
MergeArray and Scalable, Relaxed,
Concurrent, Mergeable Priority Queues

by
Michael Joseph Coulombe

B.S., Computer Science
University of California at Davis, 2013

Submitted to the Department of Electrical Engineering and Computer
Science in partial fulfillment of the requirements for the degree of

Masters of Science in Computer Science and Engineering
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2015

c© 2015 Massachusetts Institute of Technology. All rights reserved.

Signature of Author:

Department of Electrical Engineering and Computer Science
May 18, 2015

Certified by:

Nir Shavit
Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by:

Leslie A. Kolodziejski
Chair, Department Committee on Graduate Students

1



2



MergeArray and Scalable, Relaxed,

Concurrent, Mergeable Priority Queues

by
Michael Joseph Coulombe

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2015, in partial fulfillment of the

requirements for the degree of
Masters of Science in Computer Science and Engineering

Abstract

The priority queue is a well-studied data structure which has prospered in the
ever-growing field of distributed computing. However, in the asynchronous shared-
memory model, one operation was left behind: merge. I present the MergeArray, a
framework for implementing scalable, relaxed, concurrent, and mergeable objects,
which exploits disjoint access parallelism by using an array of sequential objects
and performs merges lazily, index-by-index.

I use MergeArray to build a linearizable and scalable priority queue with lock-
free merge and insert and a relaxed, deadlock-free remove-min with expected worst-
case rank-error of O(p log p) for p threads under common assumptions. I show
experimental evidence that supports this rank-error estimate in practice as well
as increased performance and scalability on a relaxed Minimum Spanning Tree
benchmark compared to SprayList, a cutting-edge relaxed priority queue.
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1 Introduction

The priority queue is a well-studied data structure, consisting of a totally-ordered collection

P supporting insert(P, e), which puts a given value e into P , and remove-min(P ), which

takes the smallest contained value out of P and returns it. The mergeable priority queue is

a common variant which supports an additional operation: merge(P ,Q) (also called meld

or union), which creates a new priority queue containing P ∪Q.

1.1 Sequential Mergeable Priority Queues

Many theoretically- and practically-efficient sequential implementations exist for mergeable

priority queues. Leftist heaps were among the first to support all operations in worst case

O(log n) time by using a balanced binary tree structure of size n [Cra72]. Binomial heaps

improved on this to support insert in amortized O(1) time with a forest of heaps where

a merge simulates binary addition [Vui78]. While array-based binary heaps cannot do

better than linear time copying, a merge algorithm for binary heaps implemented as trees

was invented which takes O(log n ∗ log k) time for heaps of size n and k [SS85]. Fibonacci

heaps extended binomial heaps to support remove-min in amortized O(log n) time and

all other operations in amortized O(1) time, which led to improved bounds on many graph

optimization algorithms such as shortest paths and minimum spanning tree [FT87].

Because the benefits of Fibonacci heaps are primarily asymptotic, the pairing heap was

developed as a simple-to-implement and performant alternative which has Θ(1) insert and

merge and amortizedO(log n) remove-min [FSST86]. Skew heaps are a similarly-beneficial

alternative to leftist heaps which support all operations in only amortized O(log n) time but

merge faster in practice [ST86]. Brodal queues were the first implementation to achieve the

same operation bounds as the Fibonacci heap in non-amortized worst case time in a RAM

model [Bro96], and strict Fibonacci heaps achieved it in a pointer-based model using simpler

means [BLT12], but neither is known to be practically efficient. Constructions have also

been derived in the RAM model that grant non-mergeable priority queues over integers in
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[C] the ability to perform merge and other operations in amortized O(α(n, n) log logC)

time, where α is the inverse Ackermann function [MTZ04].

1.2 Applications

The most common application of mergeable priority queues is solving the minimum spanning

tree problem, where the goal is to find a set of edges in a graph with minimum total cost

which forms a tree connecting all vertices in the graph.

In the undirected case, the classic algorithms are Kruskal’s, Prim’s, and Sollin’s algo-

rithms, but out of the three only Sollin’s takes advantage of mergeable priority queues,

which has made it the starting point of parallel approaches to the problem [Zar97]. The

algorithm is simple: the graph is partitioned into supernodes with associated priority queues

of unprocessed edges incident to the nodes inside. Starting from singleton supernodes, each

iteration removes the smallest-weight edges incident to each supernode and merges the pri-

ority queues that each edge connects. Every iteration shrinks the number of supernodes

by at least half (in each connected component of the graph), thus at most logarithmically-

many are needed. The set of removed edges which resulted in a merge of two supernodes is

guaranteed to be a minimum spanning tree.

The minimum spanning tree problem on directed graphs has also been tackled using

mergeable priority queues with Edmonds’s algorithm [Edm67], which uses a similar con-

traction process as Sollin’s algorithm but is more complex: non-standard operations are

required to implement it efficiently, such as add(P,∆), which adds ∆ to every value in P , or

move(P,e,Q), which moves e ∈ P into Q [MTZ04]. Additionally, multiple tree optimization

problems have been found to be efficiently solved using mergeable priority queues [Gal80].

1.3 Asynchronous Shared Memory Model

With the widespread proliferation of multicore processors and other distributed systems,

there is an increasing demand for implementing and understanding concurrent data struc-

tures. In the asynchronous shared memory model, threads perform concurrent operations
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by taking atomic steps which are interleaved by an adversarial scheduler, and data structure

designers must balance the trade-offs of providing guarantees such as linearizability, progress,

and scalability.

Linearizable operations appear to take effect at a single point during its execution, which

allows for sequential reasoning about the ordering of operations when using the data struc-

ture [HW90]. Progress conditions describe the requirements under which operations com-

plete, from deadlock-freedom (if the scheduler is fair, then someone makes progress) to

lock-freedom (someone always makes progress) to wait-freedom (everyone scheduled makes

progress) [HS11]. Scalability measures the efficiency of operations (ex. throughput or la-

tency) as a function of the number of processors using the data structure. While there are

many concurrent priority queue implementations, to the best of our knowledge none support

linearizable, lock-free merge in a scalable manner.

1.4 Related Work

1.4.1 EREW PRAM Priority Queue Merge Algorithms

Efficient parallel algorithms for merging priority queues are known in the EREW PRAM

model. In this model, processors cooperate synchronously to perform a single high-level

operation on priority queues implemented from read-write registers that are never accessed

by more than one processor at once [Zar97]. Chen designed algorithms to merge two heaps

of sizes n and k in O(log n) time with log k processors, as well as merging other types of

mergeable priority queues with similar bounds [Che92]. Later, Das et al. built a parallel

data structure based on binomial heaps which perform all of the described operations in

doubly logarithmic time and are work-optimal, as well as delete (which removes a given

value) and thus decrease-key (which changes the ordering of a given value) with amortized

guarantees, by employing p ∈ Θ(log n/ log log n) processors [CDP96].

In contrast to the EREW PRAM algorithms, scalable data structures built in the asyn-

chronous shared memory model must support multiple concurrent high-level operations. The

mutually-exclusive nature of these algorithms do not achieve the goal of a scalable, lineariz-

10



able, lock-free merge operation.

1.4.2 Semantic Relaxation

One approach to tackling the trade-off between the strong guarantees is to relax the se-

mantics of the object in question. Due to the inherent nature of asynchrony, this can be

acceptable in applications where strict semantics cannot be taken advantage of. For example,

a linearizable task queue cannot guarantee that processors complete their tasks in the same

order as the corresponding dequeue operations, so using a faster k-FIFO queue (where a

dequeue removes some value from rank 1 to k) can give better performance in practice

[KLP13], as well as provide a better correspondence between operation invocation and value

ordering [HKLP12], without modifying the algorithm which must already deal with unmet

dependencies between tasks.

Relaxed concurrent priority queue implementations, such as the Spraylist [AKLS14] and

MultiQueue [RSD14], weaken the guarantee of how small the rank is of an value remove-min

can return and subsequently demonstrate increased performance over strict implementations

when measuring time per operation and time of practical algorithms using them.

1.5 Results

In this thesis, I present MergeArray, a framework on top of which I implement a concurrent,

relaxed, mergeable priority queue. To meet the goals of linearizability, lock-freedom, and

scalability, a MergeArray priority queue is composed of an array of sequential mergeable

priority queues, such as pairing heaps. insert and remove-min operations are applied by

randomly choosing an open index in the array and attempting to perform the operation on

the object at that index under a lock. In this way, threads do the expensive work at separate

indices to exploit disjoint access parallelism.

A merge operation on two MergeArrays lazily combines the two arrays into one array,

cell-by-cell, by having a list of pending merge operations associated with each index. In a

lock-free manner, a thread which calls merge will, for each index, add the sequential priority
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queue at that index in one array to the pending merge list at the same index in the other

array. To guarantee linearizability, before performing a insert or remove-min operation

on a sequential mergeable priority queue, a thread must fulfill each pending merge in the list

at the index it chose.

