10. The Positivstellensatz

- Basic semialgebraic sets
- Semialgebraic sets
- Tarski-Seidenberg and quantifier elimination
- Feasibility of semialgebraic sets
- Real fields and inequalities
- The real Nullstellensatz
- The Positivstellensatz
- Example: Farkas lemma
- Hierarchy of certificates
- Boolean minimization and the S-procedure
- Exploiting structure

Basic Semialgebraic Sets

The *basic (closed) semialgebraic set* defined by polynomials f_1, \ldots, f_m is $\left\{ x \in \mathbb{R}^n \mid f_i(x) \ge 0 \text{ for all } i = 1, \ldots, m \right\}$

Examples

- The nonnegative orthant in \mathbb{R}^n
- The cone of positive semidefinite matrices
- Feasible set of an SDP; polyhedra and spectrahedra

Properties

- If S_1, S_2 are basic closed semialgebraic sets, then so is $S_1 \cap S_2$; i.e., the class is closed under intersection
- Not closed under union or projection

Semialgebraic Sets

Given the basic semialgebraic sets, we may generate other sets by set theoretic operations; unions, intersections and complements.

A set generated by a finite sequence of these operations on basic semialgebraic sets is called a *semialgebraic set*.

Some examples:

• The set

$$S = \left\{ x \in \mathbb{R}^n \mid f(x) * 0 \right\}$$

is semialgebraic, where * denotes $<,\leq,=,\neq.$

- In particular every real variety is semialgebraic.
- We can also generate the semialgebraic sets via Boolean logical operations applied to polynomial equations and inequalities

Semialgebraic Sets

Every semialgebraic set may be represented as either

• an intersection of unions

$$S = \bigcap_{i=1}^{m} \bigcup_{j=1}^{p_i} \left\{ x \in \mathbb{R}^n \mid \operatorname{sign} f_{ij}(x) = a_{ij} \right\} \text{ where } a_{ij} \in \{-1, 0, 1\}$$

• a finite union of sets of the form

$$\left\{ x \in \mathbb{R}^n \mid f_i(x) > 0, h_j(x) = 0 \text{ for all } i = 1, \dots, m, \ j = 1, \dots, p \right\}$$

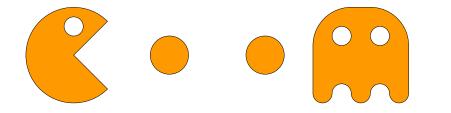
• in \mathbb{R} , a finite union of points and open intervals

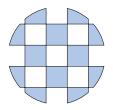
Every *closed* semialgebraic set is a finite union of basic closed semialgebraic sets; i.e., sets of the form

$$\left\{ x \in \mathbb{R}^n \mid f_i(x) \ge 0 \text{ for all } i = 1, \dots, m \right\}$$

Properties of Semialgebraic Sets

- If S_1, S_2 are semialgebraic, so is $S_1 \cup S_2$ and $S_1 \cap S_2$
- The projection of a semialgebraic set is semialgebraic
- The closure and interior of a semialgebraic sets are both semialgebraic
- Some examples:





Sets that are not Semialgebraic

Some sets are not semialgebraic; for example

- the graph $\left\{ (x, y) \in \mathbb{R}^2 \mid y = e^x \right\}$
- the infinite staircase $\left\{ (x, y) \in \mathbb{R}^2 \mid y = \lfloor x \rfloor \right\}$
- the infinite grid \mathbb{Z}^n

Tarski-Seidenberg and Quantifier Elimination

Tarski-Seidenberg theorem: if $S \subset \mathbb{R}^{n+p}$ is semialgebraic, then so are

- $\{ x \in \mathbb{R}^n \mid \exists y \in \mathbb{R}^p \ (x, y) \in S \}$ (closure under projection)
- $\{x \in \mathbb{R}^n \mid \forall y \in \mathbb{R}^p (x, y) \in S\}$ (complements and projections)
- i.e., quantifiers do not add any expressive power

Cylindrical algebraic decomposition (CAD) may be used to compute the semialgebraic set resulting from quantifier elimination

Feasibility of Semialgebraic Sets

Suppose S is a semialgebraic set; we'd like to solve the feasibility problem

Is S non-empty?

