Construction, enumeration, and optimization of perfect phylogenies on multi-state data.

Michael Coulombe¹ Kristian Stevens² Dan Gusfield² mcoulomb@mit.edu {kastevens,gusfield}@ucdavis.edu

> ¹Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

> > ²Department of Computer Science University of California, Davis

5th IEEE International Conference on Computational Advances in Bio and Medical Sciences

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Outline

Background

- Introduction
- Multi-state Perfect Phylogeny
- 2 Construction Algorithms
 - Algorithm Description
 - Our Improvements
 - Results
- 3 Enumeration Algorithms
 - Algorithm Description
 - Our Improvements
 - Results

4 PerfectPhy

Uniqueness Extension

Background

Construction Algorithms Enumeration Algorithms PerfectPhy ntroduction Multi-state Perfect Phylogeny

Outline

- Introduction
- Multi-state Perfect Phylogeny
- 2 Construction Algorithms
 - Algorithm Description
 - Our Improvements
 - Results
- 3 Enumeration Algorithms
 - Algorithm Description
 - Our Improvements
 - Results
 - PerfectPhy
 - Uniqueness Extension

Introduction Multi-state Perfect Phylogeny

Phylogeny Problem and Approaches

The Phylogeny Problem

Given extant taxa with observed traits, reconstruct an evolutionary tree which best explains their ancestral relationships.

- Distance-Based Algorithms
 - Must know or estimate evolutionary distances between taxa.
 - Must choose a metric and clustering strategy.
- Maximum Parsimony and Maximum Likelihood
 - Must model and give costs to evolutionary events.
 - Must efficiently prune the search-space to find the optimal tree.

Introduction Multi-state Perfect Phylogeny

Phylogeny Problem and Approaches

The Phylogeny Problem

Given extant taxa with observed traits, reconstruct an evolutionary tree which best explains their ancestral relationships.

- Distance-Based Algorithms
 - Must know or estimate evolutionary distances between taxa.
 - Must choose a metric and clustering strategy.
- **2** Maximum Parsimony and Maximum Likelihood
 - Must model and give costs to evolutionary events.
 - Must efficiently prune the search-space to find the optimal tree.

Introduction Multi-state Perfect Phylogeny

Multi-state Perfect Phylogeny Problem

Input

A set S of n taxa for which there are m characters, or observed traits. Each character takes on at most k distinct states.

Output

A **perfect phylogeny** of S: a tree T with leaves labeled by the taxa and ancestors labeled such that each character-state is **convex** with respect to T.

Characters

Introduction Multi-state Perfect Phylogeny

Multi-state Perfect Phylogeny Problem

Input

A set S of n taxa for which there are m characters, or observed traits. Each character takes on at most k distinct states.

Output

A **perfect phylogeny** of S: a tree T with leaves labeled by the taxa and ancestors labeled such that each character-state is **convex** with respect to T.

Characters

PerfectPhy

Introduction Multi-state Perfect Phylogeny

Multi-state Perfect Phylogeny Problem

Input

A set S of n taxa for which there are m characters, or observed traits. Each character takes on at most k distinct states.

Output

A **perfect phylogeny** of S: a tree T with leaves labeled by the taxa and ancestors labeled such that each character-state is **convex** with respect to T.

Characters

Introduction Multi-state Perfect Phylogeny

Multi-state Perfect Phylogeny Problem

Input

A set S of n taxa for which there are m characters, or observed traits. Each character takes on at most k distinct states.

Output

A **perfect phylogeny** of S: a tree T with leaves labeled by the taxa and ancestors labeled such that each character-state is **convex** with respect to T.

Characters

PerfectPhy

Introduction Multi-state Perfect Phylogeny

Multi-state Perfect Phylogeny Problem

Input

A set S of n taxa for which there are m characters, or observed traits. Each character takes on at most k distinct states.

Output

A **perfect phylogeny** of S: a tree T with leaves labeled by the taxa and ancestors labeled such that each character-state is **convex** with respect to T.