To maximize the ease of use and applicability of MergeArray merge operations, I decided

to implement aliasing semantics, where a call merge(P,Q) causes all references to P and Q

to alias to the same merged object. Compared to alternative semantics where P takes all of

the values and Q is left empty or destroyed, aliasing allows for concise implementations of

algorithms such as Sollin’s algorithm by encapsulating the complexity required to correctly

linearize arbitrary interactions between concurrent merge operations.

The MergeArray mergeable priority queue implementation is fully linearizable. merge

is always lock-free, insert is lock-free if the length w of the array is at least the number

of threads, and remove-min is deadlock-free. The degree of relaxation of the remove-

min operation is estimated using the rank error metric (measuring how many values in the

priority queue were smaller than the value actually returned) to be expected worst-case

O(w logw) and expected average-case w, which both closely models experimental results

and is competitive with the aformentioned relaxed concurrent priority queues.
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2 The Asynchronous Shared Memory Model

2.1 Model Definition

The asynchronous memory model consists of a set of threads (also called processes or proces-

sors), a set of shared objects, a set of ”atomic” operations of those objects, and an adversarial

scheduler. The computation starts after each thread has performed its initial local compu-

tation and then submits its first shared operation to the scheduler. At each step of the

computation, the scheduler chooses one thread’s shared operation to perform, after which

that thread continues its local computations until it submits its next shared operation.

We will consider addressable shared objects with the following three atomic operations:

1. Read: ”x ← s” takes the value of shared object s and assigns it to local variable x.

When a shared object is used in an expression where a local variable would be read (ex.

”if s == 3 then ...”), an atomic read into a temporary variable is implied. Multiple

mutable shared objects will never appear in the same expression unless the ordering is

defined (ex. by short-circuiting).

2. Write: ”s ← x” unconditionally overwrites the value of the shared object s with the

current value of the local variable x.

3. Compare and Swap: cas(loc, expected, new) writes the value of local variable new to

the shared object at address loc only if the current value of *loc is the same as the value

of local variable expected, otherwise no write occurs. cas returns true if the write

occurred, otherwise it returns false.

2.2 Linearizability

When designing concurrent data structures, it is often desirable to imagine that every high-

level operation, a method which may be composed of many atomic operations, is itself an

atomic operation. This facilitates the use of mature sequential reasoning techniques for

creating and satisfying specifications of high-level concurrent objects. This fantasy becomes
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reality when operations are designed to be linearizable, a correctness condition invented by

Herlihy and Wing [HW90].

Definition 1. A history is a finite sequence of method invocations and responses, each of

which is associated with a calling thread and parameter list or return value, respectively.

A history is complete if it only consists of invocations and their matching responses.

complete(H) is the maximal complete subsequence of a history H.

A history is sequential if every invocation (unless it is the last) is immediately followed by

its matching response, and every response is immediately preceded by its matching invocation

A sequential specification of an object is a prefix-closed set of legal sequential histories

which involve only methods acting on the object.

A process subhistory H|P is the subsequence of H of the invocations and responses only

made by thread P .

Histories H and H ′ are equivalent if for all threads P , H|P = H ′|P .

A history H induces an irreflexive partial ordering where Hr <H Hi if response Hr

precedes invocation Hi in H.

Definition 2. A object is linearizable if, for every history H containing only methods acting

on the object, responses may be appended to H to make H ′ such that complete(H ′) is

equivalent to a legal sequential history S where <H⊆<S.

A powerful tool for proving that an implementation of an object is linearizable is the

concept of a linearization point.

Definition 3. An execution is a sequence of atomic operations which can be scheduled in

some computation. A history H is compatible with an execution E if there exists a full

computation which contains H and E as subsequences.

Given a history H and compatible execution E, the linearization point of a method call

is an atomic operation E` after the invocation Hi and before the response Hr in the full

computation such that the ordering of all method calls in H by their linearization points in

E induces an legal sequential history.
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An object is linearizable if every method call acting on the object has a linearization point

in all histories.

2.3 Progress Conditions

While linearizability is a useful safety property, meaning it prohibits histories which do not

meet a sequential specification, it would be a trivial property to satisfy if every method

could simply run without terminating. Progress conditions characterize method implemen-

tations by the situations in which invocations guarantee a response, and in the asynchronous

shared memory model, the classic categories can be precisely-defined by assumptions on the

scheduler [HS11]. For this discussion to make sense, we will consider infinite histories.

Definition 4. A method on an object guarantees minimal progress if, given a history H,

every suffix of H which contains an invocation of the method but no response must contain a

response to another invocation of some method acting on the same object. A method on an

object guarantees maximal progress if, given a history H, every suffix of H which contains

an invocation of the method contains a matching response. A history is fair if every thread

makes infinitely-many method invocations with matching responses.

The difference between minimal and maximal progress is the assumption of a benevolent

vs malevolent scheduler. Algorithms which guarantee maximal progress typically do so by

using helping mechanisms to defend against schedules which starve some threads of progress,

which can increase the complexity and run time of implementations. However, in models of

real systems, operating system schedulers are sufficiently fair and benevolent for algorithms

to achieve maximal progress [ACS13].

Definition 5. A method is non-blocking if, at any point during a history with a pending

invocation, the calling thread would eventually return a matching response if it is the only

thread scheduled, otherwise the method is blocking. A method is dependent if it does not

guarantee minimal progress in every history, while a method is independent if it guarantees

minimal progress in every history.
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The independence property, which implies non-blocking, is important from both a theo-

retical and practical viewpoint. Not needing assumptions about the scheduler to guarantee

some thread can make progress allows for more fundamental reasoning about computability,

more general applicability of specific implementations of methods, and ideally more perfor-

mance because every thread has the ability to make progress [HS11].

Definition 6. A method is deadlock-free if it guarantees minimal progress in every fair

history and maximal progress in some fair history. A method is lock-free if it is independent

and guarantees maximal progress in some history, and additionally wait-free if maximal

progress is guaranteed in every history.

The goal of MergeArray is to provide or allow lock-free method implementations when

possible to maximize progress, but maximizing the overall scalability comes at the concession

of only guaranteeing deadlock-freedom for some operations.

2.4 Scalability and Trade-offs

Scalability describes how well a data structure performs as a function of the number of

threads using it, and can be measured in various ways, such as worst-case latency per opera-

tion or total throughput. While linearizability and lock-freedom are powerful guarantees on

concurrent data structure method implementations, there is a fundamental trade-off between

linearizability, progress, and scalability. For example, it has been shown that linearizable

implementations of certain data structures (such as counters, stacks, and queues) have in-

herent sequential bottlenecks [EHS12], which poses both theoretic and practical concerns

about potential speed gains due to parallelism.

When analyzing mergeable data structures such as priority queues, the trade-offs illustrate

why supporting a concurrent merge with these properties is not straightforward. As in

the sequential case, performing merge using remove-min and insert operations to move

values one-by-one may be both lock-free and scalable but is far from linearizable because

other processors can operate on the priority queues in illegal, intermediate states.
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To guarantee linearizability, sacrifices can be made to either progress or scalability. On

one extreme, wait-free universal constructions exist for single- and even multi-object systems

[AM95] which could be used to provide a linearizable merge, but both suffer in scalability

due to complex implementations and strict sequential bottlenecks that serialize every op-

eration. More realistically, a merge may be performed by locking (ex. with a RW lock)

the two priority queues and moving items. Not only is this far from lock-free because it

blocks all other processors’ concurrent reads and updates until the merge is done, but the

blocking and the sequential bottleneck of the lock will limit the scalability, especially if it

occurs frequently or is expensive to perform.

Each of these possible implementations suffer from the harsh need for merge to both

atomically make global changes to a large, high-level object and to update two objects

simultaneously. A scalable solution must allow merge operations to run concurrently with

insert and remove-min operations without interfering with their progress or correctness.
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3 MergeArray

3.1 High-level Description

In light of these problems and approaches, my solution is MergeArray, a framework for

building concurrent, mergeable objects. At a high-level, MergeArray consists of an array

of sequential, mergeable objects that supports a linearizable, lock-free merge operation

between two MergeArrays as well as a linearizable, conditionally lock-free apply-until

operation to access the individual objects in a MergeArray.

The merge operation on two MergeArrays uses lazyness to merge the sequential objects

in each array. Each index in a MergeArray has a list of pending merges into the sequential

object at that index, and a merge operation consists of adding each object in the ”source”

MergeArray to the corresponding list in the ”destination” MergeArray, then raising a flag

to announce that every index has been added.

The apply-until operation applies a user-defined function f to sequential objects in the

MergeArray in a fair but randomized order, where f must signal either that it was able to

apply itself (thus is done) or that it needs to try another object. Because merge is lazy,

the thread must fulfill the pending merges in the list at a chosen index before applying f on

the sequential object. For each object in the list, the fulfillment process may involve helping

finish the merge operation which put it in the list if other indices have not been added yet

as well as recursively fulfilling the object’s own pending merges.

