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Abstract

We investigate the ability of discontinuous Galerkin (DG) methods to simulate under-resolved turbulent flows
in large-eddy simulation. The role of the Riemann solver and the subgrid-scale model in the prediction of a
variety of flow regimes, including transition to turbulence, wall-free turbulence and wall-bounded turbulence,
are examined. Numerical and theoretical results show the Riemann solver in the DG scheme plays the role
of an implicit subgrid-scale model and introduces numerical dissipation in under-resolved turbulent regions
of the flow. This implicit model behaves like a dynamic model and vanishes for flows that do not contain
subgrid scales, such as laminar flows, which is a critical feature to accurately predict transition to turbulence.
In addition, for the moderate-Reynolds-number turbulence problems considered, the implicit model provides
a more accurate representation of the actual subgrid scales in the flow than state-of-the-art explicit eddy
viscosity models, including dynamic Smagorinsky, WALE and Vreman. The results in this paper indicate
new best practices for subgrid-scale modeling are needed with high-order DG methods.
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1. Introduction

Over the past few years, discontinuous Galerkin (DG) methods for large-eddy simulation (LES) have emerged
as a promising approach to solve complex turbulent flows. DG methods allow for high-order discretizations on
complex geometries and unstructured meshes. This is critical for the simulation of transitional and turbulent
flows in industrial applications, which require that small-scale small-magnitude features are accurately
propagated over complex three-dimensional geometries. In addition, DG methods are well-suited to emerging
computing architectures, including graphics processing units (GPUs) and other many-core architectures, due
to their high flop-to-communication ratio [1, 2]. The use of DG methods for LES is being further encouraged
by successful numerical predictions [8, 20, 21, 22, 23, 26, 33, 59, 69, 76, 81].

Despite the significant research investment on discontinuous Galerkin methods for large-eddy simulation
[9, 22, 25, 51, 58, 82], the precise roles of the subgrid-scale (SGS) model (if any) and of the Riemann solver
used by the DG scheme in the ability to predict transitional and turbulent flows remains unclear. In this

*Corresponding author
Email addresses: pablof@mit.edu (P. Fernandez), cuongng@mit.edu (N. C. Nguyen), peraire@mit.edu (J. Peraire)

Preprint submitted to Elsevier October 24, 2018

ar
X

iv
:1

81
0.

09
43

5v
1 

 [
ph

ys
ic

s.
fl

u-
dy

n]
  1

9 
O

ct
 2

01
8



paper, we investigate the ability of discontinuous Galerkin methods to simulate a variety of flow regimes,
including transition to turbulence, under-resolved1 wall-free turbulence, and under-resolved wall-bounded
turbulence. The Taylor-Green vortex problem [75] and the turbulent channel flow [46] at various Reynolds
numbers are considered to that end.

The remainder of the paper is structured as follows. In Section 2, we summarize the test problems and studies
performed. Numerical results for the Taylor-Green vortex and the turbulent channel flow are presented in
Sections 3 and 4, respectively. We conclude with some remarks in Section 5. The details of the DG
discretization are presented in Appendix A.

2. Summary of test cases and studies performed

We consider the nearly incompressible Taylor-Green vortex [75] and turbulent channel flow [46] problems at
various Reynolds numbers. The focus in the Taylor-Green vortex is to investigate the effect of the Riemann
solver and the SGS model on the dissipation of kinetic energy. The focus in the turbulent channel flow
is to investigate the effect on the turbulent transport. In both test problems, the fluid is assumed to be
Newtonian, calorically perfect, in thermodynamic equilibrium, with Fourier’s law of heat conduction, and
with the Stokes’ hypothesis, as discussed in Appendix A. The dynamic viscosity 𝜇 is constant, the Prandtl
number 𝑃𝑟 = 0.71, and the ratio of specific heats 𝛾 = 𝑐𝑝/𝑐𝑣 = 1.4. The complete description the problems
is presented in Sections 3.1 and 4.1.

We focus on third-order DG methods. For this accuracy order, the large scales in the flow are affected less by
the numerical dissipation of the DG scheme than by the viscous dissipation due to the eddy viscosity in the
explicit SGS models considered2. A discussion on how our results are expected to extend to higher accuracy
orders is presented in Section 5. Due to their lower computational cost for moderately high accuracy orders,
we use hybridized DG methods [21], a class of discontinuous Galerkin methods that includes the HDG
[60, 67], the EDG [68] and the IEDG [19] methods. The details of the hybridized DG methods for the
compressible Euler and Navier-Stokes equations are presented in Appendix A. The third-order, three-stage
𝐿-stable diagonally implicit Runge-Kutta DIRK(3,3) scheme [4] is used for the temporal discretization, and
the time-step size is chosen sufficiently small so that the spatial discretization error dominates the time
discretization error [22].

