9. Interpretations, Lifting, SOS and Moments

- Polynomial nonnegativity
- Sum of squares (SOS) decomposition
- Example of SOS decomposition
- \bullet Computing SOS using semidefinite programming
- \bullet **Convexity**
- **•** Positivity in one variable
- •Background
- \bullet Global optimization
- \bullet Optimizing in parameter space
- Lyapunov functions

Interpretations

- So far, we have seen how to compute certificates of polynomial nonnegativity
- As we will see, these are *dual SDP relaxations*
- We can also interpret the corresponding primal SDPs
- **•** These arise through liftings

9 - 3 Interpretations, Lifting, SOS and Moments P. Parrilo and S. Lall, CDC 2003 2003.12.07.04

A General Method: Liftings

Consider this polytope in \mathbb{R}^3 (a zonotope). It has 56 facets, and 58 vertices.

Optimizing ^a linear function over this set, requires a *linear program* with 56 constraints (one per face).

However, this polyhedron is ^a threedimensional *projection* of the 8-dimensional hypercube $\{x \in \mathbb{R}^8, -1 \le x_i \le 1\}.$

Therefore, by using additional variables, we can solve the same problem, by using an LP with *only 16 constraints*.

Liftings

By going to higher dimensional representations, things may become easier:

- "Complicated" sets can be the projection of much simpler ones.
- $\bullet\,$ A polyhedron in \mathbb{R}^n with a "small" number of faces can project to a lower dimensional space with *exponentially* many faces.
- \bullet Basic semialgebraic sets can project into non-basic semialgebraic sets.
- Feasible sets of SDPs may project to non-spectrahedral sets.

An essential technique in integer programming.

Advantages: compact representations, avoiding "case distinctions," etc.

Example

minimize
$$
(x-3)^2
$$

subject to $x(x-4) \ge 0$

The feasible set is $[-\infty, 0] \cup [4, \infty]$. Not convex, or even connected. Consider the lifting $L : \mathbb{R} \to \mathbb{R}^2$, with $L(x) = (x, x^2) = (x, y)$. Rewrite the problem in terms of the lifted variables.

We "get around" nonconvexity: interior points are now on the *boundary*.

Quadratically Constrained Quadratic Programming

A general QCQP is

minimize
$$
\begin{bmatrix} 1 \\ x \end{bmatrix}^T Q \begin{bmatrix} 1 \\ x \end{bmatrix}
$$

subject to $\begin{bmatrix} 1 \\ x \end{bmatrix}^T A_i \begin{bmatrix} 1 \\ x \end{bmatrix} = 0$ for all $i = 1, ..., m$

The Lagrangian is

$$
L(x,\lambda) = \begin{bmatrix} 1 \\ x \end{bmatrix}^T \left(Q - \sum_{i=1}^m \lambda_i A_i \right) \begin{bmatrix} 1 \\ x \end{bmatrix}^T
$$

so the dual feasible set is defined by semidefinite constraints

QCQP Dual

The dual is the SDP

maximize
$$
t
$$

subject to $Q - \sum_{i=1}^{m} \lambda_i A_i \succeq t \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

and the dual of the dual is

minimize $trace QY$ subject to $\mathbf{trace}\, A_iY = 0$ for all $i = 1, \ldots, m$ $Y \succeq 0$ $Y_{11} = 1$

Lifting

Lifting is a general approach for constructing *primal relaxations*; the idea is

- $\bullet\;$ Introduce new variables Y which are polynomial in x This embeds the problem in a *higher dimensional* space
- Write valid inequalities in the new variables
- The feasible set of the original problem is the *projection* of the lifted feasible set

Lifting QCQP

We have the QCQP

minimize
$$
\begin{bmatrix} 1 \\ x \end{bmatrix}^T Q \begin{bmatrix} 1 \\ x \end{bmatrix}
$$

subject to $\begin{bmatrix} 1 \\ x \end{bmatrix}^T A_i \begin{bmatrix} 1 \\ x \end{bmatrix} = 0$ for all $i = 1, ..., m$

Use *lifted variables*
$$
Y \in \mathbb{S}^n
$$
, defined by $Y = \begin{bmatrix} 1 \\ x \end{bmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix}^T$