3.2 Sequential Specification

A MergeArray consists of three components:

1. A Handle is a user-facing reference, which manages aliasing of Bags.

2. A Bag is an array of Nodes with a fixed size (width) and identifying number.

3. A Node holds an Element and a list of pending merges.

4. An Element is a user-defined sequential object. An Element must behave like a value,
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meaning no external references are held to an Element in a bag and an Element holds

no references to external mutable memory.

The interface of a MergeArray is as follows:

• Handle make-handle(int id, uint width, Element init)

Returns a Handle to a new bag with identifier id holding width copies of init.

• R apply-until(Handle* h, Maybe(Element × R) function(Element) f)

Calls f on an unspecified sequence of Elements in the Bag which h references as long

as f returns none. Once f returns some(e,r), then e replaces the Element passed to f

in Bag’s array and r is returned. f should behave like a pure function.

• MergeResult merge(Handle* a, Handle* b)

If a and b already reference the same Bag, then returns were-already-equal and

nothing happens. If a and b reference unequal Bags with the same identifier, returns

id-clash and nothing happens. If a and b reference Bags with different widths, then

returns incompatible and nothing happens.

Otherwise, after returning success, a and b will reference the same Bag. Other handles

which previously referenced either Bag will now reference this bag as well. The new

Bag has the smaller identifier of the Bags and elements which are the zip of the smaller

and larger identified Bags’ Elements mapped with merge-elem:

– Element merge-elem(Element dest, Element src)

User-defined sequential merging function. merge-elem should behave as an as-

sociative and commutative operator w.r.t. calls to apply-until. The lifetime of

dest and src end after this call.

• void update(Handle** a)

Attempts to optimize future accesses through *a after merge operations have occurred,

by mutating *a to point to another Handle which references the same Bag.
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3.3 Low-level Overview

There are two fundamental layers to the MergeArray between the external interface and

the sequential objects. The outer layer is an inter-object disjoint set structure, made up of

Handles, which manages aliasing caused by merge operations. By defining merge(P,Q)

to identify P and Q as the same merged object, MergeArray is more generally useful in

the concurrent asynchronous setting than other semantics of different sequential implemen-

tations. Destroying both P and Q and giving exclusive access to the result to the caller

limits scalability, and it is not clear how concurrent operations should be affected. Moving

all values into P and destroying only Q is unnecessarilly asymmetric and still ill-defined,

and emptying Q is also asymmetric and limits sharing of internal structures. From a prac-

tical perspective, aliasing semantics allows the simple use of a MergeArray priority queue in

relevant algorithms such as Sollin’s for minimum spanning trees.

The inner and more complex layer of the MergeArray is a Bag’s lists of pending merges

into the sequential objects. The list intrusively threads through the same-index Nodes of

other Bags, and supports a Node being appended once to exactly one list even when multiple

processors are concurrently attempting to append it to the same list or to lists of other Bags.

A merge operation essentially ensures that each Node of one Bag is appended to some list

such that subsequently-linearized apply-until operations to either Bag are guaranteed

to find and complete every pending merge of individual sequential objects before allowing

access.

By carefully controlling and defending against the possible states and state transitions of

each involved Node at each step of the algorithm, I show that a merge operation is able to

ensure every cell is appended to some list with lock-free progress guarantees. This allows for

apply-until operations to consume these lists by ensuring that pending merges have been

linearized (by helping append the other Nodes) and then performing the pending merges

between the sequential objects. As such, an apply-until operation requires the processor

to have exclusive access to a cell’s sequential object and list consumption, but when the

array contains at least one cell per processor, there is always an index such that no cell at
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that index in any Bag of the same size is locked by any other processor, thus if the processor

requests a single access to any sequential object then its apply-until will be lock-free.

The guarantees of these two operations, merge and apply-until, allow for MergeArray

to implement a priority queue with lock-free merge and insert, whereas its deadlock-free

remove-min can block if every cell with values is locked by another processor and the

rest are empty. MergeArray uses randomness to determine the order Nodes are chosen by

apply-until operations, therefore under the assumption of a uniform allocation of values

to w Elements, an uncontended remove-min can be expected to return values up to rank

O(w logw) with an expected rank of w. This is derived from the solution to the Coupon

Collector’s Problem [MR95], and is the same bound with similar analysis as the MultiQueue

[RSD14]. w must be at least the number of processors p for insert to be lock-free, giving

a practical bound on the expected worst-case rank-error of O(p log p) and expected average-

case rank-error p.
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4 Pseudocode

Algorithm 1 Struct Definitions

1: struct Handle
2: Bag* bag
3: Handle* next
4: int id
5: end struct
6: struct Bag
7: Node[ ] nodes
8: end struct
9: struct Node

10: Element elem
11: Handle* handle
12: Node* parent
13: Node* head
14: Node* upper-next
15: Node* upper-skip
16: end struct
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Figure 1: Two MergeArray objects (red and blue) in the process of a merge.
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Algorithm 2 Public: Merge a and b

1: MergeResult function merge(Handle* a, Handle* b)
2: if width(a) 6= width(b) then
3: return incompatible
4: end if
5: loop
6: descend-merge(&a)
7: descend-merge(&b)
8: if a = b then
9: return were-already-equal

10: else if id(a) = id(b) ∧ bag(a) 6= null then
11: return id-clash
12: else if id(a) > id(b) ∧ cas(&next(a), null, b) then
13: ensure-merged-into(a, b)
14: return success
15: else if id(a) < id(b) ∧ cas(&next(b), null, a) then
16: ensure-merged-into(b, a)
17: return success
18: end if
19: end loop
20: end function
21: void function descend-merge(Handle** a)
22: loop
23: find-closest-bag(a)
24: next ← next(a)
25: if next = null then
26: break
27: end if
28: ensure-merged-into(*a, next)
29: end loop
30: end function

Algorithm 3 Returns nearest unmerged bag to a and compresses the path taken

1: Bag* function find-closest-bag(Handle** a)
2: start ← *a
3: bag ← find-closest-bag-no-compress(a)
4: while id(start) > id(a) do
5: next ← next(start)
6: cas-while-lowers-id(&next(start), a)
7: start ← next
8: end while
9: return bag

10: end function
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Algorithm 4 Moves a down to the closest node with a non-null bag and returns the bag

1: Bag* function find-closest-bag-no-compress(Handle** a)
2: loop
3: bag ← bag(a)
4: if bag 6= null then
5: return bag
6: end if
7: *a ← next(a)
8: end loop
9: end function

Algorithm 5 Assigns dest to *ptr only if id(*ptr) would decrease as a result

1: void function cas-while-lowers-id(Handle** ptr, Handle* dest)
2: loop
3: cur ← *ptr
4: if id(cur) ≤ id(dest) then
5: break
6: else if cas(ptr, cur, dest) then
7: break
8: end if
9: end loop

10: end function

Algorithm 6 If a’s merge into next is not linearized, then help finish the merge and commit it

1: void function ensure-merged-into(Handle* a, Handle* next)
2: bag ← bag(a)
3: if bag 6= null then
4: merge-per-element-into(bag, next)
5: bag(a) ← null
6: end if
7: end function
8: void function ensure-merged(Handle* a)
9: if a 6= null then

10: next ← next(a)
11: if next 6= null then
12: ensure-merged-into(a, next)
13: end if
14: end if
15: end function

Algorithm 7 Simple accessors

1: int function width(Handle* a)
2: return width(find-closest-bag(&a))
3: end function
4: int function width(Bag* bag)
5: return length(nodes(bag))
6: end function
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Algorithm 8 Helper Functions

1: bool function is-appendable-tail(Node* owner, Node* cur)
2: return cur = nil ∨ ¬ owned-by(cur, owner)
3: end function
4: Maybe Node* function list-continues-after(Node* owner, Node* cur)
5: if ¬ is-appendable-tail(owner, cur) then
6: next ← upper-next(cur)
7: if next 6= dummy then
8: return some(next)
9: end if

10: end if
11: return none
12: end function
13: Node* × Node* function list-find-end(Node* owner, Node* prev, Node* cur)
14: skip ← upper-skip(prev)
15: while skip 6= nil do
16: further ← upper-skip(skip)
17: if further = nil then
18: cur ← upper-next(prev)
19: break
20: else
21: cas(&upper-skip(prev), skip, further)
22: prev ← skip
23: skip ← further
24: end if
25: end while
26: while some(next) ← list-continues-after(owner, cur) do
27: cas(&upper-skip(prev), nil, cur)
28: (prev, cur) ← (cur, next)
29: end while
30: return (prev, cur)
31: end function

26



Algorithm 9 Insert elements of src-bag into the merge lists of dest’s array nodes

1: void function merge-per-element-into(Bag* src-bag, Handle* dest)
2: indices ← take(random-index-range(src-bag), width(src-bag))
3: label indices-loop:
4: while ¬ empty(indices) do
5: i ← front(indices)
6: dest-bag ← find-closest-bag(&dest)
7: dest-node ← &nodes(dest-bag)[i]
8: src-node ← &nodes(src-bag)[i]
9: void function try-insert(Node** loc, Node* expected)

