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Abstract

Perfect phylogenies are central to both evolution-
ary biology and population genetics. We implemented
and evaluated algorithms for constructing, counting,
and enumerating perfect phylogenies on data with an
arbitrary number of states. Ours is the first program
to implement the efficient algorithm of Agarwala and
Fernández-Baca (1994) with the speedups and enu-
meration extensions by Kannan and Warnow (1995).
It is written in the C++ language and uses specialized
algorithms and datastructures for faster and more
compact execution.

We have included new extensions to the previously
described algorithms. Our software can efficiently
construct a phylogeny, determine it’s uniqueness, or
determine that no phylogeny exists. It can handle input
data with missing values and find a largest subset of
compatible characters. It can count and enumerate
the potentially exponential number of trees that may
explain an input dataset. Using dynamic programming,
it can find a smallest tree or a tree with maximum
edge support. While many of these problems have
been shown to be NP hard, our implementations are
demonstrably practical for many datasets.

1. Introduction

In population genetics, the perfect phylogeny is
closely related to the coalescent [7]. A perfect phy-
logeny on binary characters results under the com-
monly used infinite-sites model, where characters are
binary and only change state once in the phylogeny.

Perfect phylogenies where characters have more than
two states occur under the infinite-alleles model. The
non-root states may arise only once by mutation in
the phylogeny. In population genetics perfect phyloge-
nies model ancestry in situations where recombination
can be ignored. Such instances arise frequently in
analyses of current whole genome data. They have
been used in case-control association mapping to find
disease loci [3]. They are used extensively to obtain
the haplotypes of diploid individuals from genotype
information [5] [7].

Given an input dataset, the perfect phylogeny prob-
lem is to build a tree consistent with the widely used
perfect phylogeny model [1], [4], [7]–[9], or determine
that no such tree exists. Our software (PerfectPhy)
implements the generalized algorithm of Agarwala and
Fernández-Baca, who were first to show that the prob-
lem is efficiently solvable when the number of states
per character is a fixed parameter [1] and incorporates
the speedups and the enumeration algorithm described
by Kannan and Warnow [8].

Our implementation achieves the running time
claimed possible in [8]. We also developed and im-
plemented extensions to the algorithms given in [8].
PerfectPhy handles situations where the input contains
missing entries that should be completed from the
set of states observed for each character. In situations
where a perfect phylogeny exists for only a subset of
the characters, it will find a maximum subset. Many of
these extensions have been shown to be hard [8], [9],
yet we demonstrate that a solution is practical over a
large range of the input parameters.

Using extensions to the algorithm and data struc-
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a)

b)

((('0 2 1','1 0 2')'1 * 1','1 1 0')'1 1 1','2 1 1')

Figure 1. (a) A perfect phylogeny on three charac-
ters produced by PerfectPhy. In this example, the
input data consisted of the four taxa at the leaves
of the tree with ’211’ as the outgroup. The two
ancestral taxa at the internal nodes were inferred
by the algorithm. In a perfect phylogeny, the taxa
labeled by a the same character state must form
a connected subtree. When multiple labelings of
imputed ancestral taxon are possible, PerfectPhy
uses a wildcard character to indicate when a taxon
can be labeled by an adjacent character state. The
graphical representation uses the GraphViz dot
output format. (b) The equivalent output in Newick
format.

tures algorithm described in [8], PerfectPhy can count
and enumerate the potentially exponential number of
trees that are compatible with an input dataset. It also
implements novel optimization extensions. It can find
a smallest tree, or it can find a tree with maximum
support, where support is defined for each edge as the
fraction of trees in which it occurs.

2. Background and Implementation

Formally, the input to our problem consists of a set
S of n taxa for which we have collected information
about observed traits in the form of m characters. Each
character can take on up to k discrete states. The most
common input data are molecular sequences, where
the states are either nucleotides or amino acids. The
resulting perfect phylogeny, if it exists, is a rooted tree
with the input taxa labeling the leaves and any imputed
ancestral taxa labeling the internal nodes (see Fig. 1).
Under the perfect phylogeny model, all character/state

pairs will label subtrees, a property known as convex-
ity. See [7], [8] for alternative definitions.