Characters

PerfectPhy

Introduction Multi-state Perfect Phylogeny

Perfect Phylogeny with Bounded Number of States

Problem known to be NP-Hard for arbitrary n, m, k [?].

Result	Construction Time	Notes
[?]	O(nm)	Binary data $(k=2)$
[?]	<i>O</i> (<i>nm</i> ²)	3-State data ($k \leq$ 3)
[?]	$O(n^2m)$	4-State data ($k \leq$ 4)
[?]	$O(2^{3k}(nm^3 + m^4))$	Fixed Parameter Tractable in k
[?]	$O(2^{2k}nm^2)$	Improvement on [?]

Algorithm Descriptior Dur Improvements Results

Outline

Background

- Introduction
- Multi-state Perfect Phylogeny

2 Construction Algorithms

- Algorithm Description
- Our Improvements
- Results
- 3 Enumeration Algorithms
 - Algorithm Description
 - Our Improvements
 - Results

PerfectPhy

• Uniqueness Extension

Algorithm Description Our Improvements Results

Proper Clusters [?]

Definition

 $G \subset S$ is a **proper cluster** if each character shares at most one state between *G* and S - G, and some character shares none.

Definition

The **splitting vector** Sv(G) = vof proper cluster *G* is the vector where $\alpha(v)$ is the unique shared state of character α between some $x \in G$ and $y \in S - G$, else $\alpha(v) = *$ if no state is shared.

PerfectPhy

Algorithm Description Our Improvements Results

Proper Clusters [?]

Lemma

If S has a perfect phylogeny, then S has a perfect phylogeny where the leaf set of every subtree is a proper cluster.

Intuition:

- Each edge must share at most one character due to convexity.
- If all characters share a state over an edge, then the edge can be contracted.

PerfectPhy

Algorithm Description Our Improvements Results

Preprocessing: S/Sv(G) [?]

Definition

Given $G \subseteq S$ and $v \in \{*, 1, ..., k\}^n$, G/v groups taxa which share a character-state not present in v.

Example

$$S/Sv(G) = \{\{a \mid \alpha_4(a) = i\} \mid i \neq 1\}$$
$$\cup \{\{a\} \mid \alpha_4(a) = 1\}$$

If $a \sim b$ and Sv(G) labels an edge, then a and b **must** be on the same side of the edge due to convexity.

Algorithm Description Our Improvements Results

Recursive Formulation of [?] and [?]

PERFECTPHYLOGENY(S)

1 if $T \leftarrow \text{SUBPHYLOGENY}(S - \{t_{out}\})$ returns failure then return failure 2 else return the tree created by attaching t_{out} to the root of T

SUBPHYLOGENY(G)

- 1 initialize root r labeled with Sv(G)
- 2 if G is a single taxon t then return the taxon t attached to r
- 3 foreach subset H_1 of G where

 $T_{H_1} \leftarrow \text{SUBPHYLOGENY}(H_1)$ exists and can be attached to r

- 4 **if** $H_2 \leftarrow G H_1$ is a proper cluster
- if $T_{H_2} \leftarrow \text{SUBPHYLOGENY}(H_2)$ exists and can be attached to r
- ⁶ return the tree created by attaching T_{H_1} and T_{H_2} to r
- 7 **elsif** G can be partitioned into l > 2 proper clusters H_1, \ldots, H_l with subphylogenies T_{H_1}, \ldots, T_{H_l} that can be attached to r
- 8 **return** the tree created by attaching T_{H_1}, \ldots, T_{H_l} to r
- 9 **return** failure if no H_1 worked

Algorithm Description Our Improvements Results

Recursive Formulation of [?] and [?]

• If $H_2 \leftarrow G - H_1$ is a proper cluster:

SUBPHYLOGENY(G)

3 **foreach** subset H_1 of G where $T_{H_1} \leftarrow \text{SUBPHYLOGENY}(H_1)$ exists and can be attached to r

5 **if** $T_{H_2} \leftarrow \text{SUBPHYLOGENY}(H_2)$ exists and can be attached to r6 **return** the tree created by attaching T_{H_1} and T_{H_2} to r

Algorithm Description Our Improvements Results

Recursive Formulation of [?] and [?]