10: if is-owned(src-node) then
11: pop-front(&indices)
12: goto indices-loop
13: else if cas(loc, expected, src-node) then
14: if ¬ owned-by(src-node, dest-node) then
15: cas(loc, src-node, nil)
16: end if
17: pop-front(&indices)
18: goto indices-loop
19: end if
20: end function
21: first ← head(dest-node)
22: if first 6= null then
23: if some(second) ← list-continues-after(dest-node, first) then
24: (last, next) ← list-find-end(dest-node, first, second)
25: if is-appendable-tail(dest-node, next) then
26: try-insert(&upper-next(last), next)
27: new-next ← upper-next(last)
28: if new-next 6= dummy then continue
29: end if
30: if head(dest-node) 6= first then continue
31: end if
32: try-insert(&head(dest-node), first)
33: end if
34: end while
35: end function
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Algorithm 10 Merge List Ownership Management

1: bool function is-owned(Node* src)
2: p ← parent(src)
3: return p 6= null
4: end function
5: bool function owned-by(Node* src, Node* dest)
6: cas(&parent(src), null, dest)
7: p ← parent(src)
8: return p = dest
9: end function

Algorithm 11 An infinite range of indices for randomly (but fairly) covering bag’s node array

1: auto function random-index-range(Bag* bag)
2: start ← uniform-random-nat(0, width(bag))
3: return drop(cycle(iota(0, width(bag))), start)
4: end function

Algorithm 12 Public: Moves a shared pointer down the chain to the nearest bag, bails out on concurrent
update

1: void function update(Handle** ptr)
2: a ← *ptr
3: if a 6= null then
4: while bag(a) = null do
5: next ← next(a)
6: if ¬ cas(ptr, a, next) then
7: break
8: end if
9: a ← next

10: end while
11: end if
12: end function

Algorithm 13 Public: Applies a function to elements of a’s closest bag until it returns true

1: R function apply-until(Handle* a, Maybe (Element × R) function(Element) f)
2: loop
3: if some(r) ← try-apply-until(find-closest-bag(&a), f) then
4: return r
5: end if
6: end loop
7: end function
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Algorithm 14 Applies a function to bag’s elements until it returns true or bag has been merged

1: Maybe R function try-apply-until(Bag* bag, Maybe (Element × R) function(Element) f)
2: for all i ∈ random-index-range(src-bag) do
3: node ← &nodes(bag)[i]
4: try synchronized node do
5: if was-merged(node) then
6: return none
7: end if
8: try
9: eval-merges-locked(node, nil)

10: catch BailoutException
11: continue
12: end try
13: if was-merged(node) then
14: return none
15: else if some(e,r) ← f(elem(node)) then
16: elem(node) ← e
17: return some(r)
18: end if
19: end try synchronized
20: end for
21: end function
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Algorithm 15 Recursively evaluates the lazy, linearized merges in node’s merge list. Returns if the merge
list was emptied (set to new-head ∈ {nil, null}) or throws BailoutException if a lock was contended.

1: void function eval-merges-locked(Node* node, Node* new-head)
2: repeat
3: cur ← head(node)
4: stop ← cur = new-head
5: if stop then
6: return
7: else if list-continues-after(node, cur) = none ∨ head(cur) = null then
8: stop ← cas(&head(node), cur, new-head)
9: continue

10: end if
11: while cur 6= nil do
12: if head(cur) 6= null then
13: ensure-merged(handle(cur))
14: try synchronized cur do
15: eval-merges-locked(cur, null)
16: elem(node) ← merge-elem(elem(node), elem(cur))
17: else
18: throw BailoutException
19: end try synchronized
20: end if
21: label remove-cur:
22: next ← upper-next(cur)
23: if ¬ is-appendable-tail(node, next) then
24: head(node) ← next
25: cur ← next
26: else if cas(&upper-next(cur), next, dummy) then
27: stop ← cas(&head(node), cur, new-head)
28: break
29: else
30: goto remove-cur
31: end if
32: end while
33: until ¬ stop
34: end function

Algorithm 16 Returns whether or not node’s bag has been merged (linearized)

1: bool function was-merged(Node* node)
2: if ¬ is-owned(node) then
3: return false
4: else if head(node) = null then
5: return true
6: else
7: return is-fully-merged-locked(&handle(node))
8: end if
9: end function
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Algorithm 17 Returns whether a is null or points to a DS node which has been merged (linearized) into
another node

1: bool function is-fully-merged-locked(Handle** ptr)
2: a ← *ptr
3: if a = null then
4: return true
5: else if bag(a) = null then
6: *ptr ← null
7: return true
8: else
9: return false

10: end if
11: end function

Algorithm 18 Public: Constructor for a DS node handle

1: Handle* function make-handle(int i, uint width, Element init)
2: a ← new Handle{ bag: null, next: null, id: i }
3: new-node ← λj. Node{ elem: init, handle: h, head: nil, upper-next: nil, parent: null }
4: bag(a) ← new Bag{ nodes: [ new-node(j) | j ∈ iota(0, width) ] }
5: return a
6: end function
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Algorithm 19 Relaxed Mergeable Priority Queue Implementation, using Skew Heaps as the Elements

1: PQ function empty-priority-queue(int id, uint width)
2: return PQ{ handle: make-handle(id, width, skew-heap-empty()) }
3: end function
4: void function insert(PQ* pq, T t)
5: Maybe (SkewHeap × unit) function dg(SkewHeap* skew-heap)
6: return some(skew-heap-insert(skew-heap, t), ())
7: end function
8: a ← handle(shared-pq)
9: apply-until(a, dg)

10: update(&handle(pq))
11: end function
12: function try-remove-min(PQ* pq, int max-tries)
13: t ← none
14: tries ← 0
15: Maybe (SkewHeap × Maybe T) function dg(SkewHeap* skew-heap)
16: if empty(skew-heap) then
17: tries ← tries + 1
18: return if tries = max-tries then some(skew-heap, none) else none
19: else
20: (new-heap, t) ← skew-heap-remove-min(skew-heap)
21: return some(new-heap, some(t))
22: end if
23: end function
24: a ← handle(pq)
25: maybe-t ← apply-until(a, dg)
26: update(&handle(pq))
27: return maybe-t
28: end function
29: MergeResult function merge(PQ* pq1, PQ* pq2)
30: a ← handle(pq1)
31: b ← handle(pq2)
32: result ← merge(a, b)
33: update(&handle(pq1))
34: update(&handle(pq2))
35: return result
36: end function
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5 Proofs

5.1 States and Transitions of Struct Members

For ease of notation and discussion, I may conflate a pointer to an object with the object

itself via implicit dereferencing.

Definition 7. Given Handle h, h references Bag b if bag(h) = b else if next(h) references

b.

Definition 8. Given Node* ` and Node n, ` is an empty suffix of n’s merge list if ` = nil,

upper-next(`) = dummy, or ¬ owned-by(`, n).

Lemma 1. Given Node* ` and Node n, if is-appendable-tail(n,`) or if list-continues-

after(n,`) returns none, then ` was linearized to be an empty suffix of n’s merge list.

Proof. is-appendable-tail(n,`) is equivalent to checking ` = nil ∨ ¬ owned-by(`,n).

If list-continues-after(n,`) returned none, then either is-appendable-tail(n,`) or

upper-next(`) = dummy, thus it was observed that either ` = nil, upper-next(`) = dummy,

or ¬ owned-by(`, n).

Therefore, by definition 8, both conditions imply that ` was linearized to be an empty

suffix of n’s merge list.

Definition 9. Given Node n, n’s merge list is the abstract sequence L where head(n) = L0

if it is not an empty suffix, and inductively upper-next(Li) = Li+1 unless it is an empty

suffix. n’s pending merges are elem(Li) where head(Li) 6= null.

5.1.1 Handle

Lemma 2. Given Handle h, bag(h) is initialized non-null, is only ever assigned null, and

is not assigned to until next(h) 6= null and for every n ∈ nodes(bag(h)), upper-next(n) 6=

null.

Proof. bag(h) is initialized in make-handle on line 4 (due to a circular reference) to a

non-null new Bag. bag(h) is only written to in ensure-merged-into on line 5, where it
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is assigned null after a call to merge-per-element-into. By Lemma 11, at that point

every n ∈ nodes(bag(h)) has upper-next(n) 6= null. Additionally, ensure-merged-into is

only called when next 6= null, which was read from next(h).

Lemma 3. Given Handle h, next(h) is initially null and is only ever assigned handles with

strictly decreasing identifiers smaller than id(h). The first non-null assignment persists as

long as bag(h) 6= null.

Proof. next(h) is initialized in make-handle to null. next(h) is assigned in 2 places:

1. In merge on line 12, WLOG, a cas replaces next(a) with b only if next(a) = null and

if id(a) > id(b).

2. In cas-while-lowers-id called from find-closest-bag, a cas replaces next(start)

with a only if id(next(start)) > id(a). Note that this only happens if find-closest-

bag-no-compress observed that bag(start) = null, which by lemma 2 is permanent.

a was found by following next members from start by the definition of find-closest-

bag-no-compress. By induction, the first assignment to a next member of any Handle

is in merge from null, and cas-while-lowers-id can only decrease id, thus following

next must always result in observing a smaller id. Therefore, for cas-while-lowers-id

to modify next(start), it must be that id(start) > id(next(start)) > id(a).

