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Symmetric cones have underlying algebraic structure

A set K is a symmetric cone if K = {x?>:x € J} fora
commutative algebra 7 over real inner-product space satisfying

(xoy,z) = (y,xo02z), (xoy)ox®=xo(yox?)

Examples:
o Nonnegative orthant {x € R" : x > 0}

[x o yli == xiyi
@ Second-order-cone {(xp,x) € R x R" : ||x|| < xo}
(x0,%) © (¥0,¥) == (xoy0 + X"y, X0y + yox).

o Cone of psd matrices {VVT : V € R™"}

1
XoY = §(XY+ YX)



Symmetric cone programs generalize LP/SOCP/SDP

Given symmetric cone K = {22 1z € J}, we consider problem

minimize  (c, x)
subjectto Ax=b
x e K.

This generalizes linear (LP), second-order-cone (SOCP), and
semidefinite programming (SDP).

A well-studied family:
o Algorithms: Faybusovich, Alizadeh/Schmieta, Nesterov/Todd
@ Polynomial-time complexity bounds
@ Software packages: SeDuMi, SDPT3, Mosek,



Symmetric cone programs solved by interior-point methods

IPMs track the central-path of minycic Ax=b cx.

N

xos=ul,
Ax=b, s=c—Ay (1)
xek sek.

(1 denotes the identity of o.)

That is, they reduce p to zero while computing solutions to (1).

Properties of IPMs:
e Move along central path in O(||1]| log %) iterations

@ s and x updated using subspaces:

Xi+1 — X; € null A, Sit1 — Si € range A*



We present a new IPM for symmetric cone optimization.

Key idea: update (s;, x;) using geodesics of K instead of subspaces
of A such that complementarity is maintained.

Ax; = b,si = c — A%y, xj 08 = il Y iters. |

existing algs this talk

Remainder of talk:
Part I: The special-case of linear programming

@ Log-space transformation of central-path

e A log-space IPM and O(y/n) complexity.
Part Il: The generalization to symmetric cones

@ From log-space to geodesics

e A geodesic IPM and O(||1]|) complexity.



Part |: A log-space interior-point method for linear
programming.

minimize c¢'x
subject to Ax =b

x>0, ie,xeR}



We solve log-domain central-path conditions

We rewrite central-path conditions
Ax=b s=c—ATy,x>0,5s>0, SiXi = b
using a log param. v € R™ and elementwise exp. e":
b=Ayne", Jue ' =c—Aly (2)
By construction: x = /ue" and s = /e satisfy x;s; = p.

Our meta-algorithm:
e Fix p and apply Newton's method to (2)
@ Decrease .
@ Repeat.

Previously unanalyzed!



Newton's method uses approx. €'t ~ e" + e o d

Newton's method (o := elementwise mult.):

@ Solve Newton system for (y,d) € R” x R™
VIA(e' +e"od)=0b
V(e —eVod)=c— ATy
@ Pick step-size «, set v < v + éd and repeat.
Properties (P., 2020):

e Globally converges if a = max(1, 3||d|?).

o Quadratically converges to limit v, if |v — v.|| < cosh™1(5/4).



A log-space IPM for min,>q ax—p ¢’ x

Let d(u) denote Newton dir. as function of p at current v € R”.

while 1 > pr or ||d(u)|| > € do
Decrease u

a + max(1, 3[d(u)[?)
v+ v+ Ld(pn)
end

x =,/pe’, s = /pe"

Main results (P., 2020):
o Finitely terminates by simply setting p = ur
e Exists p-update rule with O(y/nlog %) iteration complexity
e Final log-distance of (x, s) to central-path is O(e)



Part Il: a geodesic-interior point method for
symmetric cone optimization.

minimize  (c, x)
subject to Ax =0
x ek



Line-segments in log-space are geodesics of R

For curve ¢ : [0,1] — intR], let

/ le() o ¢/(1))ldt

ot —t)log b -
Let g(t) := et'o8a+(1-t)logb for 5 b € intR”.

Properties
@ The curve g(t) is a geodesic, i.e., it minimizes L(c) over c(t)
satisfying ¢(0) = a and ¢(1) = b.
o L(g) = |/loga—log b
o g 1(t) is the geodesic between a~! and b~1.