2 If $G - H_1$ is **not** a proper cluster:

SUBPHYLOGENY(G)

3 **foreach** subset H_1 of G where $T_{H_1} \leftarrow \text{SUBPHYLOGENY}(H_1)$ exists and can be attached to r

7 **elsif** G can be partitioned into l > 2proper clusters H_1, \ldots, H_l with subphylogenies T_{H_1}, \ldots, T_{H_l} that can be attached to r 8 **return** the tree created by attaching T_{H_1}, \ldots, T_{H_l} to r

Algorithm Description Our Improvements Results

Whole Algorithm Pipeline of [?]

- **(**) Compute all proper clusters $G \subset S$ and their splitting vectors.
 - $O(2^k m)$ possible proper clusters G, O(nm) to verify and compute Sv(G), thus $O(2^k m^2 n)$ total time.
- Ø Build proper cluster dictionary data structure.

Sompute S/Sv(G) for each proper cluster G.

• Run PERFECTPHYLOGENY(S) and output answer.

Algorithm Description Our Improvements Results

Whole Algorithm Pipeline of [?]

- **(**) Compute all proper clusters $G \subset S$ and their splitting vectors.
 - $O(2^k m)$ possible proper clusters G, O(nm) to verify and compute Sv(G), thus $O(2^k m^2 n)$ total time.
- Ø Build proper cluster dictionary data structure.
 - $O(n^2)$ per proper cluster to build a trie. Our improvement: O(n) per proper cluster to build pointer table. $O(2^k mn)$ total time.
- Sompute S/Sv(G) for each proper cluster G.

• Run PERFECTPHYLOGENY(S) and output answer.

Algorithm Description Our Improvements Results

Whole Algorithm Pipeline of [?]

- **(**) Compute all proper clusters $G \subset S$ and their splitting vectors.
 - $O(2^k m)$ possible proper clusters G, O(nm) to verify and compute Sv(G), thus $O(2^k m^2 n)$ total time.
- Ø Build proper cluster dictionary data structure.
 - $O(n^2)$ per proper cluster to build a trie. Our improvement: O(n) per proper cluster to build pointer table. $O(2^k mn)$ total time.
- Sompute S/Sv(G) for each proper cluster G.
 - $O(2^k m)$ possible proper clusters G, O(nm) to compute S/Sv(G), $O(2^k m^2 n)$ total time.
- Run PERFECTPHYLOGENY(S) and output answer.

Algorithm Description Our Improvements Results

Whole Algorithm Pipeline of [?]

- **(**) Compute all proper clusters $G \subset S$ and their splitting vectors.
 - $O(2^k m)$ possible proper clusters G, O(nm) to verify and compute Sv(G), thus $O(2^k m^2 n)$ total time.
- Ø Build proper cluster dictionary data structure.
 - $O(n^2)$ per proper cluster to build a trie. Our improvement: O(n) per proper cluster to build pointer table. $O(2^k mn)$ total time.
- Sompute S/Sv(G) for each proper cluster G.
 - $O(2^k m)$ possible proper clusters G, O(nm) to compute S/Sv(G), $O(2^k m^2 n)$ total time.
- Run PERFECTPHYLOGENY(S) and output answer.
 - Using dynamic programming, $O(2^k m)$ subphylogeny calls which iterate over $O(2^k m)$ subsets performing O(n) work each, thus $O(2^{2k}m^2n)$ total time.

Algorithm Description Our Improvements Results

Preprocessing: Proper Cluster Dictionary

• The proper cluster dictionary is used to test whether or not an arbitrary $G \subset S$ is a proper cluster, and if so to get an index p_G for use in other data structures, in time O(|G|) = O(n).

- We represent G as a bit-vector $\{0,1\}^n$.

More specifically, given a partition H₁, ..., H_ℓ of G ⊂ S, it must be able to verify and output p_{H1}, ..., p_{Hℓ} in time O(|H₁| + ... + |H_ℓ|) = O(|G|) = O(n).

