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Sanjay Lall, Stanford University

European Control Conference
September 3, 2003

http://control.ee.ethz.ch/~parrilo

http://www.stanford.edu/~lall



1 - 2 Convexity and Duality P. Parrilo and S. Lall, ECC 2003 2003.09.03.01

Overview

• Mathematical and computational theory, and applications to combi-
natorial, non-convex and nonlinear problems

• Semidefinite programming

• Real algebraic geometry

• Duality and certificates

Schedule

1. Convexity and duality

2. Quadratically constrained quadratic programming

3. From duality to algebra

4. Algebra and geometry

5. Sums of squares and semidefinite programming

6. Polynomials and duality; the Positivstellensatz
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1. Convexity and Duality

• Formulation of optimization problems

• Engineering examples

• Convex sets and functions

• Convex optimization problems

• Standard problems: LP and SDP

• Feasibility problems

• Algorithms

• Certificates and separating hyperplanes

• Duality and geometry

• Examples: LP and and SDP

• Theorems of alternatives
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Optimization Problems

A familiar problem

minimize f0(x)

subject to fi(x) ≤ 0 for all i = 1, . . . ,m

hi(x) = 0 for all i = 1, . . . , p

• x ∈ Rn is the variable

• f0 : Rn→ R is the objective function

• fi : Rn→ R for i = 1, . . . ,m define inequality constraints

• hi : Rn→ R for i = 1, . . . , p define equality constraints
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Discrete Problems: LQR with Binary Inputs

• linear discrete-time system x(t + 1) = Ax(t) + Bu(t) on interval
t = 0, . . . , N

• objective is to minimize the quadratic tracking error

N−1∑

t=0

(
x(t)− r(t)

)T
Q
(
x(t)− r(t)

)

• using binary inputs

ui(t) ∈ {−1, 1} for all i = 1, . . . ,m, and t = 0, . . . , N − 1
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Nonlinear Problems: Lyapunov Stability
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Entanglement and Quantum Mechanics

• Entanglement is a behavior of quantum states, which cannot be ex-
plained classically.

• Responsible for many of the non-intuitive properties, and computa-
tional power of quantum devices.

A bipartite mixed quantum state ρ is separable (not entangled) if

ρ =
∑

i

pi|ψi〉〈ψi| ⊗ |φi〉〈φi|
∑

pi = 1

for some ψi, φi.

Given ρ, how to decide and certify if it is entangled?
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Graph problems

Graph problems appear in many areas: MAX-CUT, independent set, cliques,
etc.

MAX CUT partitioning

• Partition the nodes of a graph in two disjoint
sets, maximizing the number of edges between
sets.

• Practical applications (circuit layout, etc.)

• NP-complete.

How to compute bounds, or exact solutions, for this kind of problems?
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Facility Location

• Given a set of n cities

• We’d like to open at most m facilities

• And assign each city to exactly one facility
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Basic Nomenclature

A set S ⊂ Rn is called

• affine if x, y ∈ S implies θx + (1 − θ)y ∈ S for all θ ∈ R; i.e., the
line through x, y is contained in S

• convex if x, y ∈ S implies θx + (1 − θ)y ∈ S for all θ ∈ [0, 1]; i.e.,
the line segment between x and y is contained in S.

• a convex cone if x, y ∈ S implies λx + µy ∈ S for all λ, µ ≥ 0; i.e.,
the pie slice between x and y is contained in S.