5.1.2 Bag

Lemma 4. Given Bag b, if some n ∈ nodes(b) has head(n) = null, then no handle references

b.

Proof. head(n) is only ever assigned to in merge-per-element-into and eval-merges-

locked. It can only be assigned null in the latter function when new-head is null on

line 8 or line 27 because line 24 assigns the non-null value of next to head(n) and merge-

per-element-into only ever assigns to it either src-node or nil. The possible assignments

occur when the merge list is found to be logically empty in a recursive call to eval-merges-

locked, thus after ensure-merged(&handle(n)) has been called, so the unique handle a
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which held the pointer to b has had bag(a) assigned null, thus by definition no handle

referenced b at the point of assignment to head(n).

5.1.3 Node

Lemma 5. Given Bag b and Node n ∈ nodes(b), elem(n) is only modified during calls to

apply-until by either applying the given function or resolving lazy merges.

Proof. elem(n) is only modified in try-apply-until after a call to f on line 16, and in

eval-merges-locked on line 16 to the result of merge-elem.

Lemma 6. Given Bag b and Node n ∈ nodes(b), head(n) is initially nil. Let head(n) be

replaceable if it is an empty suffix or the start of a dummy-terminated merge list of n.

If head(n) is replaceable, then any thread may assign to it such that it stays replaceable.

If head(n) is replaceable, then a merging thread may assign it a Node n′ where parent(n′)

= null, but head(n) will not be modified until parent(n′) is assigned.

If head(n) is replaceable, a thread holding n’s lock can assign it null, and it will never

change again.

If head(n) is not replaceable, then only a thread holding n’s lock can modify the state of

head(n). It will not change as long as head(head(n)) 6= null, and will only become replaceable

by assigning dummy to upper-next(head(n)).

Proof. head(n) is initialized in make-handle to nil, an empty suffix by definition 8. In

merge-per-element-into, head(dest-node) may be assigned to in try-insert when called

on line 32. There are three ways in which flow reaches line 32 from where head(dest-node)

is read into first on line 21:

1. If list-continues-after(dest-node, first) returns none, then by lemma 1, this means

head(dest-node) was an empty suffix of dest-node’s merge list, thus it was replaceable.

2. If the insertion of src-node fails on line 26 because upper-next(last) became dummy

(observed on line 28) even though head(dest-node) is again equal to first (observed on
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line 30), then dest-node’s merge list ends in dummy so head(dest-node) was replace-

able. By lemma 7, the permanency of upper-next members implies that first will forever

lead to dummy, so an ABA scenario does not cause a problem.

3. If is-appendable-tail(dest-node, next) succeeded then head(dest-node) is again equal

to first (observed on line 30), then because it was observed that list-continues-

after(dest-node, next) = none in the call to list-find-end, it must be that either

is-appendable-tail(dest-node, next) failed or upper-next(next) = dummy. The two

conditions checked by is-appendable-tail(dest-node, next) are permanent by lemma

8 thus by contradiction it must be that upper-next(next) = dummy, so dest-node’s

merge list ends in dummy meaning head(dest-node) was replacable.

In all cases, head(n) was observed to be replaceable and is assigned using cas on line

13 to src-node if it has not changed. If n does not then take ownership of src-node, then

head(n) is still replaceable by definition 8, so line 15 attempts to undo the assignment via

cas to nil, which is still an empty suffix thus still replaceable. If n does take ownership of

src-node, then the current thread does nothing more to dest-node or src-node.

In eval-merges-locked, while n is locked, head(n) may be assigned to in three places.

1. On line 8, it is observed that either head(n) was equal to nil but must become null

or equal to some unowned node (checked in list-continues-after) or it was a

previously-removed node (which has a null head and thus leads to a dummy), so

head(n) was replaceable. It cannot be null because it was checked to be non-null in

the calling function: either in eval-merges-locked on line 12 (while n is being re-

moved from a merge list locked by this thread) or in try-apply-until on line 5 (while

n is locked to make sure n was not already merged before applying the function). By

assigning nil with a

2. On line 24, it was observed that head(n) = cur and upper-next(cur) was an owned

node continuing the merge list. This guarantees that this value of upper-next(cur) is

permanent and that no other thread has modified head(n) since n took ownership, thus
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since head(cur) = null, cur’s merge is no longer pending, so head(n) can be assigned

next to safely remove cur from the merge list.

3. On line 27, it is observed that upper-next(cur) = dummy. Because cur was head(n),

it was replaceable. If the cas succeeds and new-head was null, then this thread has

succeeded at clearing the list and marking n for removal from its owner’s merge list.

Lemma 7. Given Node n, upper-next(n) is initially nil.

If upper-next(n) is an empty suffix, then a merging thread may assign to it nil or a Node n′

where parent(n′) = null, but upper-next(n) will not be modified until parent(n′) is assigned.

If n is the only member of parent(n)’s merge list, then a thread locking parent(n) may

assign null to head(n) then assign dummy permanently to upper-next(n).

If upper-next(n) is not an empty suffix, then it will never change again.

Proof. Given Node n, upper-next(n) is initialized in make-handle to nil. It may be as-

signed to in merge-per-element-into in try-insert on lines 13 and 15 if loc is &upper-

next(n) (where, like head(n), it may be assigned src-node and reassigned if the node is not

owned). In eval-merges-locked, upper-next(n) may be assigned dummy on line 26

when it is observed that n = cur = head(node), parent(n) = node, and upper-next(n) was

an empty suffix.

Lemma 8. Given Node n, parent(n) is initially null, and is modified exactly once such that

n instantly joins the new parent(n)’s merge list.

Proof. parent(n) is initialized in make-handle to null. The use of parent(n) is encapsulated

in is-owned and owned-by, where it can only ever be assigned a new value exactly once,

via cas from null to a non-null node. In merge-per-element-into, is-owned is called

on line 10 to guard against double insertion, and owned-by is called on line 14 (owned by

dest-node after src-node is inserted into its merge list) and within lines 23, 24, and 25 (node

found in a merge list before another inserting thread gave it a parent). In eval-merges-

locked, owned-by is called within lines 7 and 23 (set to node if cur or next is found in
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the list without a parent). In was-merged, is-owned is called because by lemma 11, if it

returns false then there was no merge linearized before the call.

Lemma 9. Given Bag b and Node n ∈ nodes(b), handle(n) is a back-pointer to Handle h

where bag(h) was initially b. As an optimization to limit indirections, handle(n) may be

permanently assigned null after bag(h) becomes null.

Proof. handle(n) is initialized in make-handle to a, which gets bag(a) assigned b. handle(n)

is used in eval-merges-locked on line 13 (where n is cur) as an argument to ensure-

merged because elem(cur) can only be merged with elem(node) if the merge of cur’s bag

into node’s bag has been linearized, thus bag(handle(n)) must have been null before the

end of the call to ensure-merged. In is-fully-merged-locked, handle(n) is set to null

only after bag(handle(n)) is read to be null. By lemma 2, the latter was a permanent state.

is-fully-merged-locked is only used in was-merged which is only used in try-apply-

until such that if handle(n) was assigned null then was-merged returns true, guarding

node from being used.

5.2 Linearizability

Lemma 10. find-closest-bag is linearizable to finding the bag which the given handle

references.

Proof. find-closest-bag-no-compress(&h) is a direct algorithmic translation of defini-

tion 7. If next(h) was followed, then it must be that bag(h) = null, thus h and next(h)

reference the same bag. Inductively, the first handle must have referenced the returned

bag belonging to the final handle at the linearization point of call when the bag was read

non-null.

The rest of the work in find-closest-bag also preserves the reference because in each

iteration where id(start)) > id(a), it must have been that bag(start) = null, so start and

next(start) both refer to the same bag.
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Lemma 11. After a call merge-per-element-into(src-bag, dest) returns, then every src-

node ∈ nodes(src-bag) has a non-null parent(src-node) such that handle(parent(src-node))

references the same bag as dest.

Proof. merge-per-element-into only returns when it iterates over every member of in-

dices, which covers the indexes of every src-node ∈ nodes(src-bag) exactly once. Calling

pop-front(&indices) advances the thread to the next src-node, and is only done in try-

insert after either is-owned(src-node) returns true or owned-by(src-node, dest-node) is

called, thus after src-node is owned by some dest-node.

merge-per-element-into is only called in ensure-merged-into(a, next), where next

was equal to next(a) and was passed as parameter dest. Because bag(a) 6= null was checked

after next was read, by lemma 3, every thread which called ensure-merged-into(a, next)

and entered merge-per-element-into must have had the same value of next thus the

same initial value of dest. Because dest is only modified in merge-per-element-into on

line 6 by calls to find-closest-bag(&dest), dest always referenced the same bag as next.