- We represent $H_1,..,H_\ell$ as a vector over $\{1,...,\ell\}^n$.

• Proposal of [?]: build a trie

Algorithm Description Our Improvements Results

Proper Cluster Dictionary: Trie issues

• The paths down a 0-1 binary trie is necessarily O(n), thus looking up $H_1, ..., H_\ell$ simultaneously cannot be done with $O(\ell)$ independent lookups within O(n) time.

 By expanding the nodes of the trie to support multiple children, the space requirement increases to O(n²) per proper cluster.

Algorithm Description Our Improvements Results

The Pointer Table, a Smaller Proper Cluster Dictionary

Q[p][t] = the smallest $p' \ge p$ where $t \in G_{p'}$ (lexicographical order)

LOOKUP(Q, G)

- $p \leftarrow 0$
- 2 foreach taxa $t \in G$ in order
- $p \leftarrow Q[p][t]$
- 4 if $|G| = |G_p|$ and $\forall t \in G. \ p = Q[p][t]$
- 5 return p
- 6 else
- 7 return NULL

Representing $H_1, ..., H_\ell$ as a vector over $\{1, ..., \ell\}^n$ allows simultaneous LOOKUP in O(n) time.

Algorithm Description Our Improvements Results

Trie Slowdown vs Pointer Table

Average full program runtime and dictionary size increase when using the Trie **instead** of the Pointer Table, over 80 trials.

n,m	k = 4	k = 10	k = 20
50,50	3.07% / <mark>165%</mark>	2.75% / <mark>189%</mark>	1.55% / <mark>174%</mark>
100,100	2.80% / <mark>386%</mark>	2.95% / <mark>516%</mark>	1.60% / 490%
500,500	1.27% / <mark>1886%</mark>	2.67% / 2749%	1.18% / 2957%
1000,1000	1.15% / 3775%	2.89% / 5522%	1.12% / 6525%

Algorithm Description Our Improvements Results

Construction Algorithm Runtime

Average execution times (using pointer table) over 30 trials:

<i>n</i> , <i>m</i>	4 state	10 state	20 state	Scaling
	(nucleotide)		(amino acid)	(<i>n</i> , <i>m</i>)
10,10	0.001s	0.001s	0.003s	
50,50	0.005s	0.024s	0.303s	×125
100,100	0.028s	0.113s	1.55s	×8
500,500	3.21s	17.6s	239s	×125
1000,1000	51.9s	271s	2,320s	×8
2000,2000	529s	2,590s	19,300s	×8
Scaling (k)		×2 ¹²	×2 ²⁰	

In practice, scales much better than asymptotic complexity predicts with respect to k, scales as predicted with respect to n and m $O(2^{2k}m^2n)$

Algorithm Description Dur Improvements Results

Outline

Background

- Introduction
- Multi-state Perfect Phylogeny
- 2 Construction Algorithms
 - Algorithm Description
 - Our Improvements
 - Results
- 3 Enumeration Algorithms
 - Algorithm Description
 - Our Improvements
 - Results

PerfectPhy

• Uniqueness Extension

Algorithm Description Our Improvements Results

Enumeration of Minimal Perfect Phylogenies

Definition

A **minimal perfect phylogeny** is a perfect phylogeny T in which no edge can be **contracted** to make a smaller perfect phylogeny.

For each $(x, y) \in T$, there exists a character α such that: $\alpha(x) \neq \alpha(y)$ $\alpha(x) \neq *$ $\alpha(y) \neq *$

Algorithm Description Our Improvements Results

The DAG: Compact Representation of MPPs [?]

Definition

A sum node $\sum(H; y)$ represents a subphylogeny for proper cluster H with its root connected to a node y in S - H. The children of $\sum(H; y)$ are possible choices of product nodes.

Definition

A **product node** $\prod(G_1, ..., G_t; x)$ represents a root x of a subphylogeny partitioned into subtrees that are sum nodes for $G_1, ..., G_t$.

Algorithm Description Our Improvements Results

The DAG: Compact Representation of MPPs [?]

