Semidefinite Programming Relaxations and Algebraic Optimization in Control

Pablo Parrilo, ETH Zürich Sanjay Lall, Stanford University

European Control Conference September 3, 2003

http://control.ee.ethz.ch/~parrilo http://www.stanford.edu/~lall

Overview

- Mathematical and computational theory, and applications to combinatorial, non-convex and nonlinear problems
	- Semidefinite programming
	- \bullet Real algebraic geometry
	- \bullet Duality and certificates

Schedule

- 1. Convexity and duality
- 2. Quadratically constrained quadratic programming
- 3. From duality to algebra
- 4. Algebra and geometry
- 5. Sums of squares and semidefinite programming
- 6. Polynomials and duality; the Positivstellensatz

1. Convexity and Duality

- Formulation of optimization problems
- **•** Engineering examples
- \bullet Convex sets and functions
- Convex optimization problems
- Standard problems: LP and SDP
- **•** Feasibility problems
- Algorithms
- Certificates and separating hyperplanes
- Duality and geometry
- Examples: LP and and SDP
- •Theorems of alternatives

Optimization Problems

A familiar problem

- $\bullet \ \ x \in \mathbb{R}^n$ is the variable
- $f_0 : \mathbb{R}^n \to \mathbb{R}$ is the objective function
- $f_i : \mathbb{R}^n \to \mathbb{R}$ for $i = 1, \ldots, m$ define *inequality constraints*
- $h_i : \mathbb{R}^n \to \mathbb{R}$ for $i = 1, \ldots, p$ define equality constraints

Discrete Problems: LQR with Binary Inputs

- \bullet linear discrete-time system $x(t+1) \ = \ Ax(t) + Bu(t)$ on interval $t=0,\ldots,N$
- objective is to minimize the quadratic tracking error

$$
\sum_{t=0}^{N-1} (x(t) - r(t))^{T} Q(x(t) - r(t))
$$

• using binary inputs

 $u_i(t) \in \{-1, 1\}$ for all $i = 1, \ldots, m$, and $t = 0, \ldots, N - 1$

Nonlinear Problems: Lyapunov Stability

Entanglement and Quantum Mechanics

- Entanglement is ^a behavior of quantum states, which cannot be explained classically.
- Responsible for many of the non-intuitive properties, and computational power of quantum devices.

A bipartite mixed quantum state ρ is *separable* (not *entangled*) if

$$
\rho = \sum_{i} p_i |\psi_i\rangle\langle\psi_i| \otimes |\phi_i\rangle\langle\phi_i| \qquad \sum p_i = 1
$$

for some ψ_i, ϕ_i .

Given ρ , how to *decide* and *certify* if it is entangled?

Graph problems

Graph problems appear in many areas: MAX-CUT, independent set, cliques, etc.

MAX CUT partitioning

- Partition the nodes of ^a graph in two disjoint sets, maximizing the number of edges between sets.
- Practical applications (circuit layout, etc.)
- \bullet NP-complete.

How to compute bounds, or exact solutions, for this kind of problems?

Facility Location

- Given a set of n cities
- $\bullet\;$ We'd like to open at most m facilities
- And assign each city to exactly one facility

Basic Nomenclature

A set $S \subset \mathbb{R}^n$ is called

- affine if $x,y\in S$ implies $\theta x+(1-\theta)y\in S$ for all $\theta\in\mathbb{R};$ i.e., the line through x, y is contained in S
- convex if $x, y \in S$ implies $\theta x + (1 \theta)y \in S$ for all $\theta \in [0, 1]$; i.e., the line segment between x and y is contained in S.
- a convex cone if $x, y \in S$ implies $\lambda x + \mu y \in S$ for all $\lambda, \mu \geq 0$; i.e., the *pie slice* between x and y is contained in S.

A function $f : \mathbb{R}^n \to \mathbb{R}$ is called

- affine if $f(\theta x + (1-\theta)y) = \theta f(x) + (1-\theta)f(y)$ for all $\theta \in \mathbb{R}$ and $x, y \in \mathbb{R}^n$; i.e., f is equals a linear function plus a constant $f = Ax + b$
- \bullet • convex if $f\big(\theta x + (1-\theta)y\big) \leq \theta f(x) + (1-\theta)f(y)$ for all $\theta \in [0,1]$ and $x, y \in \mathbb{R}^n$