We have valid constraints

$$
Y \succeq 0, \qquad Y_{11} = 1, \qquad \text{rank } Y = 1
$$

Every such Y corresponds to a unique x

Lifted QCQP

The lifted problem is

minimize $trace QY$ subject to $\mathbf{trace}\, A_iY = 0$ for all $i = 1, \ldots, m$ $Y \succ 0$ $Y_{11} = 1$ rank $Y = 1$

Again, we can drop the non-convex constraint to obtain ^a relaxation This (happens to) ^give the same as the dual of the dual

QCQP Interpretation of Polynomial Programs

We can also lift *polynomial* programs; consider the example

$$
\text{minimize} \qquad \sum_{k=0}^{6} a_k x^k
$$

We'll choose lifted variables

$$
y = \begin{bmatrix} x \\ x^2 \\ x^3 \end{bmatrix}
$$

then the cost function is

 $f = a_0 + a_1y_1 + a_2y_2 + a_3y_3 + a_4y_1y_3 + a_5y_2y_3 + a_6y_3^2$

a *quadratic* function of y (many other choices possible)

QCQP Interpretation of Polynomial Programs

We have the equivalent QCQP

minimize
\n
$$
\begin{bmatrix}\n1 \\
y_1 \\
y_2 \\
y_3\n\end{bmatrix}\n\begin{bmatrix}\na_0 & \frac{a_1}{2} & \frac{a_2}{2} & \frac{a_3}{2} \\
0 & 0 & \frac{a_4}{2} & 0 \\
0 & \frac{a_5}{2} & 0 & 0\n\end{bmatrix}\n\begin{bmatrix}\n1 \\
y_1 \\
y_2 \\
y_3\n\end{bmatrix}
$$
\nsubject to
\n
$$
y_2 - y_1^2 = 0
$$
\n
$$
y_3 - y_1 y_2 = 0
$$

to make the Lagrange dual tighter, we can add the valid constraint

$$
y_2^2 - y_1 y_3 = 0
$$

Every polynomial program can be expressed as an equivalent QCQP

Quadratic Constraints

The above quadratic constraints are

$$
\begin{bmatrix} 1 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix}^T \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 2 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix} = 0
$$

$$
\begin{bmatrix} 1 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix}^T \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 2 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix} = 0
$$

$$
\begin{bmatrix} 1 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix}^T \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix} = 0
$$

Relaxations

We can now construct the SDP primal and dual relaxations of this QCQP

Example

Suppose
$$
f = x^6 + 4x^2 + 1
$$
, then the SDP dual relaxation is

$$
\quad \mathsf{maximize} \quad t
$$

subject to

$$
\begin{bmatrix}\n1-t & 0 & 2+\lambda_2 & -\lambda_3 \\
0 & -2\lambda_2 & \lambda_3 & \lambda_1 \\
2+\lambda_2 & \lambda_3 & -2\lambda_1 & 0 \\
-\lambda_3 & \lambda_1 & 0 & 1\n\end{bmatrix} \succeq 0
$$

this is exactly the condition that $f - t$ be sum of squares

The Primal Relaxation of ^a Polynomial Program

Since we have a QCQP, there is also an SDP primal relaxation, constructed via the lifting

$$
Y = \begin{bmatrix} 1 \\ y \end{bmatrix} \begin{bmatrix} 1 \\ y \end{bmatrix}^T
$$

It is the SDP

minimize **trace**
\n
$$
\begin{bmatrix}\na_0 & \frac{a_1}{2} & \frac{a_2}{2} & \frac{a_3}{2} \\
0 & 0 & \frac{a_4}{2} & \\
& & 0 & \frac{a_5}{2}\n\end{bmatrix} Y
$$
\nsubject to
$$
Y \succeq 0
$$
\n
$$
Y_{11} = 1 \qquad Y_{24} = Y_{33}
$$
\n
$$
Y_{22} = Y_{13} \qquad Y_{14} = Y_{23}
$$