A function f : Rn→ R is called

• affine if f (θx + (1 − θ)y) = θf (x) + (1 − θ)f (y) for all θ ∈ R and
x, y ∈ Rn; i.e., f is equals a linear function plus a constant f = Ax+b

• convex if f
(
θx + (1 − θ)y

)
≤ θf (x) + (1 − θ)f (y) for all θ ∈ [0, 1]

and x, y ∈ Rn
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Properties of Convex Functions

• f1 + f2 is convex if f1 and f2 are

• f (x) = max{f1(x), f2(x)} is convex if f1 and f2 are

• g(x) = supy f (x, y) is convex if f (x, y) is convex in x for each y

• convex functions are continuous on the interior of their domain

• f (Ax + b) is convex if f is

• Af (x) + b is convex if f is

• g(x) = infy f (x, y) is convex if f (x, y) is jointly convex

• the α−sublevel set

{x ∈ Rn | f (x) ≤ α }

is convex if f is convex; (the converse is not true)
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Convex Optimization Problems

minimize f0(x)

subject to fi(x) ≤ 0 for all i = 1, . . . ,m

hi(x) = 0 for all i = 1, . . . , p

This problem is called a convex program if

• the objective function f0 is convex

• the inequality constraints fi are convex

• the equality constraints hi are affine
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Linear Programming (LP)

In a linear program, the objective and constraint functions are affine.

minimize cTx

subject to Ax = b

Cx ≤ d

Example

minimize x1 + x2

subject to 3x1 + x2 ≥ 3

x2 ≥ 1

x1 ≤ 4

−x1 + 5x2 ≤ 20

x1 + 4x2 ≤ 20
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Linear Programming

Every linear program may be written in the standard primal form

minimize cTx

subject to Ax = b

x ≥ 0

Here x ∈ Rn, and x ≥ 0 means xi ≥ 0 for all i

• The nonnegative orthant
{
x ∈ Rn | x ≥ 0

}
is a convex cone.

• This convex cone defines the partial ordering ≥ on Rn

• Geometrically, the feasible set is the intersection of an affine set with
a convex cone.
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Semidefinite Programming

minimize traceCX

subject to traceAiX = bi for all i = 1, . . . ,m

X º 0

• The variable X is in the set of n× n symmetric matrices

Sn =
{
A ∈ Rn×n | A = AT

}

• X º 0 means X is positive semidefinite

• As for LP, the feasible set is the intersection of an affine set with a
convex cone, in this case the positive semidefinite cone

{
X ∈ Sn | X º 0

}

Hence the feasible set is convex.
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SDPs with Explicit Variables

We can also explicitly parametrize the affine set to give

minimize cTx

subject to F0 + x1F1 + x2F2 + · · · + xnFn ¹ 0

where F0, F1, . . . , Fn are symmetric matrices.

The inequality constraint is called a linear matrix inequality; e.g.,


x1 − 3 x1 + x2 −1
x1 + x2 x2 − 4 0
−1 0 x1


 ¹ 0

which is equivalent to


−3 0 −1
0 −4 0
−1 0 0


 + x1




1 1 0
1 0 0
0 0 1


 + x2




0 1 0
1 1 0
0 0 0


 ¹ 0
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The Feasible Set is Semialgebraic

The (basic closed) semialgebraic set defined by polynomials f1, . . . , fm is
{
x ∈ Rn | fi(x) ≥ 0 for all i = 1, . . . ,m

}

The feasible set of an SDP is a semialgebraic set.

Because a matrix A Â 0 if and only if

det(Ak) > 0 for k = 1, . . . , n

where Ak is the submatrix of A consisting of the first k rows and columns.
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The Feasible Set

For example

0 ≺




3− x1 −(x1 + x2) 1
−(x1 + x2) 4− x2 0

1 0 −x1




is equivalent to the polynomial
inequalities

0 < 3− x1

0 < (3− x1)(4− x2)− (x1 + x2)2

0 < −x1((3− x1)(4− x2)− (x1 + x2)2)− (4− x2)
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Intersection of Feasible Sets

The intersection of the feasible sets
[

2x1 + x2 + 2 0
0 −x1 − 5

]
≺ 0

and


x1 − 3 x1 + x2 −1
x1 + x2 x2 − 4 0
−1 0 x1


 ≺ 0

is given by



x1 − 3 x1 + x2 −1 0 0
x1 + x2 x2 − 4 0 0 0
−1 0 x1 0 0
0 0 0 2x1 + x2 + 2 0
0 0 0 0 −x1 − 5



≺ 0
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Optimal Points

Since SDPs are convex, if the feasible set is closed then the optimal is
always achieved on the boundary.