Construction Algorithm

The algorithms of [1] and [8] are based on the
following observation about the edges of a perfect
phylogeny. For any perfect phylogeny T , every edge
of T defines a bi-partition of S into subsets G and
S − G. For every character labeling T , at most one
state labels a taxon in both G and S−G. This follows
from convexity. We further confine ourselves to the
solution space of parsimonious trees on which each
edge corresponds to some change of a character state.
So for every edge of T , there is a character where no
state labels a taxon in both G and S −G.

A key idea [1] is that all partitions consistent with
these observations can be enumerated efficiently for a
bounded number of states per character. Given a k-
state character c over S, there are 2k−1 bi-partitions
of S into the sets G and S−G such that no state of c
labels a taxon in both sets. For each partition, we can
also check in linear time if at most one state is shared
between G and S −G for all other characters. If this
is the case, then there is potentially an edge in some
perfect phylogeny that corresponds to the bi-partition.
The subsets G and S−G, that correspond to potential
edges, are called proper clusters. For a proper cluster
G, the set of character states shared between G and
S − G is the splitting vector of G, sv(G). Observe
that sv(G) is the same as sv(S − G). It defines the
set of forced state labels on the ends of the potential
edge.

Primarily, we are interested in determining when
a rooted perfect phylogeny can be constructed for a
proper cluster. A proper cluster G is said to have a
subphylogeny if there exists some perfect phylogeny
for G with a root labeled by sv(G). Figure 2 gives the
outline of our implementation of the decision algorithm
of [8]. The recursive subroutine SUBPHYLOGENY(G)
attempts to build a rooted tree for a proper cluster
G. The base case is when G is only a single taxon.
Otherwise, to determine if a rooted subphylogeny for
G exists, we sufficiently examine possible partitions
of G into proper clusters with subphylogenies that can
be attached to a common root. First an outgroup t is
specified, this is a leaf taxon adjacent to the root which
can be arbitrarily chosen from S (e.g. ’211’ in Fig-
ure 1). Then the subroutine PERFECTPHYLOGENY(S)
calls SUBPHYLOGENY(S-t) at the top level of the re-
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PERFECTPHYLOGENY(S) {Return a phylogeny for S or fail}
1 Choose a taxon t to be an outgroup
2 if T ← SUBPHYLOGENY(S-{t}) returns failure
4 return failure
5 else
6 return the tree created by attaching t to the root of T

SUBPHYLOGENY(G) {Return a rooted phylogeny for G or fail}
1 initialize root r labeled with sv(G)
2 if G is a single taxon t
3 return the taxon t attached to r
4 else
5 foreach subset H1 of G where

TH1 ← SUBPHYLOGENY(H1) exists and can be attached to r
6 if H2 ← G−H1 is a proper cluster
7 if TH2 ← SUBPHYLOGENY(H2)existsand can be attached to r
8 return the tree created by attaching TH1 and TH2 to r
9 elsif G can be partitioned into l > 2 proper clusters H1, . . . , Hl

with subphylogenies TH1 , . . . , THl
that can be attached to r

10 return the tree created by attaching TH1 , . . . , THl
to r

11 return failure if no H1 worked

Figure 2. Pseudocode for a memoized recursive
formulation of the efficient construction algorithm
[8]. The subroutine PERFECTPHYLOGENY() is called
at the top level. The recursive subroutine SUBPHY-
LOGENY() builds a rooted tree for a subset of the
taxa from subphylogenies of smaller subsets.

cursion. We implemented the algorithm using dynamic
programming.

The speedups in [8] to the algorithm in [1] target
the inner loop of the recursive subroutine SUBPHY-
LOGENY() (lines 5-10). Using specialized data struc-
tures and graph algorithms, once a subphylogeny for
H1 is specified and attached to the root, G−H1 can be
partitioned into one or more subphylogenies in O(n)
time.