Properties of Convex Functions

- \bullet f_1+f_2 is convex if f_1 and f_2 are
- $f(x) = \max\{f_1(x), f_2(x)\}$ is convex if f_1 and f_2 are
- $\bullet\;\; g(x) = \sup_y f(x,y)$ is convex if $f(x,y)$ is convex in x for each y
- convex functions are continuous on the interior of their domain
- \bullet $f(Ax + b)$ is convex if f is
- $Af(x) + b$ is convex if f is
- $\bullet\ \ g(x) = \inf_y f(x,y)$ is convex if $f(x,y)$ is jointly convex
- the α –sublevel set

$$
\{x \in \mathbb{R}^n \mid f(x) \le \alpha\}
$$

is convex if f is convex; (the converse is not true)

Convex Optimization Problems

minimize

$$
\begin{array}{ll}\text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \le 0 \\ & h_i(x) = 0 \end{array} \qquad \text{for all } i = 1, \dots, m \\ \text{for all } i = 1, \dots, p
$$

This problem is called a *convex program* if

- $\bullet\;$ the objective function f_0 is convex
- $\bullet\;$ the inequality constraints f_i are convex
- $\bullet\;$ the equality constraints h_i are affine

Linear Programming (LP)

In a *linear program*, the objective and constraint functions are affine.

minimize $c^T x$ subject to $Ax = b$ $Cx \leq d$

Example

minimize $x_1 + x_2$ subject to

$$
3x_1 + x_2 \ge 3
$$

\n
$$
3x_1 + x_2 \ge 3
$$

\n
$$
x_2 \ge 1
$$

\n
$$
x_1 \le 4
$$

\n
$$
-x_1 + 5x_2 \le 20
$$

\n
$$
x_1 + 4x_2 \le 20
$$

Linear Programming

Every linear program may be written in the *standard primal form*

$$
\begin{array}{ll}\text{minimize} & c^T x\\ \text{subject to} & Ax = b\\ & x \ge 0 \end{array}
$$

Here $x \in \mathbb{R}^n$, and $x \geq 0$ means $x_i \geq 0$ for all i

- \bullet \bullet The nonnegative orthant $\set{x \in \mathbb{R}^n \mid x \geq 0}$ is a convex cone.
- $\bullet~$ This convex cone defines the partial ordering \geq on \mathbb{R}^n
- Geometrically, the feasible set is the intersection of an affine set with a convex cone.

Semidefinite Programming

minimize
$$
\operatorname{trace} CX
$$

subject to $\operatorname{trace} A_i X = b_i$ for all $i = 1, ..., m$
 $X \succeq 0$

 $\bullet\,$ The variable X is in the set of $n\times n$ symmetric matrices

$$
\mathbb{S}^n = \{ A \in \mathbb{R}^{n \times n} \mid A = A^T \}
$$

- $\bullet\; X \succeq 0$ means X is positive semidefinite
- As for LP, the feasible set is the intersection of an affine set with ^a convex cone, in this case the positive semidefinite cone

$$
\{X \in \mathbb{S}^n \mid X \succeq 0\}
$$

Hence the feasible set is convex.

SDPs with Explicit Variables

We can also explicitly parametrize the affine set to give

minimize
$$
c^T x
$$

subject to $F_0 + x_1 F_1 + x_2 F_2 + \dots + x_n F_n \preceq 0$

where F_0, F_1, \ldots, F_n are symmetric matrices.

The inequality constraint is called a *linear matrix inequality*; e.g.,

$$
\begin{bmatrix} x_1 - 3 & x_1 + x_2 & -1 \\ x_1 + x_2 & x_2 - 4 & 0 \\ -1 & 0 & x_1 \end{bmatrix} \preceq 0
$$

which is equivalent to

$$
\begin{bmatrix} -3 & 0 & -1 \\ 0 & -4 & 0 \\ -1 & 0 & 0 \end{bmatrix} + x_1 \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + x_2 \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \preceq 0
$$

The Feasible Set is Semialgebraic

The *(basic closed) semialgebraic set* defined by polynomials f_1, \ldots, f_m is $\left\{x \in \mathbb{R}^n \mid f_i(x) \geq 0 \text{ for all } i = 1, \ldots, m \right\}$

The feasible set of an SDP is ^a semialgebraic set.

Because a matrix $A \succ 0$ if and only if

```
\det(A_k) > 0 for k = 1, \ldots, n
```
where A_k is the submatrix of A consisting of the first k rows and columns.