Example

- 6 Taxa, 5 Characters, 4 States
- ⇒ Found 4 Minimal Perfect Phylogenies

Michael Coulombe, Kristian Stevens, Dan Gusfield

PerfectPhy

Algorithm Description Our Improvements Results

DAG Construction Optimizations

First step of enumeration algorithm computes sets Ext(H, G).

Algorithm, adapted from [?]

... we consider all partitions of H - G into at most k - 1 proper clusters $G_1, G_2, ..., G_t$, and consider the (possible) perfect phylogeny for H which has root x with subtrees perfect phylogenies for $G, G_1, G_2, ..., G_t$. The canonical labeling for x is then an element of Ext(H, G).

Implementation choices:

- Brute force checking, the naïve interpretation of [?]
- Maximal Independent Set generating algorithms using $(G_1, G_2) \in E$ if $Sv(G_1)$ and $Sv(G_2)$ are incompatible.
- MaxIS algorithms optimized for a known maximum size k.

Algorithm Description Our Improvements Results

DAG Analysis

- Number of MPPs t (bottom-up dynamic programming): $COUNT(Sn) = \sum_{\substack{Pn \in CHILDREN(Sn) \\ COUNT(Pn)}} COUNT(Pn) = \prod_{\substack{Sn \in CHILDREN(Pn)}} COUNT(Sn)$
- Find tree with fewest nodes: NODECOUNT(Sn) = $\min_{Pn \in CHILDREN(Sn)}$ NODECOUNT(Pn) NODECOUNT(Pn) = 1 + $\sum_{Sn \in CHILDREN(Pn)}$ NODECOUNT(Sn)
- Access i^{th} MPP in O(n+p) time (p is # product nodes)
- Iterate over MPPs in O(n) time per tree
- All-pairs Robinson-Foulds Distance: $O(nt^2)$ time, O(nt) space $RF(T_1, T_2) = \frac{|P(T_1)\Delta P(T_2)|}{2}$ where P(T) = T's proper clusters

Algorithm Description Our Improvements Results

DAG Analysis Algorithm: Support

Definition

The **support** of a proper cluster H is the number of MPPs in which H is the leaf set on one side of an edge.

$$\text{SUPPORT}(H) = \text{SUPPORT}(S - H) = \sum_{y} \text{SUPPORT}(\sum(H; y))$$
$$\text{SUPPORT}(Sn_{G}) = \sum_{\substack{Sn_{G} \in \text{CHILDREN}(Pn) \\ Pn \in \text{CHILDREN}(Sn_{H})}} \text{SUPPORT}(Sn_{H}) \times \frac{\text{COUNT}(Pn)}{\text{COUNT}(Sn_{H})}$$

- Top-down dynamic program computes $SUPPORT(Sn_G)$, values used to find tree with maximum proper cluster support.
- We observed that these trees were usually distinct objects, not just trees with the most edges.

Algorithm Description Our Improvements Results

DAG Construction Runtime

Average time to construct DAG using Ext(H, G) algorithms (k-MaxIS / MaxIS / brute force) enumeration over 60 trials.

<i>n</i> , <i>m</i>	<i>k</i> = 4	k = 10
50,50	14ms / 12ms / 49ms	41ms / 48ms / 421s*
100,100	48ms / 46ms / 1.11s	160ms / 176ms / 261s
500,500	3.99s / 3.95s / 4.38s	13.3s / 13.4s / 44.7s*
1000,1000	30.8s / 31.4s / 33.6s	127s / 124s / 142s*

* Actual average execution time is higher because some trials timed out at 20min.