For each test problem, we perform two studies: One for the Riemann solver and another for the SGS model.
For the Riemann solver studies, we consider the following stabilization matrices in the hybridized DG scheme

𝜎 =
1

2

(︀
𝐴𝑛(̂︀𝑢ℎ) + |𝐴𝑛(̂︀𝑢ℎ)|

)︀
, (1a)

𝜎 = |𝐴𝑛(̂︀𝑢ℎ)|, (1b)
𝜎 = 𝜆𝑚𝑎𝑥(̂︀𝑢ℎ) 𝐼, (1c)

where 𝐴𝑛 = 𝜕(𝐹 · 𝑛)/𝜕𝑢 is the Jacobian matrix of the inviscid flux normal to the element face, 𝜆𝑚𝑎𝑥

denotes the maximum-magnitude eigenvalue of 𝐴𝑛, | · | is the generalized absolute value operator, 𝐼 is
the identity matrix, and ̂︀𝑢ℎ is the approximation to the trace of the solution on the element faces, as
described in Appendix A. We note that the stabilization matrix implicitly defines the Riemann solver in

1As is customary, we use the term under-resolved to refer to simulations in which the exact solution contains scales that are
smaller than the grid resolution (the so-called subgrid scales).

2The numerical dissipation in an ℓ-th order DG method vanishes at the rate 𝒪(𝑘2ℓ) in the small wavenumber limit 𝑘 → 0
[3]. The viscous dissipation of a second-order operator, such as the viscous operator of the Navier-Stokes equations, vanishes at
the rate 𝒪(𝑘2). This is, the decay rate of a signal is proportional to the 2ℓ-th power of its wavenumber and to the square of its
wavenumber, respectively. Regarding dissipation at high wavenumbers, the numerical dissipation in high-order DG methods is
more localized near the grid Nyquist wavenumber than the viscous dissipation [25].
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hybridized DG methods. Additional details on these stabilization matrices and on the relationship between
the stabilization matrix and the resulting Riemann solver are presented in [22]. For the purpose of this
paper, we note that the two first stabilization matrices lead to Roe-type Riemann solvers, and the third one
yields a Lax-Friedrichs-type solver. No explicit SGS models are used for the Riemann solver studies.

For the SGS model studies, we focus on state-of-the-art eddy viscosity models. These models are based on
the Boussinesq eddy viscosity assumption and enter the governing equations through an augmented viscous
operator. In particular, the static Smagorinsky [72], dynamic Smagorinsky [48], WALE [62] and Vreman
[79] models are considered, in addition to implicit LES without an explicit model. The explicit models are
further equipped with the Yoshizawa model [80] for the isotropic part of the SGS stress tensor, the Knight
model [41] for the turbulent diffusion, and an SGS eddy Prandtl number approach with 𝑃𝑟𝑒 = 0.7 for
the subgrid-scale heat transfer. All other extra terms arising in the Favre-filtered Navier-Stokes equations
[32] are not modeled due to their negligible magnitude compared to the previous terms [52]. The length
scale involved in the SGS models is set to ∆ = 𝑉 1/3/𝑘, where 𝑉 is the volume of the element and 𝑘 the
polynomial order of the DG approximation. For the dynamic Smagorinsky model, projection onto the space
of polynomials of degree 𝑘′ = ⌊𝑘/2⌋ is used for the coarse-graining, where ⌊𝑘/2⌋ is the greatest integer less
than or equal to 𝑘/2, i.e. 𝑘′ = 1 in our case. The stabilization matrix (1a) is used for the SGS studies.

Compressibility effects will be neglected for the two following purposes: (i) Incompressible DNS results will
be used as reference data, and (ii) spatial filtering and Favre filtering will be assumed to be equivalent in the
presentation of the numerical results. We finally note that, for some of the Reynolds numbers considered,
the mesh resolution is intentionally insufficient to match the DNS data, thus allowing for a more meaningful
analysis of the role of the implicit and explicit models in under-resolved simulations.

3. Taylor-Green vortex

3.1. Case description

The Taylor-Green vortex (TGV) [75] is a canonical problem in fluid mechanics commonly used to study
vortex dynamics, turbulence transition, and turbulence decay. It contains several flow regimes in a single
construct and is therefore an excellent test case for our purpose. In particular, the TGV problem describes
the evolution of the flow in a cubic domain Ω = [−𝐿𝜋,𝐿𝜋)3 with triple periodic boundaries, starting from
the smooth initial condition

𝜌 = 𝜌0,

𝑢 = 𝑉0 sin
(︁ 𝑥

𝐿

)︁
cos

(︁ 𝑦

𝐿

)︁
cos

(︁ 𝑧

𝐿

)︁
,

𝑣 = −𝑉0 cos
(︁ 𝑥

𝐿

)︁
sin

(︁ 𝑦

𝐿

)︁
cos

(︁ 𝑧

𝐿

)︁
,

𝑤 = 0,

𝑝 = 𝑃0 +
𝜌0 𝑉

2
0

16

(︂
cos

(︁2𝑥

𝐿

)︁
+ cos

(︁2𝑦

𝐿

)︁)︂(︂
cos

(︁2𝑧

𝐿

)︁
+ 2

)︂
,

(2)

where 𝜌, 𝑝 and 𝑣 = (𝑢, 𝑣, 𝑤) denote density, pressure and the velocity vector, respectively, and 𝜌0, 𝑃0, 𝑉0 > 0
are some reference density, pressure and velocity magnitude. The large-scale eddy in the initial condition
leads to smaller and smaller structures through vortex stretching. Near 𝑡 ≈ 7𝐿/𝑉0, the vortical structures
undergo structural changes, and around 𝑡 ≈ 8 − 9𝐿/𝑉0 they break down and the flow transitions to
turbulence3, where the exact times depend on the Reynolds number 𝑅𝑒 = 𝜌0𝑉0𝐿/𝜇. The Reynolds numbers