 α , α

로드

The Feasible Set

For example

$$
0 \prec \begin{bmatrix} 3 - x_1 & -(x_1 + x_2) & 1 \\ -(x_1 + x_2) & 4 - x_2 & 0 \\ 1 & 0 & -x_1 \end{bmatrix}
$$

is equivalent to the polynomial inequalities

 $\sim 10^{-1}$

 \mathcal{L} is a positive set of \mathcal{L}

<u>andro gr</u>

 $\overline{4}$

$$
0 < 3 - x_1
$$
\n
$$
0 < (3 - x_1)(4 - x_2) - (x_1 + x_2)^2
$$
\n
$$
0 < -x_1((3 - x_1)(4 - x_2) - (x_1 + x_2)^2) - (4 - x_2)
$$

Intersection of Feasible Sets

The intersection of the feasible sets $\begin{bmatrix} 2x_1 + x_2 + 2 & 0 \\ 0 & -x_1 - 5 \end{bmatrix} \prec 0$

and

$$
\begin{bmatrix} x_1 - 3 & x_1 + x_2 & -1 \\ x_1 + x_2 & x_2 - 4 & 0 \\ -1 & 0 & x_1 \end{bmatrix} \prec 0
$$

is given by

$$
\begin{bmatrix}\nx_1 - 3 & x_1 + x_2 & -1 & 0 & 0 \\
x_1 + x_2 & x_2 - 4 & 0 & 0 & 0 \\
-1 & 0 & x_1 & 0 & 0 \\
0 & 0 & 0 & 2x_1 + x_2 + 2 & 0 \\
0 & 0 & 0 & 0 & -x_1 - 5\n\end{bmatrix} \prec 0
$$

Optimal Points

Since SDPs are convex, if the feasible set is closed then the optimal is always achieved on the boundary.

Convex Optimization Problems

For a convex optimization problem, the *feasible set*

 $S = \{x \in \mathbb{R}^n \mid f_i(x) \leq 0 \text{ and } h_j(x) = 0 \text{ for all } i, j \}$

is convex. So we can write the problem as

minimize $f_0(x)$ subject to $x \in S$

This approach emphasizes the *geometry* of the problem.

For ^a convex optimization problem, any local minimum is also ^a global minimum.

Feasibility Problems

We are also interested in *feasibility problems* as follows. Does there exist $x \in \mathbb{R}^n$ which satisfies

> $f_i(x) \leq 0$ for all $i = 1, ..., m$ $h_i(x) = 0$ for all $i = 1, \ldots, p$

If there does not exist such an x , the problem is described as *infeasible*.

Feasibility Problems

We can always convert an optimization problem into ^a feasibility problem; does there exist $x \in \mathbb{R}^n$ such that

$$
f_0(x) \le t
$$

$$
f_i(x) \le 0
$$

$$
h_i(x) = 0
$$

Bisection search over the parameter t finds the optimal.

Feasibility Problems

Conversely, we can convert feasibility problems into optimization problems.

e.g. the feasibility problem of finding x such that

 $f_i(x) \leq 0$ for all $i = 1, \ldots, m$

can be solved as

minimize y subject to $f_i(x) \leq y$ for all $i = 1, \ldots, m$

where there are $n + 1$ variables $x \in \mathbb{R}^n$ and $y \in \mathbb{R}$

This technique may be used to find an initial feasible point for optimization algorithms

Algorithms

For convex optimization problems, there are several good algorithms

- interior-point algorithms work well in theory and practice
- for certain classes of problems, (e.g. LP and SDP) there is ^a worst-case time-complexity bound
- conversely, some convex optimization problems are known to be NPhard
- \bullet problems are specified either in standard form, for LPs and SDPs, or via an oracle

Certificates

Consider the feasibility problem

Does there exist $x \in \mathbb{R}^n$ which satisfies $f_i(x) \leq 0$ for all $i = 1, \ldots, m$ $h_i(x) = 0$ for all $i = 1, \ldots, p$

There is ^a fundamental asymmetry between establishing that

- \bullet There exists at least one feasible x
- \bullet The problem is infeasible

To show existence, one needs a *feasible point* $x \in \mathbb{R}^n$.

To show emptiness, one needs a a *certificate of infeasibility*; a mathematical proof that the problem is infeasible.

Certificates and Separating Hyperplanes

The simplest form of certificate is a *separating hyperplane*. The idea is that a hyperplane $L \subset \mathbb{R}^n$ breaks \mathbb{R}^n into two half-spaces,

$$
H_1 = \left\{ x \in \mathbb{R}^n \mid b^T x \le a \right\} \qquad \text{and} \qquad H_2 = \left\{ x \in \mathbb{R}^n \mid b^T x > a \right\}
$$

If two *closed convex* sets are disjoint, there is a hyperplane that separates them.