For every src-node ∈ nodes(src-bag), after a src-node is appended, parent(src-node) be-

comes equal to the dest-node of some merging thread because owned-by(src-node, n) is

only called when n is the owner of the merge list which src-node was appended to and is

always called by every merging thread unless it otherwise determines that parent(src-node)

6= null already. This means that handle(parent(src-node)) held the initial value of dest of

that merging thread, which references the same value as next, thus references the same bag

as the dest of all merging threads.

Lemma 12. During try-apply-until, if eval-merges-locked(node, nil) returns with-

out throwing and then was-merged(node) returns false, then there is a linearization point

such that elem(node) holds the correct value with respect to all previously-linearized calls to

apply-until and merge.

Proof. elem(node) held the correct linearized value when it was initialized and node is locked

so there are no concurrent apply-until operations affecting node, so consider inductively
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the previous linearization point of elem(node) and every correspondingly-indexed elem(child)

which must be merged with elem(node).

If parent(child) = node, then child was appended to node’s merge list by a merging thread.

Because eval-merges-locked(node, nil) returned without throwing, node’s merge list is

empty at the end of the call, thus either this call or a partial, failed previous call must have

removed child after fulfilling its pending merge on line 16 after a call to eval-merges-

locked(child, null).

If parent(child) 6= node, then child was appended to another merge list. By lemma

11, handle(parent(child)) references the same bag as handle(node) and id(handle(child))

> id(handle(parent(child))) > id(handle(node)), so elem(parent(child)) also needs to be

merged with elem(node). By induction, the pending merge of elem(parent(child)) must

have been fulfilled, so a previous call to eval-merges-locked(parent(child), new-head)

must have removed child that merge list, thus transitively fulfilling the pending merge of

elem(child).

Theorem 1. merge is linearizable to its sequential specification.

Proof.

• Suppose merge(a,b) returns incompatible. Every call to merge is guarded by the

equal-width check, and the width of a bag is a constant, thus the width of a handle

is a constant and it is not necessary to syncronize the two width calls to meet the

specification.

• Suppose merge(a,b) returns were-already-equal. This means that after calling

descend-merge on a then b, both of them descended via find-closest-bag to the

same Handle, so the arguments both reference the same bag on return by lemma 10.

• Suppose merge(a,b) returns id-clash. This means that after calling descend-merge

on a then b, both of them descended to different Handles with the same identifier.

Because these operations were not synchronized, a may reference a different bag by the

time the id is checked, thus if bag(a) is not null afterwards then by lemma 2 it was not
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null during the linearization point of the second call, thus a and b did both reference

the bags which they directly point to.

• Suppose merge(a,b) returns success. WLOG assume the id(a) > id(b) branch was

taken. Because the cas must have been successful, this means that between the lin-

earization point of the last descend-merge(a) and the cas, no other concurrent

merge was performed on a, therefore this merge is the next to be linearized.

ensure-merged-into will call merge-per-element-into on bag(a) given that an-

other thread hasn’t already linearized the merge by assigning it null. By Lemma 11

and Theorem 2, once the call returns and merge can be linearized (if it hasn’t already

been) by assigning bag(a) the value null, every bag node will have been inserted into a

merge list which is available to be merged in a call to eval-merges-locked linearized

afterwards.

Theorem 2. apply-until(a,f) is linearizable to its sequential specification if f is a pure

function.

Proof. In a loop, apply-until(a,f) gets bag from find-closest-bag(a) then calls try-

apply-until(bag,f) until it returns true. By Lemma 10, bag is the Bag that a referenced

at the linearization point of the call.

try-apply-until iterates over every node ∈ nodes(bag) infinitely often by the speci-

fication of random-index-range until the body returns. For each chosen Node, try-

apply-until will apply f to elem(node) only if, while its lock is taken, eval-merges-

locked(node, nil) is successful (returns without throwing a BailoutException) then was-

merged(node) returns false.

By Lemma 12, if eval-merges-locked throws BailoutException, then elem(node) may

not be in a linearizable state, but because all accesses to elem(node) must come after a

successful call to eval-merges-locked, bailing out causes no damage. However, if the call

is successful, then elem(node) reflects all operations linearized before the call.

was-merged(node) is used to check that a still references bag. This can only fail if

41



bag(a) has been set to null due to a concurrent merge, which monotonically changes the

return value from false to true. If the check after the call to eval-merges-locked returns

false, then it would have returned false at its linearization point, otherwise the operation

must retry because bag is no longer referenced by a.

Lastly, if f(elem(node)) returns none, then aborting to find another element meets

the specification and does not break linearization because f is pure so it did not modify

elem(node) or cause side-effects. If f returns some(e,r), then the linearization point of

apply-until is the linearization point of the last call to eval-merges-locked. This

meets the specification because f was applied to elem(node) in the state it was during the

linearization point of eval-merges-locked when a still referenced bag and all linearized

operations updating elem(node) have done so.

Theorem 3. update is linearizable to its sequential specification.

Proof. update takes a pointer to a handle a which is assumed to be modifiable by other

threads in all possible ways. The handle is only modified by update when it is observed

that a 6= null and bag(a) = null, thus that a does not reference a bag it is holding. By

definition 7, next(a) references the same bag as a does, so replacing a with next(a) preserves

the semantics of the other public functions.

5.3 Progress

Lemma 13. find-closest-bag is lock-free.

Proof. First, find-closest-bag calls find-closest-bag-no-compress, which is lock-free

because it will return unless every handle it traverses has a null bag and a non-null next,

but by Lemma 3 there cannot be cycles, so other threads would have to be infinitely often

creating and merging new bags, thus making progress.

Second, there is a traversal loop of start’s descendants from id(start) down to id(a) where

each iteration calls cas-while-lowers-id which is lock-free also by Lemma 3.

Theorem 4. apply-until is lock-free if
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1. width is at least the number of threads,

2. f is a pure function,

3. f will return some(e,r) after a finite number of applications,

4. and the locks of Node objects have lock-free try-lock and unlock methods.

Proof. Inside apply-until, try-apply-until only runs forever if each node ∈ nodes(bag)

is observed to be locked infinitely often, if eval-merges-locked throws BailoutException

infinitely often, or if eval-merges-locked runs forever.

eval-merges-locked loops until stop = true, which happens when head(node) is ob-

served to be or is assigned new-head. It will only run forever in the following cases, which

all require that other threads make infinite progress, thus it is lock-free:

• Other threads in merge-per-element-into infinitely often succeed at appending

owned nodes to the merge list, so this thread is never able to exhaust the list in the

while loop.

• Other threads in merge-per-element-into infinitely often succeed at appending un-

owned nodes then undoing their action, so this thread reads the end of the list as the

unowned node between the append and undo but executes the cas operation on lines

8 or 27 afterwards thus infinitely often fails.

• ensure-merged(handle(cur)) runs forever. By Lemma 14, it is lock-free.

• eval-merges-locked(cur, null) runs forever. If the recursion runs infinitely deep

then infinitely-many merge calls must be succeeding, otherwise one of these cases

must be occurring in a child node, so by induction this is lock-free.

Because width is at least the number of threads, there always exists a node where it

and all of the child nodes below it are not locked or otherwise occupied by other threads.

The thread moves to a new node exactly when it completes an iteration of the for loop in

try-apply-until, thus when a lock (belonging to node or any child below it) is found to

be held by another thread.
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Therefore, for a thread to infinitely fail to grab locks over every node, another threads

must be infinitely often succeeding to get those locks over every node. While recursing in

eval-merges-locked, the locks are only ever taken in increasing handle-identifier order,

so there can be no dependency cycles within or between threads, thus some thread must

succeed at every try-lock it attempts and return without throwing a BailoutException.

Because try-apply-until is thus lock-free, and by Lemma 13 find-close-bag is lock-

free, apply-until can only run forever if try-apply-until only ever returns false. This

only happens if was-merged(node) or f returns false infinitely often, but the latter will not

happen by assumption and the former requires infinitely-many concurrent merge operations,

therefore apply-until is lock-free.

Lemma 14. ensure-merged-into(a, next) is lock-free, given that next was next(a).

Proof. If bag(a) is already null, then ensure-merged-into returns immediately, otherwise

it only runs forever if merge-per-element-into(bag, next) does.

merge-per-element-into iterates over every src-node ∈ nodes(bag) once, only pro-

gressing when pop-front(&indices) is called in try-insert. Thus, it can only run forever

if some src-node never joins any merge list because even if only the current thread always

fails to append on line 13, by lemma 8, is-owned(src-node) returns true after any thread

has succeeded to append it on line 13 and then take ownership of it.

The cas on line 13 fails when another thread succeeds at modifying loc first. If try-

insert was called on line 26, then loc points to upper-next(prev) and was observed to be nil

or an unowned node. If try-insert was called on line 32, then loc points to head(dest-node)

and was observed to be an empty suffix. If other threads infinitely often appended a src-

node in merge-per-element-into, then all threads trying to insert those src-nodes will

infinitely often pop-front and advance. If other threads infinitely often replace an unowned

or dummy node with nil, null, or dummy in eval-merges-locked, then there must be

infinitely-many nodes being made dummy nodes, being successfully inserted without getting

ownership, or being doubly-inserted after a remove (this ABA scenario can only happen once
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per node per thread so it can only finitely delay progress).