¡ c

xopt
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Convex Optimization Problems

For a convex optimization problem, the feasible set

S =
{
x ∈ Rn | fi(x) ≤ 0 and hj(x) = 0 for all i, j

}

is convex. So we can write the problem as

minimize f0(x)

subject to x ∈ S

This approach emphasizes the geometry of the problem.

For a convex optimization problem, any local minimum is also a global
minimum.
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Feasibility Problems

We are also interested in feasibility problems as follows. Does there exist
x ∈ Rn which satisfies

fi(x) ≤ 0 for all i = 1, . . . ,m

hi(x) = 0 for all i = 1, . . . , p

If there does not exist such an x, the problem is described as infeasible.
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Feasibility Problems

We can always convert an optimization problem into a feasibility problem;
does there exist x ∈ Rn such that

f0(x) ≤ t

fi(x) ≤ 0

hi(x) = 0

Bisection search over the parameter t finds the optimal.

(f1(x?); f0(x?))

z

y è

(f1(x); f0(x)) j x 2 R
n
é
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Feasibility Problems

Conversely, we can convert feasibility problems into optimization problems.

e.g. the feasibility problem of finding x such that

fi(x) ≤ 0 for all i = 1, . . . ,m

can be solved as

minimize y

subject to fi(x) ≤ y for all i = 1, . . . ,m

where there are n + 1 variables x ∈ Rn and y ∈ R

This technique may be used to find an initial feasible point for optimization
algorithms
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Algorithms

For convex optimization problems, there are several good algorithms

• interior-point algorithms work well in theory and practice

• for certain classes of problems, (e.g. LP and SDP) there is a worst-case
time-complexity bound

• conversely, some convex optimization problems are known to be NP-
hard

• problems are specified either in standard form, for LPs and SDPs, or
via an oracle



1 - 26 Convexity and Duality P. Parrilo and S. Lall, ECC 2003 2003.09.03.01

Certificates

Consider the feasibility problem

Does there exist x ∈ Rn which satisfies

fi(x) ≤ 0 for all i = 1, . . . ,m

hi(x) = 0 for all i = 1, . . . , p

There is a fundamental asymmetry between establishing that

• There exists at least one feasible x

• The problem is infeasible

To show existence, one needs a feasible point x ∈ Rn.

To show emptiness, one needs a a certificate of infeasibility; a mathematical
proof that the problem is infeasible.
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Certificates and Separating Hyperplanes

The simplest form of certificate is a separating hyperplane. The idea is
that a hyperplane L ⊂ Rn breaks Rn into two half-spaces,

H1 =
{
x ∈ Rn | bTx ≤ a

}
and H2 =

{
x ∈ Rn | bTx > a

}

If two closed convex sets are disjoint, there is a hyperplane that separates
them.

So to prove infeasibility of

fi(x) ≤ 0 for i = 1, 2

we show that

{x ∈ Rn | f1(x) ≤ 0 } ⊂ H1 and {x ∈ Rn | f2(x) ≤ 0 } ⊂ H2
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Duality

We’d like to solve

minimize f0(x)

subject to fi(x) ≤ 0 for all i = 1, . . . ,m

hi(x) = 0 for all i = 1, . . . , p

define the Lagrangian for x ∈ Rn, λ ∈ Rm and ν ∈ Rp by

L(x, λ, ν) = f0(x) +

m∑

i=1

λifi(x) +

p∑

i=1

νihi(x)

and the Lagrange dual function

g(λ, ν) = inf
x∈Rn

L(x, λ, ν)

We allow g(λ, ν) = −∞ when there is no finite infimum
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Duality

the dual problem is

maximize g(λ, ν)

subject to λ ≥ 0

we call λ, ν dual feasible if λ ≥ 0 and g(λ, ν) is finite.