Geodesics of symm. cones have a known parametrization

For curve ¢ : [0,1] — intKC, define

1
L(c) = /0 1Q(c(t)) /2! (1) | dt,

where Q(w) : KL — K denotes the quadratic representation of w.

Properties:
o Geodesics have form g(t) := Q(w'/?)exp td,

o0

1
opdi=Y ~d"  g0)=w.  Lg)=|d|

m=0

o g71(t) = Q(w1/?) exp —td also a geodesic.

Example (X = R, K = psd matrices)
g(t) = woeld = gloswttd g(t) = W/2etDpy1/2



A template geodesic IPM for minyex ax—p(c, X)

while y > pur do o
Decrease 1 |
Compute search direction d wi l
Select step-size t.
w — Q(w'/?)exp td
end
x=/uw, s = \/aw! Iterates joined by geodesic curve

g(t) = Q(w/?)exptd.

Properties of w-update:
o Equivalent to w™! + Q(w~Y/?)exp —td.
e Formulae for LP and SDP:

W — e|0gW+td, W «— Wl/Zetle/2



Linearizing w-update yields a geodesic Newton method

Geodesic Newton method:
@ Solve Newton system for (y,d) € R x R":

VEAQ(WY?)(1 + d) = b,
VIQw )1 —d) =c—ATy

o Set w + Q(w'/?)exp éd using step-size « and repeat.

Properties (P., 2020):
o Based on approx. Q(w'/?)expd ~ Q(w!/?)(1 + d)
@ Globally converges to limit w;, if & = max(1, %||d\|2)

o Quad. converges if geodesic distance 6(w, w,) < cosh~1(5/4).



A geodesic IPM for min,cx ax—p(c, x)

Let d(u) denote Newton dir. as function of u at current w € K.

while 1o > pr or [|d(p)|| > € do
Decrease p g

a « max(1, 5[ d(u)]1?)
w ¢ Q(w'/?)exp Ld(n)
end

X =,/pw, s = \/EW’1

Main results (P. 2020):
o Finitely terminates by simply setting pu = pr.
e Exists py-update with O(|[1]| log %) iteration complexity

e Final geodesic distance of (x,s) to central-path is O(¢)



Geodesic IPM implemented in software package conex

Currently developing conex, a software package for:

minimize  (c,x)
subjectto Ax=b
x ek

Features:

@ Supports all symmetric cones K

e LP, SDP, SOCP
e Hermitian psd matrices with complex and quaternion entries
e The exceptional one (3x3 octonions)

@ Sparse (supernodal) linear algebra.
@ Approximation methods for matrix exponential.

@ Lanczos methods for generalized eigenvalues.



Comparison with SDPT3 solver

Parameters  Solver Time (sec) [|[Ax — b|| Duality Gap
(n, m) spdt3 conex spdt3 conex sdpt3 conex

(20, 20) 1.1e-01 4.1e-03  1.4e-12 3.9e-12 1.4e-09 8.9e-10
(50, 50) 7.0e-01 1.1e-01  1.0e-12 1.5e-12 1.1e-09 1.9e-09
(100, 100)  3.1e+00 9.8e-01  2.0e-12 3.9e-12 9.7e-10 2.4e-09

(20, 40) 1.4e-01 1.6e-02  6.9e-11 7.7e-13 4.6e-10 7.2e-10
(50, 250) 1.8e+00 5.6e-01 1.5e-11 9.8e-12 5.3e-09 6.6e-10
(100, 1000) 1.9e+01 1.4e+01 3.4e-11 3.1le-11 6.5e-10 6.9e-10

Table: SDPs of order n with m equality constraints.

Remarks:
@ Our solver conex faster and just as accurate.

@ Speed-up diminishes with m > n since computation of
Newton step dominates both solvers.



Thanks very much!

In summary,
@ Presented new IPM for symmetric cone programming
@ For LP, reduces to central-path tracking in log domain
e O(]|1]]) complexity bounds match state-of-the-art
°

Software package conex in development (demo on Thursday).

Paper and software:

www.mit.edu/~fperment/
www.github.com/FrankPermenter/