If a thread fails to append because it never calls try-insert, then it must either be

stuck in an infinite recursion in list-find-end (thus the list is appended to infinitely many

times so this thread never reaches the end), stuck in the lock-free find-closest-bag call

on line 6, or be executing infinite iterations of indices-loop, the while loop of merge-per-

element-into.

indices-loop only repeats infinitely without calling try-insert if head(dest-node) is

infinitely-often observed to be null (thus infinitely-many merge operations are succeeding

because it was not null before the call to find-closest-bag) or if is-appendable-tail

always fails and head(dest-node) 6= first (thus infinitely-many nodes are being successfully

appended to the merge list by other merging threads and then made dummy nodes in eval-

merges-locked).

Theorem 5. merge is lock-free.

Proof. merge(a,b) can only run forever if width runs forever on line 2, if descend-merge

on line 6 (WLOG) runs forever, if ensure-merged-into on line 13 (WLOG) runs forever,

if infinitely-often id(a) = id(b) when the condition on line 10 fails, or if the cas on line 12

(WLOG) always fails.

By 13, width is lock-free.

By lemma 13 and 14, descend-merge is lock-free because it can only take infinitely-

many iterations if infinitely-many other merge operations succeed.

By lemma 14, ensure-merged-into(a, b) is lock-free because it is always called when

b was equal to next(a).

If it is observed that a 6= b and id(a) = id(b) but bag(a) = null, then because the call to

descend-merge(&a) linearized a to be a Handle with bag(a) 6= null, some merging thread

must be terminating a successful merge call because by lemma 2 bag(a) is only assigned

null in ensure-merged-into after merge-per-element-into succeeds. Therefore, if

merge runs forever due to infinitely-often observing this, then infinitely-many other merge
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operations are succeeding.

If the cas fails infinitely-many times, then infinitely-many other merge operations must

be succeeding at the cas and terminating.

Theorem 6. update is lock-free.

Proof. update can only run forever if bag(a) = null is observed in every iteration of the loop

and the cas(ptr, a, next) always succeeds. By lemma 2, this implies that infinitely-many

merge operations must be completing.

5.4 Priority Queue

Theorem 7. merge(pq1, pq2) is linearizable and lock-free.

Proof. The PQ merge is a thin wrapper around the MergeArray merge, which by theorems

1 and 5 is linearizable and lock-free. The calls to update do not cause any semantic effect

because it is also linearizable and lock-free by theorems 3 and 6.

Theorem 8. insert(pq, t) is linearizable and lock-free, given that pq has sufficient width

and lock-free lock methods.

Proof. insert calls apply-until on a local closure dg which just inserts the value t into

the SkewHeap. Because dg is pure and never returns none, it is linearizable by theorem 2

and lock-free by theorem 4.

Theorem 9. try-remove-min(pq, max-tries) is lock-free, and if max-tries is finite and

positive then it is linearizable to one successful attempt at removing a value if it returns

some(e) and linearizable to one unsuccessful attempt if it returns none, given that pq has

sufficient width and lock-free lock methods.

Proof. try-remove-min calls apply-until on a local closure dg which attempts to remove

a value from the SkewHeap.
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dg is not pure, but only because it mutates tries, a local counter. Given positive max-

tries, The only impure information which escapes try-remove-min is whether or not the

counter hit max-tries, which is exactly whether or not the return value is some(e) or none.

If it returns some(e), then e was removed from some SkewHeap. No information about

other indices escapes try-remove-min, thus it is linearizable to the final, successful appli-

cation of dg being the only one.

If it returns none, then no modifications to any SkewHeaps were performed, and the

only information that is leaked is that at least one index has an empty SkewHeap, so it is

linearizable to the to the final, unsuccessful application of dg being the only one.

Thus, while dg is not pure, it is safely encapsulated within try-remove-min and dg

returns some(e) after finitely-many applications, so it is linearizable by a similar argument

to theorem 2 and lock-free by a similar argument to theorem 4.
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Definition 10. The ith harmonic number is H(i) =
i∑

j=1

1
j

= O(log i).

Lemma 15. For any positive integer n,
n−1∑
i=1

H(i) = nH(n)− n.

Proof. Base Case:

0∑
i=1

H(i) = 1×H(1)− 1 = 1× 1− 1 = 0 X

Inductive Hypothesis:

k−1∑
i=1

H(i) = kH(k)− k

k∑
i=1

H(i) = H(k) +
k−1∑
i=1

H(i)

= H(k) + kH(k)− k

= (k + 1)H(k)− k

= (k + 1)H(k) + 1− (k + 1)

= (k + 1)(H(k) +
1

k + 1
)− (k + 1)

= (k + 1)H(k + 1)− (k + 1) X

Definition 11. Given a set P , the rank error of a value v ∈ P is its index in the ordered

sequence of values in P .

Theorem 10. After x solo-executions of insert(pq,t), starting from an empty PQ with

width w and as x approaches infinity, a solo-execution of try-remove-min(pq,w) ap-

proaches expected worst-case O(w logw) and average-case w rank error.

Proof. random-index-range returns a ”fair” infinite range r of indices over the inter-

val [0, w), where front(r) ∼ U [0, w − 1] and for every index i ∈ [0, w) and n ∈ N,

count(take(r, w × n), i) = n.
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This implies that an execution of insert(pq,t) without contention will insert t at a

uniformly random index of pq. As x approaches infinity, the probability that some index

is never chosen approaches zero, so the result of an execution of try-remove-min(pq,w)

without contention approaches a uniformly random choice of the minimum element at each

index.

The rank error of the returned value is its position in the sequence of all values at every

index in sorted order. Because each insert samples independently and the minimum value

of a SkewHeap is independent of insertion ordering, WLOG assume the values are globally

inserted in order. The expected worst-case rank error is thus the expected number of insert

operations until every index has been chosen. Similarly, the expected average-case rank error

becomes the expected number of operations before any particular index was chosen for the

first time.

This is a direct reduction to the Coupon Collectors Problem [MR95]. Let random variable

R be a sorted array of the minimum rank at each index. Selection is uniform, so if i indices

have been chosen at least once, the probability of choosing a previously-unchosen index is

w−i
w

, thus the waiting time follows a geometric distribution with mean E(R[i]−R[i−1]) = w
w−i .
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ER[0] = 1

ER[i] =
i∑

j=0

w

w − j

= w
i∑

j=0

1

w − j

= w

w∑
j=w−i

1

j

= w
w∑

j=1

1

j
− w

w−i−1∑
j=1

1

j

= wH(w)− wH(w − i− 1)

Using this equality, the expected worst-case rank error becomes:

ER[w − 1] = wH(w)− wH(w − (w − 1)− 1) = wH(w) = O(w logw)

The expected average rank error is:

E

(
1

w

w−1∑
i=0

R[i]

)
=

1

w

w−1∑
i=0

ER[i]

=
1

w

w−1∑
i=0

(wH(w)− wH(w − i− 1))

=
w−1∑
i=0

(H(w)−H(w − i− 1))

=
w−1∑
i=0

H(w)−
w−1∑
i=0

H(w − i− 1)

= wH(w)−
w−1∑
i=1

H(i)

= wH(w)− (wH(w)− w)

= w
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6 Experiments

6.1 Implementation Details

I wrote MergeArray and all benchmarks in the D programming language, and compiled with

the gcc-backend compiler, gdc (D 2.066.1 and gcc version 4.9.2). Spraylist [AKLS14] was

written in C, also compiled with gcc version 4.9.2, and natively linked to the D benchmarks.

Allocations by the data structures were done in large thread-local buffers to avoid contention

within the allocator and to disable garbage collection during benchmarks.

All code was compiled for x86 64 Linux and run on a Fujitsu PRIMERGY R© RX600 S6

server. The server has four Intel R© Xeon R© E7-4870 processors each with ten cores running

at 2.40 GHz and with two-way hyperthreading.

6.2 Relaxed Minimum Spanning Tree

As described earlier in this thesis, the Minimum Spanning Tree problem is a promenant appli-

cation of mergeable priority queues. This benchmark measures a parallel Sollin’s Algorithm

implemention using MergeArray at various width settings (Algorithm 20) and compares it

to a parallel Kruskal’s Algorithm implemented using SprayList (Algorithm 21) as well as a

non-parallel Kruskal’s Algorithm implemented using an array-backed binary heap.

Figure 2 shows the runtime comparison on a randomly-generated dense graph with 20,000

nodes and 79,986,146 edges (uniform 20% chance of inclusion). The parallelism of Sollin’s Al-

gorithm, made efficiently possible by MergeArray’s merge, allows it to greatly out-perform

both Kruskal’s Algorithm implementations which use a centralized priority queue. While

MergeArray only guarantees lock-free insert when the width w is at least the number of

threads p, the experiments using smaller widths still show comparable runtime to the w = p

case, except for w = 1 where each MergeArray permits no concurrent insert or remove-

min operations.