• The dual function g is always concave, even if the primal problem is
not convex
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Weak Duality

For any primal feasible x and dual feasible λ, ν we have

g(λ, ν) ≤ f0(x)

because

g(λ, ν) ≤ f0(x) +

m∑

i=1

λifi(x) +

p∑

i=1

νihi(x)

≤ f0(x)

• A feasible λ, ν provides a certificate that the primal optimal is greater
than g(λ, ν)

• many interior-point methods simultaneously optimize the primal and
the dual problem; when f0(x) − g(λ, ν) ≤ ε we know that x is
ε−suboptimal
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Strong Duality

• p? is the optimal value of the primal problem,

• d? is the optimal value of the dual problem

Weak duality means p? ≥ d?

If p? = d? we say strong duality holds. Equivalently, we say the duality gap
p? − d? is zero.

Constraint qualifications give sufficient conditions for strong duality.

An example is Slater’s condition; strong duality holds if the primal problem
is convex and strictly feasible.
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Geometric Interpretations: The Lagrangian

consider the optimization problem

minimize f0(x)

subject to f1(x) ≤ 0

The value of the Lagrangian L(x, λ) is the intersection of the hyperplane
Hλ with the vertical axis

(õ; 1)
(f1(x); f0(x))

Hõ =
è

(z; y) j õTz + y = L(x; õ)
é

L(x; õ)

z

y è

(f1(x); f0(x)) j x 2 R
é
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The Lagrange Dual Function

The Lagrange dual function is

g(λ) = inf
x∈Rn

L(x, λ)

i.e., the minimum intersection for a given slope −λ

è

(f1(x); f0(x)) j x 2 R
é

(õ; 1)
(f1(x); f0(x))

Hõ =
è

(z; y) j õTz + y = L(x; õ)
é

L(x; õ)

z

y
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Sensitivity

consider the perturbed problem

minimize f0(x)

subject to fi(x) ≤ yi for all i = 1, . . . ,m

and let p?(y) be the optimal value parametrized by y. Then for any optimal
λ? we have

λ? = −∇p?(0)

è

(f1(x); f0(x)) j x 2 R
é

(f1(x
?); f0(x

?))

(õ; 1)

Hõ =
è

(z; y) j õTz + y = L(x; õ)
é

z

y



1 - 35 Convexity and Duality P. Parrilo and S. Lall, ECC 2003 2003.09.03.01

Complementary Slackness

For λ? dual optimal, and x? primal optimal, we have

λ?i fi(x
?) = 0 for all i = 1, . . . ,m

whenever strong duality holds; i.e., if the i’th constraint is active, then
λ?i > 0

è

(f1(x); f0(x)) j x 2 R
é

(f1(x?); f0(x?))

(õ; 1)
Hõ =

è

(z; y) j õTz + y = L(x; õ)
é

z

y
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Example: Linear Programming

minimize cTx

subject to Ax = b

x ≥ 0

The Lagrange dual function is

g(λ, ν) = inf
x∈Rn

(
cTx + νT (b− Ax)− λTx

)

=

{
bTν if c− ATν − λ = 0

−∞ otherwise

So the dual problem is

maximize bTν

subject to ATν ≤ c
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Example: Semidefinite Programming

minimize traceCX

subject to traceAiX = bi for all i = 1, . . . ,m

X º 0

The Lagrange dual is

g(Z, ν) = inf
X

(
traceCX − traceZX +

m∑

i=1

νi(bi − traceAiX)

)

=

{
bTν if C − Z −∑m

i=1 νiAi = 0

−∞ otherwise

So the dual problem is to maximize bTν subject to

C − Z −
m∑

i=1

νiAi = 0 and Z º 0
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Semidefinite Programming Duality

The primal problem is

minimize traceCX

subject to traceAiX = bi for all i = 1, . . . ,m

X º 0

The dual problem is

maximize bTν

subject to
m∑

i=1

νiAi ¹ C



1 - 39 Convexity and Duality P. Parrilo and S. Lall, ECC 2003 2003.09.03.01

The Fourfold Way

There are several ways of formulating an SDP for its numerical solution.

