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Symmetric cones have underlying algebraic structure

A set K is a symmetric cone if K = {x2 : x ∈ J } for a
commutative algebra J over real inner-product space satisfying

〈x ◦ y , z〉 = 〈y , x ◦ z〉, (x ◦ y) ◦ x2 = x ◦ (y ◦ x2)

Examples:

Nonnegative orthant {x ∈ Rn : x ≥ 0}

[x ◦ y ]i := xiyi

Second-order-cone {(x0, x) ∈ R× Rn : ‖x‖ ≤ x0}

(x0, x) ◦ (y0, y) := (x0y0 + xT y , x0y + y0x).

Cone of psd matrices {VV T : V ∈ Rn×n}

X ◦ Y :=
1

2
(XY + YX )
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Symmetric cone programs generalize LP/SOCP/SDP

Given symmetric cone K = {z2 : z ∈ J }, we consider problem

minimize 〈c , x〉
subject to Ax = b

x ∈ K.

This generalizes linear (LP), second-order-cone (SOCP), and
semidefinite programming (SDP).

A well-studied family:

Algorithms: Faybusovich, Alizadeh/Schmieta, Nesterov/Todd

Polynomial-time complexity bounds

Software packages: SeDuMi, SDPT3, Mosek, ...
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Symmetric cone programs solved by interior-point methods

IPMs track the central-path of minx∈K,Ax=b c
T x .

x ◦ s = µ1,

Ax = b, s = c − A∗y

x ∈ K s ∈ K.
(1)

(1 denotes the identity of ◦.)

That is, they reduce µ to zero while computing solutions to (1).

Properties of IPMs:

Move along central path in O(‖1‖ log µ0
µf

) iterations

s and x updated using subspaces:

xi+1 − xi ∈ nullA, si+1 − si ∈ rangeA∗
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We present a new IPM for symmetric cone optimization.

Key idea: update (si , xi ) using geodesics of K instead of subspaces
of A such that complementarity is maintained.

Axi = b, si = c − A∗yi︸ ︷︷ ︸
existing algs

, xi ◦ si = µi1︸ ︷︷ ︸
this talk

∀ iters. i

Remainder of talk:

Part I: The special-case of linear programming

Log-space transformation of central-path

A log-space IPM and O(
√
n) complexity.

Part II: The generalization to symmetric cones

From log-space to geodesics

A geodesic IPM and O(‖1‖) complexity.
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Part I: A log-space interior-point method for linear
programming.

minimize cTx
subject to Ax = b

x ≥ 0, i .e., x ∈ Rn
+



We solve log-domain central-path conditions

We rewrite central-path conditions

Ax = b s = c − AT y , x ≥ 0, s ≥ 0, sixi = µ

using a log param. v ∈ Rm and elementwise exp. ev :

b = A
√
µev ,

√
µe−v = c − AT y (2)

By construction: x =
√
µev and s =

√
µe−v satisfy xi si = µ.

Our meta-algorithm:

Fix µ and apply Newton’s method to (2)

Decrease µ.

Repeat.

Previously unanalyzed!
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Newton’s method uses approx. ev+d ≈ ev + ev ◦ d

Newton’s method (◦ := elementwise mult.):

Solve Newton system for (y , d) ∈ Rm × Rn:

√
µA (ev + ev ◦ d) = b

√
µ(e−v − e−v ◦ d) = c − AT y

(3)

Pick step-size α, set v ← v + 1
αd and repeat.

Properties (P., 2020):

Globally converges if α = max(1, 12‖d‖
2).

Quadratically converges to limit v∗ if ‖v − v∗‖ ≤ cosh−1(5/4).
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A log-space IPM for minx≥0,Ax=b c
Tx

Let d(µ) denote Newton dir. as function of µ at current v ∈ Rn.

while µ > µf or ‖d(µ)‖ > ε do
Decrease µ
α← max(1, 12‖d(µ)‖2)
v ← v + 1

αd(µ)

end
x =
√
µev , s =

√
µe−v

Main results (P., 2020):

Finitely terminates by simply setting µ = µf

Exists µ-update rule with O(
√
n log µ0

µf
) iteration complexity

Final log-distance of (x , s) to central-path is O(ε)
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Part II: a geodesic-interior point method for
symmetric cone optimization.

minimize 〈c , x〉
subject to Ax = b

x ∈ K



Line-segments in log-space are geodesics of Rn
+

For curve c : [0, 1]→ intRn
+, let

L(c) :=

∫ 1

0
‖c(t)−1 ◦ c ′(t)‖dt

Let g(t) := et log a+(1−t) log b for a, b ∈ intRn
+.

