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3. Quadratically Constrained Quadratic Programming

• Quadratic programming

• MAXCUT

• Boolean optimization

• Primal and dual SDP relaxations

• Randomization

• Interpretations

• Examples

• LQR with binary inputs

• Rounding schemes
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Quadratic Programming

A quadratically constrained quadratic program (QCQP) has the form

minimize f0(x)

subject to fi(x) ≤ 0 for all i = 1, . . . ,m

where the functions fi : Rn→ R have the form

fi(x) = xTPix + qTi x + ri

• A very general problem

• If all the fi are convex then the QCQP may be solved by SDP;

but specialized software for second-order cone programming is more
efficient
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Example: LQR with Binary Inputs

Consider the discrete-time LQR problem

minimize ‖y(t)− yr(t)‖2 subject to

{
x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t)

where yr is the reference output trajectory, and the input u(t) is constrained
by |u(t)| = 1 for all t = 0, . . . , N .

An open-loop LQR-type problem, but
with a bang-bang input.
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LQR with Binary Inputs

The objective ‖y(t)− yr(t)‖2 is a quadratic function of the input u:



y(0)
y(1)
y(2)

...
y(t)




=




0 0 0 . . . 0
CB 0 0 . . . 0
CAB CB 0 . . . 0
. . . . . . . . . . . . ...

CAtB CAt−1B . . . CB 0







u(0)
u(1)
u(2)

...
u(t)




So the problem can be written as:

minimize

[
u
1

]T [Q r

rT s

] [
u
1

]

subject to ui ∈ {+1,−1} for all i

where Q, r, s are functions of the problem data.

This is a quadratic boolean optimization problem.
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MAXCUT

given an undirected graph, with no self-loops

• vertex set V = { 1, . . . , n }

• edge set E ⊂
{
{i, j} | i, j ∈ V, i 6= j

}

For a subset S ⊂ V , the capacity of S is the number of edges connecting
a node in S to a node not in S

the MAXCUT problem

find S ⊂ V with maximum capacity

the example above shows a cut with capacity 15; this is the maximum
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Example

a graph with 12 nodes, 24 edges; the maximum capacity cmax = 20
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Problem Formulation

the graph is defined by its adjacency matrix

Qij =

{
1 if {i, j} ∈ E
0 otherwise

and specify a cut S by a vector x ∈ Rn

xi =

{
1 if i ∈ S
−1 otherwise

then 1− xixj = 2 if {i, j} is a cut, so the capacity of x is

c(x) =
1

4

n∑

i=1

n∑

j=1

(1− xixj)Qij
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Optimization Formulation

so we’d like to solve

minimize xTQx

subject to xi ∈ {−1, 1 } for all i = 1, . . . , n

call the optimal value p?, then the maximum cut is

cmax =
1

4

n∑

i=1

n∑

j=1

Qij −
1

4
p?
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Boolean Optimization

A classic combinatorial problem:

minimize xTQx

subject to xi ∈ {−1, 1}

• Many other examples; knapsack, LQR with binary inputs, etc.

• Can model the constraints with quadratic equations:

x2
i − 1 = 0 ⇐⇒ xi ∈ {−1, 1}

• An exponential number of points. Cannot check them all!

• The problem is NP-complete (even if Q º 0).

Despite the hardness of the problem, there are some very good approaches. . .
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SDP Relaxations

We can find a lower bound via the dual; the primal is

minimize xTQx

subject to x2
i − 1 = 0

Let Λ = diag(λ1, . . . , λn), then the Lagrangian is

L(x, λ) = xTQx−
n∑

i=1

λi(x
2
i − 1) = xT (Q− Λ)x + trace Λ

The dual is therefore the SDP

maximize trace Λ

subject to Q− Λ º 0
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SDP Relaxations

From this SDP we obtain a primal-dual pair of SDP relaxations

minimize traceQX
subject to X º 0

Xii = 1

maximize trace Λ
subject to Q º Λ

Λ diagonal

• We derived them from Lagrangian and SDP duality

• But, these SDP relaxations arise in many other ways

• Well-known in combinatorial optimization, graph theory, etc.