Proper cluster indexing. A central data structure in
[8] is a proper cluster index, a lexicographical trie,
that allows for lookup with a time complexity that is
linear in the number of elements. Implementing the
index this way, we can quickly look up if G − H1

has a subphylogeny that can be attached to the root.
The index gives an amortized complexity of O(n) for
determining if a given partition of G−H1 corresponds
to a set of subphylogenies that can be attached to
the root. To support these time bounds, each node of
the trie must contain a random access data structure
pointing to its O(n) children. The trie takes up the
largest portion of the memory required by the program.
With O(2km) proper clusters, the size of the trie is
O(2kmn2). Figure 3(a) illustrates the trie and high-
lights, in grey, space inefficiencies of the data structure:

a)

b)

Figure 3. a) The trie datastructure was recom-
mended in [8] to index proper clusters. This ex-
ample indexes a set of 13 proper clusters b) The
corresponding pointer table datastructure is more
space efficient index for proper clusters. Here 0→
∨ and 1→ �

nodes which do not correspond to a proper clusters and
unused edge pointers.

We developed a novel pointer table index which
uses less space than the trie. The space used is
O(2kmn), which is the space bound claimed in [8] for
the trie, but not verified. Our improved datastructure is
a pointer table over the lexicographically-sorted table
T of proper clusters. Given T , let Q be a table such
that:

Q[p][i] = the smallest p′ ≥ p such that T [p′][i] = 1.

A scan of T in descending order can construct
Q in constant time per cell, and |Q| = |T |, thus
preprocessing of Q takes O(2kmn) time and space.
All needed trie operations are supported by algorithms
over Q with the same O(n) time complexity.

We use the following function to lookup the index
p of a known proper cluster G using Q or return the
result that G is not a proper cluster:

function LOOKUP(Q, G)
p← 0
for all taxa t ∈ G in order do

p← Q[p][t]
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end for
if |G| = |Gp| and ∀t ∈ G (p = Q[p][t]) then

return p else return NULL

The lookup function takes time O(n) when G is
represented as a bitset, but looking up a disjoint set
D of known proper clusters can be done in O(|G|)
per G ∈ D thus O(n) total time is needed when the
set is compactly represented. When it is not known
whether G is a proper cluster, additional checks can
be made within O(n) time to determine it. Given the
proper cluster Gp indexed by p, a size check and subset
check can determine whether G = Gp in O(n) time.
Searching for a disjoint set of proper clusters can be
done in O(n) total time given that |G| is precomputed
for all G and the set is compactly represented.

Figure 3(b) shows a successful (grey) and failed
(black) index query. For each taxon in the proper
cluster, the path through the table follows the pointer
in the current row and corresponding column, and once
every taxon is processed the row can be checked for
equality.

3. Enumeration and optimization

We implemented the algorithm introduced in [8] for
enumerating all minimal perfect phylogenies. A labeled
perfect phylogeny is minimal if every edge corresponds
to a state change of one or more characters. This
characterization is appropriately named because the
labeled tree will no longer be a perfect phylogeny
for the data if any of the edges are contracted. How-
ever, details in [8] were insufficient to achieve the
claimed time and space complexities. Ultimately the
implementation required additional algorithmic detail
and novel non-trivial data structures described here.
The achievement of an effective implementation of the
enumerative perfect phylogeny algorithm, allowes us to
add a number of biologically motivated and practical
extensions described below.

Faster DAG Construction. The directed acyclic graph
(DAG), as defined in [8], is used for all enumeration
and optimization algorithms.

Let G ⊂ S be a proper cluster where
SUBPHYLOGENY(G) in some execution of
PERFECTPHYLOGENY(S) did not return failure.
The critical first step of DAG construction is to
enumerate all the valid roots of SUBPHYLOGENY(G).

Indexed by each connected Hi ⊂ G, these form the
set Ext(G, Hi) (see [8]). The description in [8] did
not give sufficient detail, but implies brute force.
We evaluated our brute force method, and two novel
alternatives.