So to prove infeasibility of

$$
f_i(x) \le 0 \qquad \text{for } i = 1, 2
$$

we show that

 $\{x \in \mathbb{R}^n \mid f_1(x) \leq 0\} \subset H_1$ and $\{x \in \mathbb{R}^n \mid f_2(x) \leq 0\} \subset H_2$

Duality

We'd like to solve

minimize
$$
f_0(x)
$$

subject to $f_i(x) \le 0$ for all $i = 1, ..., m$
 $h_i(x) = 0$ for all $i = 1, ..., p$

define the Lagrangian for $x \in \mathbb{R}^n$, $\lambda \in \mathbb{R}^m$ and $\nu \in \mathbb{R}^p$ by

$$
L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)
$$

and the Lagrange dual function

$$
g(\lambda, \nu) = \inf_{x \in \mathbb{R}^n} L(x, \lambda, \nu)
$$

We allow $g(\lambda, \nu) = -\infty$ when there is no finite infimum

Duality

the *dual problem* is

maximize $g(\lambda, \nu)$ subject to $\lambda \geq 0$

we call λ, ν dual feasible if $\lambda \geq 0$ and $g(\lambda, \nu)$ is finite.

 $\bullet\,$ The dual function g is always concave, even if the primal problem is not convex

Weak Duality

For any primal feasible x and dual feasible λ, ν we have

 $g(\lambda, \nu) \leq f_0(x)$

because

$$
g(\lambda, \nu) \le f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)
$$

$$
\le f_0(x)
$$

- A feasible λ, ν provides a *certificate* that the primal optimal is greater than $g(\lambda, \nu)$
- • many interior-point methods simultaneously optimize the primal and the dual problem; when $f_0(x) - g(\lambda, \nu) \leq \varepsilon$ we know that x is ^ε−suboptimal

Strong Duality

- p^* is the optimal value of the primal problem,
- \bullet d^* is the optimal value of the dual problem

Weak duality means $p^{\star} > d^{\star}$

If $p^* = d^*$ we say strong duality holds. Equivalently, we say the *duality gap* $p^{\star} - d^{\star}$ is zero.

Constraint qualifications give sufficient conditions for strong duality.

An example is *Slater's condition*; strong duality holds if the primal problem is convex and strictly feasible.

Geometric Interpretations: The Lagrangian

consider the optimization problem

The value of the Lagrangian $L(x, \lambda)$ is the intersection of the hyperplane H_{λ} with the vertical axis

The Lagrange Dual Function

The Lagrange dual function is

$$
g(\lambda) = \inf_{x \in \mathbb{R}^n} L(x, \lambda)
$$

i.e., the minimum intersection for a given slope $-\lambda$

Sensitivity

consider the perturbed problem

$$
\begin{array}{ll}\text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \le y_i \qquad \text{for all } i = 1, \dots, m \end{array}
$$

and let $p^*(y)$ be the optimal value parametrized by y. Then for any optimal λ^* we have

$$
\lambda^* = -\nabla p^*(0)
$$

Complementary Slackness

For λ^* dual optimal, and x^* primal optimal, we have

$$
\lambda_i^{\star} f_i(x^{\star}) = 0 \qquad \text{for all } i = 1, \dots, m
$$

whenever strong duality holds; i.e., if the i' th constraint is active, then $\lambda_i^{\star} > 0$

Example: Linear Programming

minimize $c^T x$ subject to $Ax = b$ $x \geq 0$

The Lagrange dual function is

$$
g(\lambda, \nu) = \inf_{x \in \mathbb{R}^n} \left(c^T x + \nu^T (b - Ax) - \lambda^T x \right)
$$

=
$$
\begin{cases} b^T \nu & \text{if } c - A^T \nu - \lambda = 0 \\ -\infty & \text{otherwise} \end{cases}
$$

So the dual problem is

Example: Semidefinite Programming

minimize
$$
\operatorname{trace} CX
$$

subject to $\operatorname{trace} A_i X = b_i$ for all $i = 1, ..., m$
 $X \succeq 0$

The Lagrange dual is

$$
g(Z, \nu) = \inf_{X} \left(\operatorname{trace} CX - \operatorname{trace} ZX + \sum_{i=1}^{m} \nu_i (b_i - \operatorname{trace} A_i X) \right)
$$

=
$$
\begin{cases} b^T \nu & \text{if } C - Z - \sum_{i=1}^{m} \nu_i A_i = 0 \\ -\infty & \text{otherwise} \end{cases}
$$

So the dual problem is to maximize $b^T \nu$ subject to

$$
C - Z - \sum_{i=1}^{m} \nu_i A_i = 0 \quad \text{and} \quad Z \succeq 0
$$

Semidefinite Programming Duality

The primal problem is

The dual problem is

The Fourfold Way

There are several ways of formulating an SDP for its numerical solution.