More specifically, suppose we have a semialgebraic set represented by polynomial inequalities and equations

$$S = \left\{ x \in \mathbb{R}^n \, | \, f_i(x) \ge 0, \, h_j(x) = 0 \text{ for all } i = 1, \dots, m, \, j = 1, \dots, p \right\}$$

- Important, non-trivial result: the feasibility problem is *decidable*.
- But NP-hard (even for a single polynomial, as we have seen)
- We would like to *certify* infeasibility

Certificates So Far

• *The Nullstellensatz:* a necessary and sufficient condition for feasibility of *complex* varieties

$$\left\{ x \in \mathbb{C}^n \mid h_i(x) = 0 \ \forall i \right\} = \emptyset \quad \iff \quad -1 \in \mathbf{ideal}\{h_1, \dots, h_m\}$$

• Valid inequalities: a sufficient condition for infeasibility of real basic semialgebraic sets

$$\left\{ x \in \mathbb{R}^n \mid f_i(x) \ge 0 \ \forall i \right\} = \emptyset \quad \longleftarrow \quad -1 \in \operatorname{cone}\{f_1, \dots, f_m\}$$

• Linear Programming: necessary and sufficient conditions via duality for real linear equations and inequalities

Certificates So Far

$Degree \setminus Field$	Complex	Real
Linear	<i>Range/Kernel</i> Linear Algebra	<i>Farkas Lemma</i> Linear Programming
Polynomial	<i>Nullstellensatz</i> Bounded degree: LP Groebner bases	???? ????

We'd like a method to construct certificates for

- *polynomial* equations
- over the *real* field

Real Fields and Inequalities

If we can test feasibility of *real* equations then we can also test feasibility of real *inequalities* and *inequations*, because

• *inequalities:* there exists $x \in \mathbb{R}$ such that $f(x) \ge 0$ if and only if

there exists
$$(x,y)\in \mathbb{R}^2$$
 such that $f(x)=y^2$

- strict inequalities: there exists x such that f(x)>0 if and only if there exists $(x,y)\in \mathbb{R}^2$ such that $y^2f(x)=1$
- inequations: there exists x such that $f(x)\neq 0$ if and only if there exists $(x,y)\in \mathbb{R}^2$ such that yf(x)=1

The underlying theory for real polynomials called *real algebraic geometry*

Real Varieties

The *real variety* defined by polynomials $h_1, \ldots, h_m \in \mathbb{R}[x_1, \ldots, x_n]$ is $\mathcal{V}_{\mathbb{R}}\{h_1, \ldots, h_m\} = \{ x \in \mathbb{R}^n \mid h_i(x) = 0 \text{ for all } i = 1, \ldots, m \}$

We'd like to solve the feasibility problem; is $\mathcal{V}_{\mathbb{R}}\{h_1, \ldots, h_m\} \neq \emptyset$?

We know

- Every polynomial in $ideal\{h_1, \ldots, h_m\}$ vanishes on the feasible set.
- The (complex) Nullstellensatz:

 $-1 \in \mathbf{ideal}\{h_1, \dots, h_m\} \implies \mathcal{V}_{\mathbb{R}}\{h_1, \dots, h_m\} = \emptyset$

• But this condition is not necessary over the reals

The Real Nullstellensatz

Recall Σ is the cone of polynomials representable as sums of squares.

Suppose $h_1, \ldots, h_m \in \mathbb{R}[x_1, \ldots, x_n]$.