Properties

The curve g(t) is a geodesic, i.e., it minimizes L(c) over c(t)
satisfying c(0) = a and c(1) = b.

L(g) = ‖ log a− log b‖.
g−1(t) is the geodesic between a−1 and b−1.
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Geodesics of symm. cones have a known parametrization

For curve c : [0, 1]→ intK, define

L(c) :=

∫ 1

0
‖Q(c(t))−1/2c ′(t)‖dt,

where Q(w) : K → K denotes the quadratic representation of w .

Properties:

Geodesics have form g(t) := Q(w1/2) exp td ,

exp d :=
∞∑

m=0

1

m!
dm, g(0) = w , L(g) = ‖d‖

g−1(t) = Q(w−1/2) exp−td also a geodesic.

Example (K = Rn
+, K = psd matrices)

g(t) = w ◦ etd = e logw+td , g(t) = W 1/2etDW 1/2
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A template geodesic IPM for minx∈K,Ax=b〈c , x〉

while µ > µf do
Decrease µ
Compute search direction d
Select step-size t.
w ← Q(w1/2) exp td

end
x =
√
µw , s =

√
µw−1 Iterates joined by geodesic curve

g(t) = Q(w1/2) exp td .

Properties of w -update:

Equivalent to w−1 ← Q(w−1/2) exp−td .

Formulae for LP and SDP:

w ← e logw+td , W ←W 1/2etDW 1/2
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Linearizing w -update yields a geodesic Newton method

Geodesic Newton method:

Solve Newton system for (y , d) ∈ Rm × Rn:

√
µAQ(w1/2)(1 + d) = b,
√
µQ(w−1/2)(1− d) = c − AT y

Set w ← Q(w1/2) exp 1
αd using step-size α and repeat.

Properties (P., 2020):

Based on approx. Q(w1/2) exp d ≈ Q(w1/2)(1 + d)

Globally converges to limit w∗ if α = max(1, 12‖d‖
2).

Quad. converges if geodesic distance δ(w ,w∗) ≤ cosh−1(5/4).
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A geodesic IPM for minx∈K,Ax=b〈c , x〉

Let d(µ) denote Newton dir. as function of µ at current w ∈ K.

while µ > µf or ‖d(µ)‖ > ε do
Decrease µ
α← max(1, 12‖d(µ)‖2)

w ← Q(w1/2) exp 1
αd(µ)

end
x =
√
µw , s =

√
µw−1

Main results (P. 2020):

Finitely terminates by simply setting µ = µf .

Exists µ-update with O(‖1‖ log µ0
µf

) iteration complexity

Final geodesic distance of (x , s) to central-path is O(ε)
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Geodesic IPM implemented in software package conex

Currently developing conex, a software package for:

minimize 〈c , x〉
subject to Ax = b

x ∈ K

Features:

Supports all symmetric cones K
LP, SDP, SOCP
Hermitian psd matrices with complex and quaternion entries
The exceptional one (3x3 octonions)

Sparse (supernodal) linear algebra.

Approximation methods for matrix exponential.

Lanczos methods for generalized eigenvalues.
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Comparison with SDPT3 solver

Parameters Solver Time (sec) ‖Ax − b‖ Duality Gap
(n,m) spdt3 conex spdt3 conex sdpt3 conex

(20, 20) 1.1e-01 4.1e-03 1.4e-12 3.9e-12 1.4e-09 8.9e-10
(50, 50) 7.0e-01 1.1e-01 1.0e-12 1.5e-12 1.1e-09 1.9e-09

(100, 100) 3.1e+00 9.8e-01 2.0e-12 3.9e-12 9.7e-10 2.4e-09

(20, 40) 1.4e-01 1.6e-02 6.9e-11 7.7e-13 4.6e-10 7.2e-10
(50, 250) 1.8e+00 5.6e-01 1.5e-11 9.8e-12 5.3e-09 6.6e-10

(100, 1000) 1.9e+01 1.4e+01 3.4e-11 3.1e-11 6.5e-10 6.9e-10

Table: SDPs of order n with m equality constraints.

Remarks:

Our solver conex faster and just as accurate.

Speed-up diminishes with m > n since computation of
Newton step dominates both solvers.
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Thanks very much!

In summary,

Presented new IPM for symmetric cone programming

For LP, reduces to central-path tracking in log domain

O(‖1‖) complexity bounds match state-of-the-art

Software package conex in development (demo on Thursday).

Paper and software:

www.mit.edu/~fperment/

www.github.com/FrankPermenter/
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