Algorithm Description Our Improvements Results

Number of Minimal Perfect Phylogenies

Average number minimal perfect phylogenies and runtime (using k-MaxIS) over 80 trials.

n,m	<i>k</i> = 4	k = 10	<i>k</i> = 20
50,50	3.40 (0.00998 s)	237 (0.0539s)	120,000 (3.68s)
100,100	2.48 (0.0473s)	495 (0.195s)	1,710,000 (3.30s)
500,500	1.66 (4.38s)	118 (15s)	292,000 (184s)
1000,1000	1.91 (33.5s)	11.0 (124s)	207,000 (1,000s)

Algorithm Description Our Improvements Results

DAG Size

Average DAG output filesize in kilobytes over 50 trials

n,m	<i>k</i> = 4	k = 10	<i>k</i> = 20
50,50	6.13	11.2	33.6
100,100	19.2	32.6	89.5
500,500	355	572	881
1000,1000	1,310	2,170	2,980

Uniqueness Extension

Outline

Background

- Introduction
- Multi-state Perfect Phylogeny
- 2 Construction Algorithms
 - Algorithm Description
 - Our Improvements
 - Results
- 3 Enumeration Algorithms
 - Algorithm Description
 - Our Improvements
 - Results

PerfectPhy

Uniqueness Extension

Uniqueness Extension

PerfectPhy Software Package

• No dependencies C++ command line application

Example
<pre>\$./perfectphy -f mydataset -newick</pre>
1 The data DOES have a perfect phylogeny
('3 3 0 0 2','0 0 2 1 0',('1 1 1 0 0','1 0 0 2 0')'1
0 0 0 0', '2 2 3 0 1', '0 0 0 0 0')

- Includes source code for main program, helpful tools, and scripts to run the experiments.
- Available at http://wwwcsif.cs.ucdavis.edu/~gusfield and linked on my website http://www.mit.edu/~mcoulomb

Uniqueness Extension

PerfectPhy Software Package: Tools and Extensions

- Character Removal (Wrapper)
- Missing Data (Wrapper)
- Phylip [?] sequence format (de)conversion adapters
- Newick tree format to Graphviz Dot format [?] for visualizing phylogenies.
- Experimental extension to construction algorithm to efficiently check if multiple MPPs exist without enumeration.

Uniqueness Extension

Efficient Unique Minimal Perfect Phylogeny Testing

- If there is only one tree, then there is no need to run the expensive enumeration algorithm, just minimize the tree constructed by the dynamic program.
- Given one perfect phylogeny on *S*, it is NP-Hard to decide if another exists for *S*. [?]
- Ideas?

Efficient Unique Minimal Perfect Phylogeny Testing

- If there is only one tree, then there is no need to run the expensive enumeration algorithm, just minimize the tree constructed by the dynamic program.
- Given one perfect phylogeny on *S*, it is NP-Hard to decide if another exists for *S*. [?]
- We can leverage the computation of the dynamic program to try to output two trees instead of one.
- Our Result: O(n+m) additional time per inner loop iteration, thus $O(2^{2k}m^2(n+m))$ total time.

Uniqueness Extension

Efficient Unique Minimal Perfect Phylogeny Testing

Global tables unique(G), rootlabels(G), and a SetEqChecker

SUBPHYLOGENY(G)

1 initialize root r labeled with Sv(G)1 unique(G) \leftarrow true, $T_G \leftarrow$ null 2 if G is a single taxon t then return the taxon t attached to r 3 foreach subset H_1 of G where $T_{H_1} \leftarrow \text{SUBPHYLOGENY}(H_1)$ exists and can be attached to r if $H_2 \leftarrow G - H_1$ is a proper cluster 4 if $T_{H_2} \leftarrow \text{SUBPHYLOGENY}(H_2)$ exists and can be attached to r 5 $T'_{G} \leftarrow$ the tree created by attaching T_{H_1} and T_{H_2} to r 6 $T_G \leftarrow \text{MINIMIZESUBTREES}(T_G, T'_G)$ ô elsif G can be partitioned into l > 2 proper clusters H_1, \ldots, H_l 7 with subphylogenies T_{H_1}, \ldots, T_{H_l} that can be attached to r $T'_{G} \leftarrow$ the tree created by attaching T_{H_1}, \ldots, T_{H_l} to r 8 $T_G \leftarrow \text{MINIMIZESUBTREES}(T_G, T'_G)$ ŝ 9 return T_G

Uniqueness Extension

Efficient Unique Minimal Perfect Phylogeny Testing

Global tables unique(G), rootlabels(G), and a SetEqChecker

MINIMIZESUBTREES(T_G , T'_G)