• Several interpretations
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SDP Relaxations: Dual Side

Gives a simple underestimator of the objective function.

maximize trace Λ

subject to Q º Λ

Λ diagonal

Directly provides a lower bound on the objective: for any feasible x:

xTQx ≥ xTΛx =

n∑

i=1

Λiix
2
i = trace Λ

• The first inequality follows from Q º Λ

• The second equation from Λ being diagonal

• The third, from xi ∈ {+1,−1}
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SDP Relaxations: Primal Side

The original problem is:

minimize xTQx

subject to x2
i = 1

Let X := xxT . Then

xTQx = traceQxxT = traceQX

Therefore, X º 0, has rank one, and Xii = x2
i = 1.

Conversely, any matrix X with

X º 0, Xii = 1, rankX = 1

necessarily has the form X = xxT for some ±1 vector x.
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Primal Side

Therefore, the original problem can be exactly rewritten as:

minimize traceQX

subject to X º 0

Xii = 1

rank(X) = 1

Interpretation: lift to a higher dimensional space, from Rn to Sn.

Dropping the (nonconvex) rank constraint, we obtain the relaxation.

If the solution X has rank 1, then we have solved the original problem.

Otherwise, rounding schemes to project solutions. In some cases, approxi-
mation guarantees (e.g. Goemans-Williamson for MAX CUT).
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Feasible Points and Certificates

minimize traceQX
subject to X º 0

Xii = 1

maximize trace Λ
subject to Q º Λ

Λ diagonal

• Dual relaxations give certified bounds.

• Primal relaxations give information about possible feasible points.

• Both are solved simultaneously by primal-dual SDP solvers
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Example

minimize 2x1x2 + 4x1x3 + 6x2x3

subject to x2
i = 1

The associated matrix is Q =




0 1 2
1 0 3
2 3 0


. The SDP solutions are:

X =




1 1 −1
1 1 −1
−1 −1 1


 , Λ =



−1 0 0

0 −2 0
0 0 −5




We have X º 0, Xii = 1, Q− Λ º 0, and

traceQX = trace Λ = −8

Since X is rank 1, from X = xxT we recover the optimal x =
[
1 1 −1

]T
,
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Spectrahedron

We can visualize this (in 3× 3):

X =




1 p1 p2
p1 1 p3
p2 p3 1


 º 0

in (p1, p2, p3) space.

When optimizing the linear objective function

traceQX = 2p1 + 4p2 + 6p3,

the optimal solution is at the vertex (1,−1,−1).
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Primalization

After solving the SDP for X ∈ Sn, we’d like to map back to x ∈ {−1, 1}n

There may not exist an x ∈ {−1, 1}n such that X = xxT

We can interpret this

• algebraically: rankX 6= 1

• geometrically: X is not a lifted point

We need a procedure for finding a good x given X ; called rounding,
primalization, or projection.

This is hard in general, but for MAXCUT good methods are known
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Randomization

Suppose we solve the primal relaxation

minimize traceQX

subject to X º 0

Xii = 1 for all i = 1, . . . , n

and the optimal X is not rank 1. Goemans and Williamson developed the
following randomized algorithm for finding a feasible point

• Factorize X as X = V TV , where V =
[
v1 . . . vn

]
∈ Rr×n

• Then Xij = vTi vj, and since Xii = 1 this factorization gives n vectors
on the unit sphere in Rr

• Instead of assigning either 1 or −1 to each vertex, we have assigned
a point on the unit sphere in Rr to each vertex
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Randomized Slicing

Pick a random vector q ∈ Rr, and choose cut

S =
{
i | vTi q ≥ 0

}

Then the probability that {i, j} is a cut edge is

angle between vi and vj
π

=
1

π
arccos vTi vj

=
1

π
arccosXij

So the expected cut capacity is

csdp-expected =
1

2

n∑

i=1

n∑

j=1

1

π
Qij arccosXij
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Randomization (MAXCUT only)

SDP gives an upper bound on the cut capacity

csdp-upper-bound =

n∑

i=1

n∑

j=1

1

4
(1−Xij)Qij

With α = 0.878, we have

α(1− t)π
2
≤ arccos(t) for all t ∈ [−1, 1]

So we have

csdp-upper-bound ≤
1

2απ

n∑

i=1

n∑

j=1

Qij arccosXij

=
1

α
csdp-expected



3 - 22 Quadratically Constrained Quadratic Programming P. Parrilo and S. Lall, CDC 2003 2003.12.07.01

Randomization

So far, we have

• csdp-upper-bound ≤ 1
α csdp-expected

• Also clearly csdp-expected ≤ cmax

• And cmax ≤ csdp-upper-bound

After solving the SDP, we slice randomly to generate a random family of
feasible points.