The Primal Relaxation of ^a Polynomial Program

This is constructed by

$$
Y = \begin{bmatrix} 1 \\ y \end{bmatrix} \begin{bmatrix} 1 \\ y \end{bmatrix}^T = \begin{bmatrix} 1 \\ x \\ x^2 \\ x^3 \end{bmatrix} \begin{bmatrix} 1 \\ x \\ x^2 \\ x^3 \end{bmatrix}^T = \begin{bmatrix} 1 & x & x^2 & x^3 \\ x & x^2 & x^3 & x^4 \\ x^2 & x^3 & x^4 & x^5 \\ x^3 & x^4 & x^5 & x^6 \end{bmatrix}
$$

- One may construct this directly from the polynomial program
- •Direct extensions to the multivariable case
- •The feasible set of Y may be projected to give a feasible set of x
- If the optimal Y has $\mathbf{rank}\, Y=1$ then the relaxation is exact

Lifting

Higher dimensional representations have several possible advantages

- One may find simpler representations, e.g., polytopes
- \bullet Basic semialgebraic sets may project to non-basic ones
- Adding new variables via lifting allows new valid inequalities, which tightens the dual
- Using polynomial lifting allows more constraints to be represented in LP or SDP form
- Lifting *wraps* the feasible set onto a higher dimensional variety; this tends to map interior points to boundary points

Outer Approximation of Semialgebraic Sets

The primal SDP relaxation allows us to construct outer approximation of ^a semialgebraic set

For example, one can compute an outer approximation of the epigraph

$$
S = \left\{ (x_1, x_2) \mid x_2 \ge f(x_1) \right\}
$$

In one variable, the SDP relaxation gives exactly the *convex hull*, since S is contained in ^a halfspace

$$
\{x \in \mathbb{R}^2 \mid a^T x \le b\}
$$

if and only if the following polynomial inequality holds

$$
a_1x+a_2f(x)\leq b\text{ for all }x
$$

Example: Outer Approximation of the Epigraph

Let's look at the univariate example

$$
f = \frac{1}{2}(x-1)(x-2)(x-3)(x-5)
$$

If $y \ge f(x)$ then the following SDP is feasible

$$
y \ge \frac{1}{4} \operatorname{trace} \begin{bmatrix} 60 & -61 & 41 \\ -61 & 0 & -11 \\ 41 & -11 & 2 \end{bmatrix} X
$$

$$
X \succeq 0
$$

$$
X_{22} = 2X_{12} \quad X_{11} = 1
$$

$$
X_{12} = x
$$

Moments Interpretation of the Primal Relaxation

Instead of trying to minimize directly f , we can solve

- \bullet This is a *dual* problem to minimizing f
- \bullet If f has a unique minimum at x_0 , then the optimal will be a point measure at x_0
- •Essentially due to Lasserre

Moments Interpretation of the Primal Relaxation

suppose
$$
y = \begin{bmatrix} 1 & x & y & xy & x^2 & \dots \end{bmatrix}^T
$$
, then $f = c^T y$ and

$$
\mathbf{E} f = c^T \mathbf{E} y
$$

 $E y$ is the *vector of moments* of the distribution

so we have the equivalent problem

minimize
$$
c^T z
$$

subject to z is a vector of moments of y

Example

Since $\mathbf{E} y y^T \succeq 0$ for any distribution, we have valid inequalities

$$
\mathbf{E}\begin{bmatrix}1\\x\\y\end{bmatrix}\begin{bmatrix}1\\x\\y\end{bmatrix}^T = \mathbf{E}\begin{bmatrix}1 & x & y\\x & x^2 & xy\\y & xy & y^2\end{bmatrix} \succeq 0
$$

so to find a lower bound $x^2 + 2xy + 3y^2$ we solve the SDP

minimize
$$
\begin{array}{ll} \text{minimize} & [1\ 2\ 3] \ z \\ \text{subject to} & M \succeq 0 \\ & z_1 = M_{22}, \ z_2 = M_{12}, \ z_3 = M_{22} \end{array}
$$

- \bullet This is exactly the *primal SDP relaxation*; the dual of SOS
- \bullet Similar to MAXCUT, where the SDP relaxation may be viewed as ^a covariance matrix

A General Scheme

- Primal: the solution to the lifted problem may suggest candidate points where the polynomial is negative.
- *Dual:* the sum of squares *certifies* or *proves* polynomial nonnegativity.