- 1 **If** unique(G)
- ² If any H_i subtree of the root has \neg unique(H_i) then unique(G) \leftarrow false
- $_{3}$ cl_{G} = canonical labeling of root of T'_{G}
- 4 If the root of T'_G has two subtrees for H_1, H_2
- 5 If COMPATIBLE(cl_G, rootlabels(H₁)) and COMPATIBLE(cl_G, rootlabels(H₂)) but ¬ COMPATIBLE(rootlabels(H₁), rootlabels(H₂))
- 6 unique(G) \leftarrow false
- 7 Contract the subtrees of T'_G arbitrarily until none can be
- 8 else if the root has over two subtrees
- 9 Contract the H_1 subtree of T'_G if possible
- 10 If T_G doesn't exist yet then $T_G \leftarrow T'_G$ and rootlabels $(G) \leftarrow cl_G$
- 11 else if SetEqChecker decides $T_G \neq T'_G$ then unique(G) \leftarrow false to rotum T.

Uniqueness Extension

Efficient Unique Minimal Perfect Phylogeny Testing

Global tables unique(G), rootlabels(G), and a SetEqChecker

MINIMIZESUBTREES(T_G , T'_G)

1 **If** unique(G)

- ² If any H_i subtree of the root has \neg unique(H_i) then unique(G) \leftarrow false
- $_{3}$ cl_{G} = canonical labeling of root of T'_{G}
- 4 If the root of T'_G has two subtrees for H_1, H_2
- 5 If COMPATIBLE(cl_G, rootlabels(H₁)) and COMPATIBLE(cl_G, rootlabels(H₂)) but ¬ COMPATIBLE(rootlabels(H₁), rootlabels(H₂))
- 6 unique(G) \leftarrow false
- 7 Contract the subtrees of T'_G arbitrarily until none can be
- 8 else if the root has over two subtrees
- 9 Contract the H_1 subtree of T'_G if possible
- 10 If T_G doesn't exist yet then $T_G \leftarrow T'_G$ and rootlabels $(G) \leftarrow cl_G$
- 11 else if SetEqChecker decides $T_G \neq T'_G$ then unique(G) \leftarrow false 12 roturn T_G

Uniqueness Extension

Efficient Unique Minimal Perfect Phylogeny Testing

Global tables unique(G), rootlabels(G), and a SetEqChecker

MINIMIZESUBTREES(T_G , T'_G)

- 1 If unique(G)
- ² If any H_i subtree of the root has \neg unique(H_i) then unique(G) \leftarrow false
- cl_G = canonical labeling of root of T'_G
- 4 If the root of T'_G has two subtrees for H_1, H_2
- 5 If COMPATIBLE(cl_G, rootlabels(H₁)) and COMPATIBLE(cl_G, rootlabels(H₂)) but ¬ COMPATIBLE(rootlabels(H₁), rootlabels(H₂))
- 6 unique(G) \leftarrow false
- 7 Contract the subtrees of T'_G arbitrarily until none can be
- 8 else if the root has over two subtrees
- 9 Contract the H_1 subtree of T'_G if possible
- 10 If T_G doesn't exist yet then $T_G \leftarrow T'_G$ and rootlabels $(G) \leftarrow cl_G$
- 11 else if SetEqChecker decides $T_G \neq T'_G$ then unique(G) \leftarrow false to rotum T.

Uniqueness Extension

Efficient Unique Minimal Perfect Phylogeny Testing

Global tables unique(G), rootlabels(G), and a SetEqChecker

MINIMIZESUBTREES(T_G , T'_G)

- 1 If unique(G)
- ² If any H_i subtree of the root has \neg unique(H_i) then unique(G) \leftarrow false
- $_{3}$ cl_{G} = canonical labeling of root of T'_{G}
- 4 If the root of T'_G has two subtrees for H_1, H_2
- 5 If COMPATIBLE(cl_G, rootlabels(H₁)) and COMPATIBLE(cl_G, rootlabels(H₂)) but ¬ COMPATIBLE(rootlabels(H₁), rootlabels(H₂))
- 6 unique(G) \leftarrow false
- 7 Contract the subtrees of T'_G arbitrarily until none can be
- 8 else if the root has over two subtrees
- 9 Contract the H_1 subtree of T'_G if possible
- 10 If T_G doesn't exist yet then $T_G \leftarrow T'_G$ and rootlabels $(G) \leftarrow cl_G$
- ¹¹ else if SetEqChecker decides $T_G \neq T'_G$ then unique(G) \leftarrow false