We can sandwich the expected value of this family as follows. (α = 0.878)

αcsdp-upper-bound ≤ csdp-expected ≤ cmax ≤ csdp-upper-bound
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Coin-Flipping Approach

Suppose we just randomly assigned vertices to S with probability 1
2; then

ccoinflip-expected =
1

4

n∑

i=1

n∑

j=1

Qij

A trivial upper bound on the maximum cut is just the total number of edges

ctrivial-upper-bound =
1

2

n∑

i=1

n∑

j=1

Qij

and so ccoinflip-expected = 1
2ctrivial-upper-bound
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Coin-Flipping Approach

We have

• ccoinflip-expected = 1
2ctrivial-upper-bound

• ccoinflip-expected ≤ cmax

• cmax ≤ ctrivial-upper-bound

Again, we have a sandwich result

1
2ctrivial-upper-bound = ccoinflip-expected ≤ cmax ≤ ctrivial-upper-bound
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Example

• 64 vertices, 126 edges

• SDP upper bound 116
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A General Scheme

Boolean Minimization

Relaxed X Dual-Bound ¤
SDP

Duality

Primal
Relaxation

Lagrangian
Duality

• The relaxed X suggests candidate points.

• The diagonal matrix Λ certifies a lower bound.

Ubiquitous scheme in optimization (convex hulls, fractional colorings, etc. . . )

We will learn systematic ways of constructing these relaxations, and more. . .
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LQR with Binary Inputs

minimize

[
u
1

]T [Q r

rT s

] [
u
1

]

subject to ui ∈ {+1,−1} for all i

for some matrices (Q, r, s) function of the problem data (A,B,C,N).

An SDP dual bound:

maximize trace(Λ) + µ

subject to

[
Q− Λ r

rT s− µ

]
º 0, Λ diagonal

Let q∗, q∗ be the optimal value of both problems. Then, q∗ ≥ q∗:
[
u
1

]T [Q r

rT s

] [
u
1

]
≥
[
u
1

]T [
Λ 0
0 µ

] [
u
1

]
= trace Λ + µ
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LQR with Binary Inputs

maximize trace(Λ) + µ

subject to

[
Q− Λ r

rT s− µ

]
º 0, Λ diagonal

Since (Λ, µ) = (0, 0) is always feasible, q∗ ≥ 0.

Furthermore, the bound is never worse than the LQR solution obtained by
dropping the ±1 constraint, since

Λ = 0, µ = s− rTQ−1r

is a feasible point.

Example:

N LQR cost SDP bound Optimal
10 14.005 15.803 15.803
15 15.216 16.698 16.705
20 15.364 16.905 16.927



3 - 29 Quadratically Constrained Quadratic Programming P. Parrilo and S. Lall, CDC 2003 2003.12.07.01

The S-procedure

A sufficient condition for the infeasibility of quadratic inequalities:

{x ∈ Rn | xTAix ≥ 0}

Again, a primal-dual pair of SDP relaxations:

X º 0
traceX = 1

traceAiX ≥ 0

∑
i λiAi ¹ −I

λi ≥ 0

The basis of many important results in control theory.
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Structured Singular Value

• A central paradigm in robust control.

• µ is a measure of robustness: how big
can a structured perturbation ∆ be,
without losing stability.

∆

M

xy

Do the loop equations admit nontrivial solutions?

y = Mx, y2
i − x2

i ≥ 0

Applying the standard SDP relaxation:
∑

i

di(y
2
i − x2

i ) = xT (MTDM −D)x < 0, D = diag(di), di ≥ 0

We obtain the standard µ upper bound:

MTDM −D ≺ 0, D diagonal, D º 0


