:

Ν	LQR cost	SDP bound	Bang Bang
10	14.005	15.803	15.803
15	15.216	16.698	16.705
20	15.364	16.905	16.927

The S-procedure

A *sufficient* condition for the infeasibility of quadratic inequalities:

$$\{x \in \mathbb{R}^n \mid x^T A_i x \ge 0\}$$

Again, a primal-dual pair of SDP relaxations:

 $\begin{array}{l} X \succeq 0 \\ \mathbf{trace} \, X = 1 \\ \mathbf{trace} \, A_i X \geq 0 \end{array}$

$$\sum_{i} \lambda_i A_i \preceq -I$$
$$\lambda_i \ge 0$$

The basis of many important results in control theory.

2 - 18 SDP Relaxations for Quadratic Programming

Structured Singular Value

- A central paradigm in robust control.
- μ is a measure of robustness: how big can a structured perturbation Δ be, without losing stability.

Do the loop equations admit nontrivial solutions?

$$y = Mx, \quad y_i^2 - x_i^2 \ge 0$$

Applying the standard SDP relaxation:

$$\sum_{i} d_i (y_i^2 - x_i^2) = x^T (M^T D M - D) x < 0, \qquad D = \mathbf{diag}(d_i), \, d_i \ge 0$$

We obtain the standard μ upper bound:

$$M^T D M - D \prec 0, \qquad D \quad \text{diagonal}, \quad D \succeq 0$$

