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12. Further Applications

• Domain of attraction of Lyapunov functions

• Matrix copositivity

• Geometric theorem proving

• Deciding quantum entanglement
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Domain of attraction for Lyapunov functions

For a given Lyapunov function, want to estimate the domain of attraction.

We can compute the largest sublevel set that is invariant, i.e., the opti-
mization problem:

γ0 := inf
x∈Rn

V (x) subject to

{
V̇ (x) = 0
x 6= 0

The invariant subset is given by the connected component of the Lyapunov
function sublevel set S := {x |V (x) < γ0} that includes the origin.

Using the SOS machinery, we easily obtain lower bounds on γ0, which
immediately provide estimates for the attracting region.
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Example: Domain of attraction

Consider the system:

ẋ = −x + y

ẏ = 0.1x− 2y − x2 − 0.1x3

and Lyapunov function V (x, y) := x2 + y2.
The system has three fixed points.

x ’ = − x + y                  
y ’ = x/10 − 2 y − x2 − x3/10
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We can consider the condition:

(V (x, y)− γ)(x2 + y2) + (p1 + p2x + p3y + p4xy) · V̇ (x, y) is a sum of squares.

Clearly, V (x, y) ≥ γ holds for every (x, y) with V̇ = 0.
For this example, the obtained value of γ is the best possible.
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Matrix copositivity

• A matrix M ∈ Sn is copositive if

xTMx ≥ 0 ∀x ∈ Rn, xi ≥ 0.

• Quadratic form is nonnegative on the nonnegative orthant.

• The set of copositive matrices is a convex closed cone, but...

• Checking copositivity is coNP-complete (Murty & Kabadi 1992).

• There exist necessary and sufficient conditions, usually in terms of
principal minors. But, exponential time in the worst case (to be ex-
pected).
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Copositivity applications

• Very important in quadratic programming.

• Characterization of local solutions.

• Valid inequalities for linearly constrained problems.

• Minimization of quadratic forms over polyhedra

• Consider the optimization problem

f∗ = minimize xTQx subject to

{
Ax ≥ 0

xTx = 1

If Q º ATCA + γI with C copositive, then f∗ ≥ γ, since

xTQx ≥ (Ax)TC(Ax) + γxTx ≥ γ.

We want computable sufficient conditions for copositivity.
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More copositivity

We could use the P-satz, but we present first a different approach.

To check copositivity of M , consider the fourth order form:

P (z) := zTMz =
∑

i,j

mijz
2
i z

2
j , z = [z2

1, z
2
2, . . . , z

2
n]T .

M is copositive if and only if the form P (z) is nonnegative.

Hard, but can check if P (z) is a SOS form.

Equivalent to a well-known sufficient condition: if

M = P + N, P º 0, N ≥ 0.

then M is copositive.

Necessary and sufficient for n ≤ 4, counterexamples exist for n ≥ 5.
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Stronger SDP conditions

Consider the family of 2(r + 1)-forms given by

Pr(z) =




n∑

i=1

z2
i



r

P0(z).

If Pi is a sum of squares, then Pi+1 is also a sum of squares. For r = 1,
we have the following sufficient condition:

Thm: Consider the system of LMIs given by:

M − Λi ≥ 0, i = 1, . . . , n

Λi
ii = 0, i = 1, . . . , n

Λi
jj + Λj

ji + Λj
ij = 0, i 6= j

Λi
jk + Λj

ki + Λk
ij ≥ 0, i 6= j 6= k

If feasible, then M is copositive.
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Copositivity: P-satz interpretation

These LMIs also have a simple P-satz interpretation, via the homogeneous
identity:

(
∑

i

xi)(x
TMx) =

∑

i

(xTSix)xi +
∑

ijk

sijkxixjxk

where the Si are PSD quadratic forms, and the sijk are nonnegative scalars.

A P-satz certificate for nonegativity over xi ≥ 0.

Similar interpretations for the other relaxations (r > 1).
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Example: cyclic copositive matrices

Consider 5× 5 matrices of the form



1 b c c b
b 1 b c c
c b 1 b c
c c b 1 b
b c c b 1




What conditions should b, c satisfy for the matrix to be copositive?

What about the relaxations? How powerful are they?

The inner region is the P+N relaxation (r = 0).
The outer region corresponds to the case r = 1, and coincides exactly with
the region of copositivity.
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Example: Structured Singular Value

• Structured singular value µ and related problems: provides better up-
per bounds.

