Nonnegative polynomials, SDP formulations,
and primal-dual interior-point methods

Lieven Vandenberghe

Electrical Engineering Department, UCLA

CDC 2003



Outline

e SDP representation of nonnegative (trigonometric) polynomials

e primal-dual interior-point methods for SDP



Outline

e SDP representation of nonnegative (trigonometric) polynomials

e primal-dual interior-point methods for SDP



Nonnegative trigonometric polynomials

X(w) =29+ 2x1c08W+ -+ 2x,c08nw >0, weE|0,7]

e an infinite set of linear inequalities in z € R™*!

e defines a closed convex cone C,,1+1 = {z | X(w) > 0}

spectral factorization (Riesz-Fejér theorem)

x € Cy, 11 if and only if there exist yg, . . ., yn» € R such that

W o 92
X(w) = |yo +y1e ™% +y2e™ Y 4o ypeT I



LMI characterization (equality form)

x € Cp11 if and only if there exists

Yoo Yio Yo
v _ Y10 Y:11 Y1 -
i Yn() Ynl Ynn _
such that
o = Yoo+ Yii+---+ Yo,
r1 = Yio+You+---+Y1n
Lp = YnO

i.e., x = Tr(E*Y) where E = [ 8 [(;L ]



proof
o if 7, = Tr(E*Y) with Y = 0, then

- - H - - -

1 Yoo Yio - Yo 1
Jw .. Jw
Xw)=| © Yo A e e s
i enjw | i YnO Ynl e Ynn 1 L enjw _

o if X(w) >0, expanding X (w) = |yo +y1e™7%¥ + - - + yp,e”™¥|? gives

To = Yo +ryit+o+un
1 = Yoy1 +y1y2+ -+ Yn—1Yn
Ln = YoYn

i.e., 2 =yl Efy = Tr(Eryy!)



LMI characterization (inequality form)

o = Yoo+ Yii+--4 Yo,
1 = Yio+Yor+---+Y1n
Lpn — YnO

if and only if there exists exists P € S™ such that

0 --- 0 xz,
0 0 P 0 Pt :
Y(””’P)_[o P]_lo o]+ 0 -« 0 m
_xn I A1 To

therefore, x € C,,41 if and only if Y (x, P) > 0 for some P € S"




Dual cone

n+1—{z|z x>0forall x € Cphi1}

LMI characterization: z € C_; if and only if

21 29 zn,

220 21 Zn—1

Z1 220 Zn—o | =0
An—1 ~An—2 220 _

proof: 21z > 0 for all x € Ch if for all y,

n

1
> a(y"Ery) =y Zy > 0
k=0



Nonnegative real polynomials on |[—1, 1]

change of variables t = cosw maps [0, 7] to [—1,1] and X (w) to
Q(t) = X(cos™ " t) = wopo(t) + 2z1p1(t) + - - - + 2xnpu(t)

where py(t) = cos(kcos™'t) (the kth Chebyshev polynomial)

SOS representation (for n = 2m): polynomial Q(¢) > 0 on [—1, 1] iff
. | o
Q(t) = ’yo + yle—]w + y2€—2jw N yne—njw‘ ‘

w=cos~ 1t

= (YmPo(t) + Ym—1 + Yms1)P1(t) + -+ + -+ (Yo + Yn)Pm (1))’

+ (1 =) (Um-1 = Ymt1)20®) + -+ (Yo — Yn)qn-1(t))"

where qi_1(t) = sin(kcos™1t)/sin(cos™1t) (Cheb. polyn. of 2nd kind)



Extension to arbitrary bounded intervals

Q(t) = wopo(t) + 2z1p1(t) + -+ -+ 2w,pp(t) >0, t € [t1,12]

[0 0 alz ]
0 0 P 0 : :
n _ -
rest: [0 P] [0 0]+ 0 0 afz | =
alx aizr afr |

T

a; x are coefficients of

Q(t) = (af)Po(t) + (a 2)p1(t) + - - - + (alz)pn(t)

in basis of shifted Chebyshev polynomials

Pe(t) = pr((2t — (21 +t2))/(t2 — t1))