Our alternative methods utilize an incompatibility
graph I(G) = (V,E) where the vertex set V consists
of all ‘very good’ pairs (G, Hi) of G as defined above.
For each pair (G, Hu) and (G, Hv), if Hu and Hv have
a non-empty intersection, then there is an edge (u, v)
in E. For each pair (G, Hu) and (G, Hv) if sv(Hu) is
incompatible with sv(Hv) then there is an edge in E.
The following is true for I(G).

Lemma 1: Every valid decomposition of G corre-
sponds to a maximal independent set in I(G).

Next, we state a useful bound.

Lemma 2: The canonically labeled root cl(rG)
(Def 9 of [8]) of PH is completely specified by ex-
amining any r−1 cardinality subset of proper clusters
in {H1 . . . Ht} when t > r − 1.

Lemmas 2, 1, and a bound on k-indepepent sets
[2] give a lower asymptotic bound than Lemma 6 of
[8] for the size of Ext(G, H) and suggest alternative
methods of generation.

Lemma 3: There are at most
bn/kck−(n mod k)bn/k + 1c(n mod k) roots of
H . [2]

To compute Ext(G, H) we evaluated three im-
plementations. We evaluated the brute force, up to
n choose k, method of [8] against two methods that
utilize I(G) and the aforementioned lemmas. MaxIS
enumerates all maximal independent sets of I(H)
using the algorithm of [10]. k-MaxIS implements the
recursive function proposed in [2] for enumerating all
independent sets of I(G) that are either maximal or
size k but none larger than k.

DAG Algorithms. Utilizing the DAG, PerfectPhy will
list all of the trees compatible with the input characters.
PerfectPhy will also count the number of trees by
dynamic programming over the DAG. In addition to
these previously characterized algorithms, PerfectPhy
implements other biologically motivated algorithms
utilizing the DAG. As mentioned previously, Perfect-
Phy will find the most parsimonious perfect phylogeny
(the tree of smallest size). It can also find a tree with
maximum support, where support is defined for each
edge as the fraction of trees in which it occurs. While
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Table 1. Average execution times for significant
problem instances. (30 trials)

n, m 4 state (nucleotide) 10 state 20 state (amino acid)
50,50 0.005s 0.024s 0.303s
100,100 0.028s 0.113s 1.55s
500,500 3.21s 17.6s 239s
1000,1000 51.9s 271s 2,320s
2000,2000 529s 2,590s 19,300s

Table 2. Average execution times for tree
construction on nucleotide input data with missing

values occurring with rate r for 100 characters
and n taxa. (30 trials)

n = 20 n = 40 n = 60 n = 80 n = 100
r = 0 0.008s 0.013s 0.019s 0.025s 0.028s
r = 0.1 0.015s 0.066s 0.197s 0.710s 3.13s
r = 0.2 0.030s 0.397s 9.20s 231s 20025s

these problems are NP hard, in practice PerfectPhy can
effectively solve them for data of practical size.

4. Results

We benchmarked the construction algorithm on
a range of datasets including nucleotide and amino
acid data to empirically demonstrate its effectiveness.
We used a population genetics simulator to generate
binary data consistent with the infinite sites model.
To convert a binary matrix to a k-state matrix, k-
1 adjacent characters are combined. In each set of
characters, the binary states labeling each taxon will
map to up to k multi-state characters. Finally, missing
data may be randomly removed from the matrix. A
complete description of this simulator appears in [6].
Results for the construction algorithm are shown in
Table 1.

In Table 2 we assessed a practical extension to
the basic construction algorithm, datasets with missing
values. We evaluated datasets of 100 nucleotide char-
acters while varying the rate of missing data (r) and the
number of taxa (n). For each character missing values
are replaced with states not seen in the data [9]. While
this implementation has a worst case complexity of
O(22nnm2), the execution time is practical for lower
missing data rates.

Implementation

In Table 3 we evaluate three different algorithms
for DAG construction. Implementations that utilized

the incompatibility graph, MaxIS and k-MaxIS, were
faster than the brute force method suggested in [8] of
choosing up to k proper clusters, epecially for larger
k. We did not see a large speedup when comparing
k-MaxIS to MaxIS.