Uniqueness Extension

Efficient Unique Minimal Perfect Phylogeny Testing

Global tables unique(G), rootlabels(G), and a SetEqChecker

MINIMIZESUBTREES(T_G , T'_G)

- 1 If unique(G)
- ² If any H_i subtree of the root has \neg unique(H_i) then unique(G) \leftarrow false
- $_{3}$ cl_{G} = canonical labeling of root of T'_{G}
- 4 If the root of T'_G has two subtrees for H_1, H_2
- 5 If COMPATIBLE(cl_G, rootlabels(H₁)) and COMPATIBLE(cl_G, rootlabels(H₂)) but ¬ COMPATIBLE(rootlabels(H₁), rootlabels(H₂))
- 6 unique(G) \leftarrow false
- 7 Contract the subtrees of T'_G arbitrarily until none can be
- 8 else if the root has over two subtrees
- 9 Contract the H_1 subtree of T'_G if possible
- 10 If T_G doesn't exist yet then $T_G \leftarrow T'_G$ and rootlabels $(G) \leftarrow cl_G$
- 11 else if SetEqChecker decides $T_G \neq T'_G$ then unique(G) \leftarrow false

Uniqueness Extension

Efficient Unique Minimal Perfect Phylogeny Testing

Global tables unique(G), rootlabels(G), and a SetEqChecker

MINIMIZESUBTREES(T_G , T'_G)

- 1 If unique(G)
- ² If any H_i subtree of the root has \neg unique(H_i) then unique(G) \leftarrow false
- $_{3}$ cl_{G} = canonical labeling of root of T'_{G}
- 4 If the root of T'_G has two subtrees for H_1, H_2
- 5 If COMPATIBLE(cl_G, rootlabels(H₁)) and COMPATIBLE(cl_G, rootlabels(H₂)) but ¬ COMPATIBLE(rootlabels(H₁), rootlabels(H₂))
- 6 unique(G) \leftarrow false
- 7 Contract the subtrees of T'_G arbitrarily until none can be
- 8 else if the root has over two subtrees
- 9 Contract the H_1 subtree of T'_G if possible
- 10 If T_G doesn't exist yet then $T_G \leftarrow T'_G$ and rootlabels $(G) \leftarrow cl_G$
- 11 else if SetEqChecker decides $T_G \neq T'_G$ then unique(G) \leftarrow false 12 return T_G

Uniqueness Extension

Efficient Unique Minimal Perfect Phylogeny Testing

Global tables unique(G), rootlabels(G), and a SetEqChecker

MINIMIZESUBTREES(T_G , T'_G)

- 1 If unique(G)
- ² If any H_i subtree of the root has \neg unique(H_i) then unique(G) \leftarrow false
- $_{3}$ cl_{G} = canonical labeling of root of T'_{G}
- 4 If the root of T'_G has two subtrees for H_1, H_2
- 5 If COMPATIBLE(cl_G, rootlabels(H₁)) and COMPATIBLE(cl_G, rootlabels(H₂)) but ¬ COMPATIBLE(rootlabels(H₁), rootlabels(H₂))
- 6 unique(G) \leftarrow false
- 7 Contract the subtrees of T'_G arbitrarily until none can be
- 8 else if the root has over two subtrees
- 9 Contract the H_1 subtree of T'_G if possible
- 10 If T_G doesn't exist yet then $T_G \leftarrow T'_G$ and rootlabels $(G) \leftarrow cl_G$
- 11 else if SetEqChecker decides $T_G \neq T'_G$ then unique(G) \leftarrow false 12 return T_G

Thanks!

Questions?