 $-1 \in \Sigma + \mathbf{ideal}\{h_1, \dots, h_m\} \qquad \Longleftrightarrow \qquad \mathcal{V}_{\mathbb{R}}\{h_1, \dots, h_m\} = \emptyset$

Equivalently, there is no $x \in \mathbb{R}^n$ such that

$$h_i(x) = 0$$
 for all $i = 1, \dots, m$

if and only if there exists $t_1, \ldots, t_m \in \mathbb{R}[x_1, \ldots, x_n]$ and $s \in \Sigma$ such that

$$-1 = s + t_1 h_1 + \dots + t_m h_m$$

Example

Suppose
$$h(x) = x^2 + 1$$
. Then clearly $\mathcal{V}_{\mathbb{R}}\{h\} = \emptyset$

We saw earlier that the complex Nullstellensatz cannot be used to prove emptyness of $\mathcal{V}_{\mathbb{R}}\{h\}$

But we have

$$-1 = s + th$$

with

$$s(x) = x^2$$
 and $t(x) = -1$

and so the real Nullstellensatz implies $\mathcal{V}_{\mathbb{R}}\{h\} = \emptyset$.

The polynomial equation -1 = s + th gives a certificate of infeasibility.

The Positivstellensatz

We now turn to feasibility for *basic semialgebraic sets*, with primal problem

Does there exist $x \in \mathbb{R}^n$ such that $f_i(x) \ge 0$ for all $i = 1, \dots, m$ $h_j(x) = 0$ for all $j = 1, \dots, p$

Call the feasible set S; recall

- every polynomial in $\operatorname{cone} \{f_1, \ldots, f_m\}$ is nonnegative on S
- every polynomial in $ideal\{h_1, \ldots, h_p\}$ is zero on S

The *Positivstellensatz* (Stengle 1974)

 $S = \emptyset \quad \iff \quad -1 \in \operatorname{cone}\{f_1, \dots, f_m\} + \operatorname{ideal}\{h_1, \dots, h_m\}$

Example

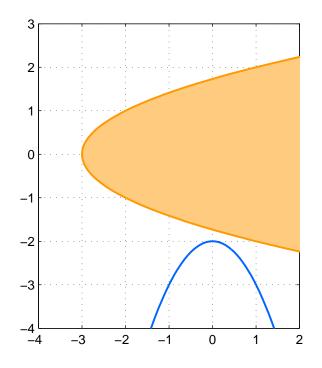
Consider the feasibility problem

$$S = \left\{ (x, y) \in \mathbb{R}^2 \, | \, f(x, y) \ge 0, h(x, y) = 0 \right\}$$

where

$$f(x, y) = x - y^2 + 3$$

 $h(x, y) = y + x^2 + 2$



By the P-satz, the primal is infeasible if and only if there exist polynomials $s_1, s_2 \in \Sigma$ and $t \in \mathbb{R}[x, y]$ such that

$$-1 = s_1 + s_2 f + th$$

A certificate is given by

$$s_1 = \frac{1}{3} + 2\left(y + \frac{3}{2}\right)^2 + 6\left(x - \frac{1}{6}\right)^2, \quad s_2 = 2, \quad t = -6$$

Explicit Formulation of the Positivstellensatz

The primal problem is

Does there exist $x \in \mathbb{R}^n$ such that $f_i(x) \ge 0$ for all $i = 1, \dots, m$ $h_j(x) = 0$ for all $j = 1, \dots, p$

The dual problem is

Do there exist $t_i \in \mathbb{R}[x_1, \dots, x_n]$ and $s_i, r_{ij}, \dots \in \Sigma$ such that $-1 = \sum_i h_i t_i + s_0 + \sum_i s_i f_i + \sum_{i \neq j} r_{ij} f_i f_j + \cdots$

These are *strong alternatives*

Testing the Positivstellensatz

Do there exist
$$t_i \in \mathbb{R}[x_1, \ldots, x_n]$$
 and $s_i, r_{ij}, \ldots \in \Sigma$ such that

$$-1 = \sum_{i} t_i h_i + s_0 + \sum_{i} s_i f_i + \sum_{i \neq j} r_{ij} f_i f_j + \cdots$$

- This is a convex feasibility problem in t_i, s_i, r_{ij}, \ldots
- To solve it, we need to choose a subset of the cone to search; i.e., the maximum degree of the above polynomial; then the problem is a *semidefinite program*
- This gives a *hierarchy* of syntactically verifiable certificates
- The validity of a certificate may be easily checked; e.g., linear algebra, random sampling
- Unless NP=co-NP, the certificates cannot *always* be polynomially sized.