The scalability of the implementations is demonstrated by their speedup, shown in Figure

3. Comparing the ratio of the single thread runtime of an algorithm to the runtimes when
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Algorithm 20 Sollin’s Algorithm for Undirected Relaxed MST using MergeArray

1: Edge[] function sollin-mergearray(Edge[][] adj, int num-threads)
2: S ← new PQ[](length(adj))
3: for (u, edges) ∈ adj in parallel do
4: S[u] ← empty-priority-queue(u, num-threads / 4 + 1)
5: for all e ∈ edges do
6: insert(&S[u], e)
7: end for
8: end for
9: T ← Ø

10: for tid ∈ iota(0, num-threads) in parallel do
11: while length(T) < length(adj)−1 do
12: u ← uniform-random-nat(0, length(adj))
13: if some(e) ← try-remove-min(&S[u]) then
14: (weight, u, v) ← e
15: if merge(&S[u], &S[v]) 6= were-already-equal then
16: T ← T ∪ {e}
17: end if
18: end if
19: end while
20: end for
21: return T
22: end function

Algorithm 21 Kruskal’s Algorithm for Undirected Relaxed MST using Spraylist

1: Edge[] function kruskal-spraylist(Edge[] edges, int num-nodes, int num-threads)
2: queue ← make-spraylist(2 + log2(length(edges)))
3: for (i,e) ∈ edges in parallel do
4: (weight, u, v) ← e
5: if u ≤ v then
6: insert(&queue, weight, i)
7: end if
8: end for
9: set ← [ i : SDSNode{null, i} | i ∈ iota(0, num-nodes) ]

10: T ← Ø
11: for tid ∈ iota(0, num-threads) in parallel do
12: while length(T) < length(adj)−1 do
13: if some(weight, i) ← remove-spray(&queue) then
14: (weight, u, v) ← edges[i]
15: if sds-merge(set[u], set[v]) then
16: T ← T ∪ {e}
17: end if
18: end if
19: end while
20: end for
21: return T
22: end function
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Figure 2: MST Benchmark Runtimes on dense random graph
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Algorithm 22 Concurrent Disjoint Set [SB08]

1: struct SDSNode
2: SDSNode* next
3: int id
4: end struct
5: SDSNode* function find(SDSNode* a)
6: old-next ← next(a)
7: if old-next = null then return a
8: rep ← find(old-next)
9: if old-next 6= rep then cas(&next, oldnext, rep)

10: return rep
11: end function
12: bool function link-with(SDSNode* a, SDSNode* b)
13: if id(a) > id(b) ∧ cas(&next(a), null, b) then return true
14: if id(a) < id(b) ∧ cas(&next(b), null, a) then return true
15: return false
16: end function
17: bool function sds-merge(SDSNode* a, SDSNode* b)
18: loop
19: a-rep ← find(a)
20: b-rep ← find(b)
21: if id(a-rep) = id(b-rep) then return false
22: if link-with(a-rep, b-rep) then return true
23: end loop
24: end function
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Figure 3: MST Benchmark Relative Speedups on dense random graph
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using higher numbers of threads, MergeArray with w = p shows the highest scalability, and

all MergeArray experiments (except w = 1) scale up to 80 threads. The Spraylist flatlines

after about p = 20, but because most of the runtime is spent doing the O(|E|) insert

operations (implemented as a normal skiplist insert) rather than the O(|V |) remove-min

operations (implemented as a relaxed spray), this is not the fault of the innovation of its

creators.

It should be noted that the architecture of the server has left an imprint in the runtime

patterns. While each MergeArray experiment scales near-perfectly up to p = 10, there is a

drop afterwards when hyperthreading kicks in because for p ≤ 20 each thread is run on a

single processor. At p = 21, p = 41, and p = 61, a additional processor is used, which causes

some performance loss due to NUMA (non-uniform memory access) between sockets; this is

especially evident in the MergeArray experiement when w = 1.

MST on Dense Graph − Weight Boxplots
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Figure 4: MST Benchmark Output Weights on dense random graph

These algorithms used relaxed data structures, and as such are not guaranteed to produce
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minimum spanning trees. As a baseline, in the graph, the weight of each edge was chosen

uniformly from [0, |V |), giving an optimal MST weight of 109,122 units, which is about

5.4561 per edge. Figure 4 shows the total weight of the MSTs output by the algorithms.

In each algorithm, the variation caused by in number of threads is small compared to

the uncertainty between runs, thus most variation in the weight is due to the relaxation of

the data structure. MergeArray with w = 1 is the top performer with an average weight of

109,169.3 (5.458737 per edge) and maximum weight of 109,273 (5.463923 per edge), but the

Spraylist comes in a close second, outputting an average weight of 109,639.3 (5.482239 per

edge) and maximum 112,940 (5.647282 per edge) over all experiments. Considering every

MergeArray experiment, it is clear that the output weight is approximately a linear function

of the width. For w = 20, the average weight is 1,246,434 units, or 62.32482 per edge, and

for w = 80 the average weight is 4,887,520 (244.3882 per edge).

This benchmark illustrates the tradeoff between performance and accuracy when using

relaxed data structures which must scale to many threads and large data sets, as well as

the benefits of parallel algorithms which use merge to efficiently distribute and collect work

rather than ones which use a centralized data structure.

I should note that looking at different classes of graphs can result in different performance

characteristics. For example, the California road network used in Spraylist benchmarks,

made fully-connected, is a sparse 1,965,206 node and 11,048,470 edge graph ( |E||V | = 5.622042)

which neither MergeArray nor Spraylist MST algorithms scale well on beyond 20 threads,

as shown in Figure 5.
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MST on Sparse CA Road Graph − Time Boxplots
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MST on Sparse CA Road Graph − Weight Boxplots
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Figure 5: MST Benchmark Runtimes and Weights on sparse California road network

57



6.3 Priority Queue Operation Benchmarks

To measure the run time of each operation of the MergeArray priority queue, the following

three-step benchmark was performed:

1. In parallel, an array of 216 MergeArrays are created (with id = index in array) and filled

with 1525 integers each. No two threads insert into the same one.

2. In parallel, each MergeArray is merged with the index zero MergeArray.

3. In parallel, each thread calls remove-min 216×1525/p times to empty the MergeArray.

Figure 6 is the results of this experiment. While the contention of merge operations

into the same ”destination” MergeArray increases the time to perform step 2, its lazy nature

makes merge a small fraction of the overall runtime which persistently decreases up to 80

threads.
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Figure 6: Results of Merge Contention Test and Operation Benchmark

58



6.4 Rank Error

Theorem 10 predicts a expected worst-case rank-error of wH(w) = O(w logw) and average-

case w for the results of a remove-min operation on a MergeArray with width w after

sufficiently-many non-concurrent insert operations are performed. In practice, insert op-

erations may be highly concurrent, and the locking of indices in the MergeArray breaks the

theoretical guarantee of uniform value distribution. The benchmark described in Algorithm

23 measures the distribution of minimum values over different indices in a more realistic

setting.

Algorithm 23 MergeArray Rank Error Benchmark

1: int[] function mergearray-rank-error(int chunk-size, int num-threads)
2: bound ← chunk-size × num-threads
3: items ← random-shuffle(array(iota(0, bound)))
4: M ← empty-priority-queue(0, num-threads)
5: for chunk ∈ chunks(items, chunk-size) in parallel do
6: for all i ∈ chunk do
7: insert(&M, i)
8: end for
9: end for

10: R ← [ peek-min(elem(n)) | n ∈ nodes(bag(handle(M))) ]
11: return sorted(R)
12: end function

Figure 7 (top) shows the results of running Algorithm 23 on a MergeArray of width w = 80

with chunk-size = 10,000 and num-threads = 80, resulting in 800,000 total insertions. While

insert operations are concurrent rather than sequential, the observed rank error of the

minimum value at each index of the MergeArray closely matches the theorem’s prediction.

To further support that the distribution in practice is close to the prediction, the bench-

mark was also run where the random shuffle was done within each thread’s chunk rather

than over the entire items array. This means that each thread inserts a biased sample of

the values, and in particular that exactly one thread inserts all items below 10,000. Figure

7 (bottom) shows the results, which still closely matches the predicted ranks. The outcome

of this benchmark is strong evidence that apply-until makes an approximately uniform

choice of indices in practice, and that Theorem 10 is a good model of the relaxation of the

MergeArray priority queue.
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7 Discussion and Future Work

MergeArray is a framework for building scalable, relaxed, linearizable concurrent data struc-

tures which supports a lock-free merge and conditionally-lock-free apply-until. While

MergeArray is a small step towards an entirely-lock-free mergeable priority queue, it has

met the goal of bringing the merge operation into the world of concurrent lock-free data

structures.

A primary direction for future research is to study the essential parts of MergeArray

which allow for lock-free merge, such as the relaxed semantics, lazy bulk movement, and

coordination using monotonicity, and try to build a new mergeable priority queue which

permits fine-grained access to every value without the semi-coarse-grained locking which

makes supporting a fully-lock-free remove-min difficult.
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