Because subspaces can be described

• Using generators or a basis; Equivalently, the subspace is the range of
a linear map {x | x = Bλ for some λ }



x1
x2
x3


 = λ1




1
1
2


 + λ2




0
−1

2


 =




λ1
λ1 − λ2

2λ1 + 2λ2




• Through the defining equations; i.e, as the kernel {x | Ax = 0 }

{(x1, x2, x3) ∈ R3 | 4x1 − 2x2 − x3 = 0}

Depending on which description we use, and whether we write a primal or
dual formulation, we have four possibilities (two primal-dual pairs).
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Example: Two Primal-Dual Pairs

maximize 2x + 2y

subject to

[
1 + x y
y 1− x

]
º 0

minimize trace

[
1 0
0 1

]
W

subject to trace

[
−1 0
0 1

]
W = 2

trace

[
0 −1
−1 0

]
W = 2

W º 0

Another, more efficient fomulation which solves the same problem:

maximize trace

[
1 1
1 −1

]
Z

subject to trace

[
1 0
0 1

]
Z = 2

Z º 0

minimize 2t

subject to

[
t− 1 −1
−1 t + 1

]
º 0
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Duality

• Duality has many interpretations; via economics, game-theory, geom-
etry.

• e.g., one may interpret Lagrange multipliers as a price for violating
constraints, which may correspond to resource limits or capacity con-
straints.

• Often physical problems associate specific meaning to certain Lagrange
multipliers, e.g. pressure, momentum, force can all be viewed as La-
grange multipliers



m

k
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Example: Mechanics

• Spring under compression

• Mass at horizontal position x, equilib-
rium at x = 2

minimize
k

2
(x− 2)2

subject to x ≤ 1

The Lagrangian is L(x, λ) =
k

2
(x− 2)2 + λ(x− 1)

If λ is dual optimal and x is primal optimal, then
∂

∂x
L(x, λ) = 0, i.e.,

k(x− 2) + λ = 0

so we can interpret λ as a force
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Feasibility of Inequalities

The primal feasibility problem is

does there exist x ∈ Rn such that

fi(x) ≥ 0 for all i = 1, . . . ,m

The dual function g : Rm→ R is

g(λ) = sup
x∈Rn

m∑

i=1

λifi(x)

The dual feasibility problem is

does there exist λ ∈ Rm such that

g(λ) < 0

λ ≥ 0
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Theorem of Alternatives

If the dual problem is feasible, then the primal problem is infeasible.

Proof

Suppose the primal problem is feasible, and let x̃ be a feasible point. Then

g(λ) = sup
x∈Rn

m∑

i=1

λifi(x)

≥
m∑

i=1

λifi(x̃) for all λ ∈ Rm

and so g(λ) ≥ 0 for all λ ≥ 0.
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Geometric Interpretation

õ

z1

z2

Hõ =
n

z 2 R
m j õTz = g(õ)

o

S =
n

z 2 R
m j z õ 0

o

T

if g(λ) < 0 and λ ≥ 0 then the hyperplane Hλ separates S from T , where

T =







f1(x)

...
fm(x)


 | x ∈ Rn




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Certificates

• A dual feasible point gives a certificate of infeasibility of the primal
problem.

• If the Lagrange dual function g is easy to compute, and we can show
g(λ) < 0, then this is a proof that the primal is infeasible.

• One way to do this is to have an explicit expression for

g(λ) = sup
x
L(x, λ)

where for feasibility problems, the Lagrangian is L(x, λ) =

m∑

i=1

λifi(x)

• Alternatively, given λ, we may be able to show directly that

L(x, λ) < −ε for all x ∈ Rn

for some ε > 0.