Table 3. DAG construction time ( k-MaxIS /
MaxIS / n choose k enumeration; 60 trials)

n, m k = 4 k = 10
50,50 14ms / 12ms / 49ms 41ms / 48ms / 421s∗

100,100 48ms / 46ms / 1.11s 160ms / 176ms / 261s
500,500 3.99s / 3.95s / 4.38s 13.3s / 13.4s / 44.7s∗

1000,1000 30.8s / 31.4s / 33.6s 127s / 124s / 142s∗

*Note that actual average execution time is higher for these cases
because one or more instances timed out at 20min.

We compared the execution times of the pointer
table to the trie, and found them to be very close with a
slight advantage going to the pointer table. The primary
advantage of the pointer table is its asymptotically
smaller space complexity, which in practice also yields
a smaller datastructure.

Table 4. Average percent increase in [time /
space] using trie over pointer table (80 trials)

n,m k = 4 k = 10 k = 20
50,50 3.07% / 165% 2.75% / 189% 1.55% / 174%

100,100 2.80% / 386% 2.95% / 516% 1.60% / 490%
500,500 1.27% / 1886% 2.67% / 2749% 1.18% / 2957%

1000,1000 1.15% / 3775% 2.89% / 5522% 1.12% / 6525%

We timed the DAG construction algorithms, it can
be seen in Table 4 that the trie was more often
slower than the pointer table, though the differences
in execution times were minor. We observed a much
larger difference in the amount of memory used for
the large problem instances.

To investigate space requirements of the implemen-
tation, we measured the DAG size as saved to disk
(Table 5). While the worst case bound for the size of
the DAG suggests space may be an issue, we utilized
a relatively modest amount of memory for even the
largest problems we found practical to solve in a timely
manner. This led us to conclude that execution time
was the dominant factor determining solvability.

Table 5. Average DAG Size in KiB (50 trials)

n,m k = 4 k = 10 k = 20
50,50 6.13 11.2 33.6

100,100 19.2 32.6 89.5
500,500 355 572 881

1000,1000 1,310 2,170 2,980
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Tree enumeration and optimization

For multi-state data, Table 6 shows the average
number of minimal perfect phylogenies compatible
with a problem instance. We observed that many
trees can be compatible with an input dataset. This is
particularly true as k increases, either from the number
of native states observed in the data or because of
missing data converted to new unobserved states.

Table 6. Average number minimal perfect
phylogenies and compute time. (80 trials)

n,m k = 4 k = 10 k = 20
50,50 3.40 (0.00998 s) 237 (0.0539s) 120,000 (3.68s)

100,100 2.48 (0.0473s) 495 (0.195s) 1,710,000 (3.30s)
500,500 1.66 (4.38s) 118 (15s) 292,000 (184s)

1000,1000 1.91 (33.5s) 11.0 (124s) 207,000 (1,000s)

The observation that many trees are compatible
with a particular input dataset motivates the selection
of a specific “best” tree. Appealing to parsimony
arguments, we computed the smallest tree compatible
with an input dataset. To quantify improvement and
motivate the approach, the average difference in size
between the smallest phylogeny and the phylogeny
specified by an execution of the efficient algorithm
given in [8] is shown in Table 7. We also calculated
the rate at which the algorithm in [8] returns a tree that
is the smallest size. For most of the datasets tested, a
more parsimonious phylogeny was obtainable. For a
faster result, we also implemented efficient algorithms
that could do better than the algorithm in [8] but do
not use the DAG. These do better, but lack the smallest
tree guarantee. We also computed the tree of maximum
edge support, where the score of an individual edge is
the number of compatible trees it occurs in, and the
score of a tree is the sum over all edges. We observed
that these trees were usually distinct objects, but often
close to the minimum size.

Software availability. The software can be down-
loaded at http://wwwcsif.cs.ucdavis.edu/˜gusfield.
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