Because *subspaces* can be described

• Using *generators* or a *basis*; Equivalently, the subspace is the range of a linear map $\{ x \mid x = B\lambda \}$ for some $\lambda \}$

$$
\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \lambda_1 \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} + \lambda_2 \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_1 - \lambda_2 \\ 2\lambda_1 + 2\lambda_2 \end{bmatrix}
$$

 $\bullet~$ Through the defining equations; i.e, as the kernel $\set{x\mid Ax = 0}$

$$
\{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid 4x_1 - 2x_2 - x_3 = 0\}
$$

Depending on which description we use, and whether we write ^a primal or dual formulation, we have *four* possibilities (two primal-dual pairs).

Example: Two Primal-Dual Pairs

Another, *more efficient* fomulation which solves the same problem:

maximize
$$
\operatorname{trace} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} Z
$$
 minimize $2t$
subject to $\operatorname{trace} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} Z = 2$ subject to $\begin{bmatrix} t-1 & -1 \\ -1 & t+1 \end{bmatrix} \succeq 0$
 $Z \succeq 0$

Duality

- Duality has many interpretations; via economics, game-theory, geometry.
- e.g., one may interpret Lagrange multipliers as ^a price for violating constraints, which may correspond to resource limits or capacity constraints.
- Often ^physical problems associate specific meaning to certain Lagrange multipliers, e.g. pressure, momentum, force can all be viewed as Lagrange multipliers

Example: Mechanics

- **•** Spring under compression
- •Mass at horizontal position x , equilibrium at $x = 2$

minimize
$$
\frac{k}{2}(x-2)^2
$$

subject to $x \le 1$

The Lagrangian is
$$
L(x, \lambda) = \frac{k}{2}(x-2)^2 + \lambda(x-1)
$$

If λ is dual optimal and x is primal optimal, then $\frac{\partial}{\partial x}L(x,\lambda) = 0$, i.e.,

$$
k(x-2) + \lambda = 0
$$

so we can interpret λ as a force

Feasibility of Inequalities

The *primal feasibility problem* is

does there exist $x \in \mathbb{R}^n$ such that $f_i(x) \geq 0$ for all $i = 1, \ldots, m$

The dual function $g : \mathbb{R}^m \to \mathbb{R}$ is

$$
g(\lambda) = \sup_{x \in \mathbb{R}^n} \sum_{i=1}^m \lambda_i f_i(x)
$$

The *dual feasibility problem* is

does there exist $\lambda \in \mathbb{R}^m$ such that $g(\lambda) < 0$ $\lambda \geq 0$

Theorem of Alternatives

If the dual problem is feasible, then the primal problem is infeasible.

Proof

Suppose the primal problem is feasible, and let \tilde{x} be a feasible point. Then

$$
g(\lambda) = \sup_{x \in \mathbb{R}^n} \sum_{i=1}^m \lambda_i f_i(x)
$$

$$
\geq \sum_{i=1}^m \lambda_i f_i(\tilde{x}) \qquad \text{for all } \lambda \in \mathbb{R}^m
$$

and so $g(\lambda) \geq 0$ for all $\lambda \geq 0$.

Geometric Interpretation

if $g(\lambda) < 0$ and $\lambda \geq 0$ then the hyperplane H_{λ} separates S from T, where

$$
T = \left\{ \begin{bmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{bmatrix} \mid x \in \mathbb{R}^n \right\}
$$

Certificates

- A dual feasible point gives a *certificate* of infeasibility of the primal problem.
- $\bullet\;$ If the Lagrange dual function g is easy to compute, and we can show $g(\lambda) < 0$, then this is a *proof* that the primal is infeasible.
- One way to do this is to have an explicit expression for

$$
g(\lambda) = \sup_{x} L(x, \lambda)
$$

where for feasibility problems, the Lagrangian is $L(x,\lambda)=\sum\lambda_if_i(x)$ m $i=1$

 $\bullet\;$ Alternatively, given λ , we may be able to show directly that

$$
L(x,\lambda) < -\varepsilon \qquad \text{for all } x \in \mathbb{R}^n
$$

for some $\varepsilon > 0$.