Example: Magnitude FIR filter design

magnitude constraints
L<|ho+hie™ +- -4+ hpe ™9 <U, we |w,w)]

o H(w)=>_, hxe " is frequency response of FIR filter

e not convex in filter coefficients h;

. —k . . .
change of variables x;, = """ h;h; 11 gives equivalent constraints

L? < xg+2x1Cc08W+ -+ + 2z, cosnw < U?,  w € [wr,ws)]

ZL‘O—I—ZLClCOSW‘I_"'_'_anCOSHW207 WG[O,T"]

e from x, obtain A by spectral factorization

e convex constraints in x, representable as LMIs



LMI formulation (auxiliary variables Py, P>, P3 € S™)

e X(w)>0,wel0,n

0 ... 0
HAEEREE
0 P 0O O 0 0
_LUn 1
o [?< X(w) <U? w € |wy,ws:
[0 0
[O O]_[Pg O]+ ; :
0 B 0 O 0 0
_afx aff:z: ap
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example: peak-constrained least-squares filter with N bands |ay, O]

minimize / |H(w)|? dw
stopbands

subject to Ly < |H(w)| < Uy, wé€|ag,Px], k=1,...,N

use X (w) = |H(w)|? = z¢ + 271 cosw + -+ - + 2z, cos nw, to get

minimize / X (w) dw
stopbands

subject to Li < X(w) <UZ, wE€|ag, B, k=1,...,N
X(w) >0, wel0,r]

e standard method: discretize constraints and solve an LP

e SDP method: solve SDP with variables z, 2N + 1 matrices P, € S"
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general problem

minimize g’z

: 0 0 P. 0 P
_ _ M. = —
subject to [ 0 P, ] [ 0 0 ] +> i oTiMp; = Ni, k=1,...,L

e variables x € R?, P, € S"

e P are auxiliary variables, introduced to formulate semi-infinite
inequalities as LMls

e expensive to solve using general-purpose SDP software
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Interior-point SDP methods

early methods (1990-1995)

e projective method, implemented in the Matlab LMI control toolbox
e potential reduction methods, implemented in SDPSOL

e barrier methods

more recent methods

e primal-dual path-following methods

e general-purpose software packages: Sedumi, SDPT3, SDPPACK,
SDPA, CSDP, DSDP, Yalmip, . ..
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SDP duality
primal SDP

minimize (¢, y)
subject to A(y)+S=B, S>=0

e variable z € V, § € S” (slack variable)

e A is linear mapping from V to S”

dual SDP
maximize —Tr(BZ)

subject to A*(Z)+c=0, Z =0
variable Z € S™; 424 : §™ — V is adjoint of A

optimal values are equal (if primal or dual is strictly feasible)
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Primal-dual path-following algorithm
(Tutlincl, Toh, Todd)

select starting point S > 0, Z > 0, any y; repeat the following steps

1. Verify stopping criteria.
2. Compute the Nesterov-Todd scaling matrix R: defined by

R'ST'R =diag(\)™', R'ZR=diag()\), MeR],

3. Compute affine scaling directions AZ?, AS?, Ay?:

H(AZ?S + ZAS?) = —diag()\)?
AS*+ A(Ay?) = —(Aly)+ S — B)
ANAZ?) = —(A(Z) +c)

where H(X) = L{(RTXR T+ R'XTR)

2
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4. Compute centering-corrector steps AZ¢, AS¢, Ay*:

H(AZS + ZASS) = pl — H(AZ*AS?)
ASS+ A(AyS) = 0
AN(AZY) = 0

with p calculated based on Tr(SZ), AZ?, AS?
5. Update primal and dual iterates:

y =y + aly, S =54 aASs, Z =7+ BAZ
where Ay = Ay? + Ay, AS = AS? + AS, AZ = AZ2 + AZS,

a = min{l,0.99sup{a | S+ aAS = 0}}
B = min{l,0.99sup{f | Z + BAZ = 0}}
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Overall complexity

number of iterations is small (< 30)
at each iteration, solve two sets of equations (‘Newton equations’)