• µ is a measure of robustness: how big can a structured perturbation
be, without losing stability.

• A standard semidefinite relaxation: the µ upper bound.

• Morton and Doyle’s counterexample with four scalar blocks.

• Exact value: approx. 0.8723

• Standard µ upper bound: 1

• New bound: 0.895
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Geometric Inequalities

Ono’s inequality: For an acute triangle,

(4K)6 ≥ 27 · (a2 + b2 − c2)2 · (b2 + c2 − a2)2 · (c2 + a2 − b2)2

where K and a, b, c are the area and lengths of the edges.

The inequality is true if:

t1 := a2 + b2 − c2 ≥ 0

t2 := b2 + c2 − a2 ≥ 0

t3 := c2 + a2 − b2 ≥ 0




⇒ (4K)6 ≥ 27 · t21 · t22 · t23

A simple proof: define

s(x, y, z) = (x4 +x2y2− 2y4− 2x2z2 +y2z2 + z4)2 + 15 · (x− z)2(x+ z)2(z2 +x2−y2)2.

We have then

(4K)6 − 27 · t21 · t22 · t23 = s(a, b, c) · t1 · t2 + s(c, a, b) · t1 · t3 + s(b, c, a) · t2 · t3

therefore proving the inequality.
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Geometric Inequalities (II)

• A geometric inequality arising from circle packings (R. Peretz):

α

β γ

X

Y

Z
U

Y+V

Z+W

X+U

V

W

α·(X+Y −Z)+β ·(U+V −W ) ≤ γ ·((X+U)+(Y +V )−(Z+W ))

• Not easy to prove. Not semialgebraic, in the standard form.

• The inequality holds if certain polynomial expression is nonnegative.

• Using SOS/SDP, we will obtain a very concise proof.
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Geometric inequalities: reduction to a polynomial

It can be shown that the theorem is true if:

L(a, b, c, d) = a2b2 (a− b)2 + (a− b)2 c3d3 + a2d2 (1− ab)
(
1 + ab− 2 b2

)
−

−adbc
(
2− 4 ab + ba3 + ab3

)
+ b2c2 (1− ab)

(
1 + ab− 2 a2

)
+

+
(
c2b (1− ab)

(
2 a− b− ab2

)
− cd

(
a2 + b2 + 2 a3b3 − 4 a2b2

)

+d2a (1− ab)
(
2 b− a− a2b

))
cd

is nonnegative in [0, 1]4.

The statement of the theorem is invariant under interchange of the two
triangles.

This translates into symmetries of the polynomial: we can simultaneously
interchange a, b and c, d.

Can use symmetry reduction to simplify the problem, and achieve faster
computation times.
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Geometric inequalities: solution

We solve the symmetry-reduced SDPs, and obtain:

L(a, b, c, d) = L1 + L2 + L3

L1 = (c + d)(−a2b + ab2 − ad + bc− bcd + adc− ab2c + a2bd)2

L2 = (1− c)(1− d)(ab− 1)2(ad− bc)2

L3 = (1− c)(1− d)(a− b)2(ab− cd)2.

From this, stronger conclusions on the sign of L can be derived. Not only
it is nonnegative on the open unit hypercube (0, 1)4, but the same property
holds on the much larger region R×R×{c+ d ≥ 0, (1− c)(1− d) ≥ 0}.

An verifiable certificate for nonnegativity.

As a consequence, the original geometric inequality is now proved.
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Entanglement and Quantum Mechanics

• Entanglement is a behavior of quantum states, which cannot be ex-
plained classically.

• Responsible for many of the non-intuitive properties, and computa-
tional power of quantum devices.

A bipartite mixed quantum state ρ is separable (not entangled) if

ρ =
∑

i

pi|ψi〉〈ψi| ⊗ |φi〉〈φi|
∑

pi = 1

for some ψi, φi.

Given ρ, how to decide and certify if it is entangled?
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Deciding entanglement

The set of separable states is convex by definition.

We can certify entanglement by using entanglement witnesses, linear func-
tionals that are nonnegative in all separable states.

∀ρsep 〈Z, ρsep〉 ≥ 0, 〈Z, ρ〉 < 0.

The first condition is computationally difficult, since it reduces to nonneg-
ativity of a bihermitian form:

〈Z, xx∗ ⊗ yy∗〉 =
∑

ijkl

Zij,klxix
∗
jyky

∗
l

We can now apply the SOS hierarchies.

The first level corresponds to a well-known criterion (PPT).

The other levels are stronger, can detect many entangled states.