Example: Farkas Lemma

The primal problem; does there exist $x \in \mathbb{R}^n$ such that

$$Ax + b \ge 0 \qquad Cx + d = 0$$

Let $f_i(x) = a_i^T x + b_i$, $h_i(x) = c_i^T x + d_i$. Then this system is infeasible if and only if $-1 \in \operatorname{cone} \{f_1, \dots, f_m\} + \operatorname{ideal} \{h_1, \dots, h_p\}$

Searching over *linear combinations*, the primal is infeasible if there exist $\lambda \ge 0$ and μ such that

$$\lambda^T (Ax + b) + \mu^T (Cx + d) = -1$$

Equating coefficients, this is equivalent to

$$\lambda^T A + \mu^T C = 0 \quad \lambda^T b + \mu^T d = -1 \quad \lambda \ge 0$$

Hierarchy of Certificates

- Interesting connections with logic, proof systems, etc.
- Failure to prove infeasibility (may) provide points in the set.
- Tons of applications:

optimization, copositivity, dynamical systems, quantum mechanics...

Special Cases

Many known methods can be interpreted as fragments of P-satz refutations.

- LP duality: linear inequalities, constant multipliers.
- S-procedure: quadratic inequalities, constant multipliers
- Standard SDP relaxations for QP.
- The *linear representations* approach for functions f strictly positive on the set defined by $f_i(x) \ge 0$.

$$f(x) = s_0 + s_1 f_1 + \dots + s_n f_n, \qquad s_i \in \Sigma$$

Converse Results

- *Losslessness:* when can we restrict *a priori* the class of certificates?
- Some cases are known; e.g., additional conditions such as linearity, perfect graphs, compactness, finite dimensionality, etc, can ensure specific *a priori* properties.

Example: Boolean Minimization

$$x^T Q x \le \gamma$$
$$x_i^2 - 1 = 0$$

A P-satz refutation holds if there is $S \succeq 0$ and $\lambda \in \mathbb{R}^n$, $\varepsilon > 0$ such that

$$-\varepsilon = x^T S x + \gamma - x^T Q x + \sum_{i=1}^n \lambda_i (x_i^2 - 1)$$

which holds if and only if there exists a diagonal Λ such that $Q \succeq \Lambda$, $\gamma = \operatorname{trace} \Lambda - \varepsilon$.

The corresponding optimization problem is

maximize
$$\mathbf{trace} \Lambda$$

subject to $Q \succeq \Lambda$
 Λ is diagona

Example: S-Procedure

The primal problem; does there exist $x \in \mathbb{R}^n$ such that

$$x^{T}F_{1}x \ge 0$$
$$x^{T}F_{2}x \ge 0$$
$$x^{T}x = 1$$

We have a P-satz refutation if there exists $\lambda_1,\lambda_2\geq 0$, $\mu\in\mathbb{R}$ and $S\succeq 0$ such that

$$-1 = x^T S x + \lambda_1 x^T F_1 x + \lambda_2 x^T F_2 x + \mu (1 - x^T x)$$

which holds if and only if there exist $\lambda_1, \lambda_2 \ge 0$ such that

$$\lambda_1 F_1 + \lambda_2 F_2 \le -I$$

Subject to an additional mild constraint qualification, this condition is also *necessary* for infeasibility.

Exploiting Structure

What algebraic properties of the polynomial system yield efficient computation?

- *Sparseness:* few nonzero coefficients.
 - Newton polytopes techniques
 - Complexity does not depend on the degree
- *Symmetries:* invariance under a transformation group
 - Frequent in practice. Enabling factor in applications.
 - Can reflect underlying physical symmetries, or modelling choices.
 - SOS on *invariant rings*
 - Representation theory and invariant-theoretic techniques.
- *Ideal structure:* Equality constraints.
 - SOS on *quotient rings*
 - Compute in the coordinate ring. Quotient bases (Groebner)