H(AZS +ZAS) = D
ANAZ) = d

where |
H(X) = 5(RTXR—T + R7'XTR)

values of R (NT scaling matrix), D1, Do, d change at each iteration

equations for other primal-dual methods are similar (with different R)
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General-purpose implementation

e climinate AS from H(AZS + ZAS) = Ds:

—WAZW + A(Ay) = D (1)
AN(AZ) =

SH

where W = RRT
e climinate AZ from (1):
AVW A AYW ™) =d + A2YW DWW (2)
a positive definite set of linear equations in Ay, and usually dense

total cost: cost of forming the equations (2) plus cost of solving

18



SDP with structure

minimize ¢lx

| 0 0 P 0 .
subject to [O P]_[O Ol—l—zizlwiMizN

e p+n(n+1)/2 variables x, P
e we will assume that p = O(n)

e discussion extends to problems with multiple constraints

0 O P. 0 p -
[0 Pk]_[ 0 0]+Z;$iMki>Nk, k=1,...,L
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Newton equations

0 AP

0 0 AP 0 &
WAZW+[ ]—[ 0 O]Jrz;AxiMi

AZbr — AZtl
Tre(M;AZ)

where AZy, AZ,, are leading and trailing n X n submatrices of AZ

AZ= = B

W > 0; value changes at each iteration

AZbr

N
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Standard solution method

0 0 AP 0 &
WAZW+[O AP]_[ 0 O]—F;AxiMi — D

AZy — AZy = Do

e eliminate AZ from 1st equation
e solve dense set of equations in Ax, AP

e cost: cost of forming reduced equations plus at least O(n°) for solving

used in general-purpose solvers

21



Alternative method for solving Newton equations

first equation

0 0 AP 0 &
WAZWJr[O AP]_[ 0 O]Jrz;Aa:iMi—Dl

eliminate AP by taking inner product with E*, E = [ 8 L ]:

p
Tr(E*WAZW) + Y Az Te(E*M;) = Te(E*Dy), k=0,...,n
=1

(note: Tr(E*X) is sum of elements on kth diagonal of X)
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second equation
AZbr — AZtl — D2

means
AZ =T(Au) + Zy for some Au

e T(Au) is symmetric Toeplitz matrix constructed from Au

i QA’U,O Aul T Aun
Au, Aup_y -+ 28up |

_ zn: Aug(E* + (E*)T)

® Zj is any solution to Zy p — Zpy = Do



reduced Newton equations
Te(E*WT(Auw)W) + ZA:EZ (E*M;) = Tr(E*D;), k=0,...,n

In matrix notation:
H G Au | | r
GT 0 Az | — | d
Hy; = Tr (E"W (E'+ (E)") W), Gri = Tr(E*M;)

total cost: O(n?) operations for solving, plus

e cost of forming G (can be pre-computed in at most O(n?), usually less)

e cost of forming H
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fast evaluation of H via DFT
Hy; = Te(E*WE'W) 4+ Te(E*W (EY)TW), i,k=0,...,n

o factor W =RR" =" rirf
e take zero-padded (length > 2(n + 1)) DFTs of 7;:

V =WperR

e evaluate H using Hadamard products:

H=Wgtr (VVT) o (VVIT + (VYT o (VVI)) Wher

cost: O(n?)
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Summary

SDP formulation of a class of problems involving nonnegative polynomials:

e difficult to solve using general-purpose software
— large number of auxiliary variables (O(n?))
— complexity typically O(n®) per iteration
e custom implementation of primal-dual interior-point method:

— exploit structure in Newton equations using direct linear algebra
— cost: O(n?) per iteration (times 20-30 iterations)

26



References

e Genin, Hachez, Nesterov, Van Dooren (SIMAX 2003)

nonnegative generalized matrix polynomials; fast implementations of
dual barrier method using generalized Schur algorithm

e Alkire, Vandenberghe (Mathematical Programming 2002)

trigonometric polynomials; fast implementation of dual barrier method
using DFT

e Vandenberghe, Balakrishnan, Wallin, Hansson (this CDC)

extension to primal-dual methods, SDPs derived from KYP lemma

27