3 Note that no temporal chaos (chaotic attractor) exists in the viscous Taylor-Green vortex since the flow eventually comes
to rest due to viscous dissipation. We use the term turbulence here to refer to the phase of spatial chaos (spatial decoherence)
that takes place after 𝑡 ≈ 8− 9𝐿/𝑉0 for Reynolds numbers above about 1000 [12].
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1600 and ∞ are considered in this paper. For the 𝑅𝑒 = 1600 case, the smallest turbulent structures and
the maximum dissipation rate of kinetic energy occur at 𝑡 ≈ 9𝐿/𝑉0. After this time, the turbulent motion
dissipates all the kinetic energy and the flow eventually comes to rest through a decay phase similar to that
in decaying homogeneous isotropic turbulence, yet not isotropic here. At this Reynolds number, the subgrid
scales are moderate compared to the resolved scales. In the inviscid TGV, however, the smallest turbulent
scales become arbitrarily small, and the range of subgrid scales arbitrarily large, as time evolves.

The reference Mach number is set to 𝑀0 = 𝑉0/𝑐0 = 0.1, where 𝑐0 denotes the speed of sound at temperature
𝑇0 = 𝑃0/(𝛾 − 1) 𝑐𝑣 𝜌0. This completes the non-dimensional description of the problem.

3.2. Details of the numerical discretization

The computational domain is partitioned into a uniform 64 × 64 × 64 Cartesian grid and the third-order
Embedded DG (EDG) scheme [68] is used for the spatial discretization. The solution is computed from
𝑡0 = 0 to 𝑡𝑓 = 15𝐿/𝑉0. Three different phases exist in the simulation. Before 𝑡 ≈ 4𝐿/𝑉0, the flow is laminar
and with no subgrid scales. This is followed by an under-resolved laminar phase (i.e. with subgrid scales)
that lasts until 𝑡 ≈ 7 − 9𝐿/𝑉0. From then on, the flow is turbulent and under-resolved.

3.3. Numerical results

3.3.1. Riemann solver study

Figure 1 shows the time evolution of kinetic energy dissipation rate,

𝑑𝐸𝑘

𝑑𝑡
=

𝑑

𝑑𝑡

∫︁
Ω

1

2
𝜌 ||𝑣||2 , (3)

in the viscous (left) and inviscid (right) Taylor-Green vortex for the three Riemann solvers considered.
Figure 2 shows the time evolution of the quantity

Π𝐸𝑘
:= −𝑑𝐸𝑘

𝑑𝑡
−

∫︁
Ω

𝜇 ||𝑤||2 , (4)

where 𝑤 = ∇ × 𝑣 denotes vorticity. The second term in the right-hand side of (4) corresponds to the
dissipation of kinetic energy due to physical mechanisms. Π𝐸𝑘

is therefore the contribution of the numerical
scheme to the dissipation of kinetic energy, and is referred to as the numerical dissipation of kinetic energy.
We note that Π𝐸𝑘

should approximately account for the transfer of kinetic energy from resolved scales
to subgrid scales4. Also note that Eq. (4) is derived from the incompressible kinetic energy equation
since numerical results suggest the incompressible kinetic energy equation is more appropriate than the
compressible kinetic energy equation to assess numerical dissipation in nearly incompressible flows [22].

Tables 1, 2, 3 and 4 collect the average absolute-value jump across elements on the periodic plane 𝑥 = −𝐿𝜋
for each conservation variable 𝑗 = 1, ..., 5, defined as

𝒥 (𝑢ℎ,𝑗) =

∫︀
𝑥=−𝐿𝜋

⃒⃒
J𝑢ℎ,𝑗K𝐹

⃒⃒∫︀
𝑥=−𝐿𝜋

⃒⃒
⟨𝑢ℎ,𝑗⟩𝐹

⃒⃒ , (5)

at 𝑅𝑒 = 1600 and 𝑡 = 3𝐿/𝑉0, 𝑅𝑒 = 1600 and 𝑡 = 8𝐿/𝑉0, 𝑅𝑒 = ∞ and 𝑡 = 3𝐿/𝑉0, and 𝑅𝑒 = ∞ and
𝑡 = 8𝐿/𝑉0, respectively. Here, J𝑢ℎ,𝑗K𝐹 = 𝑢+

ℎ,𝑗 |𝐹 −𝑢−
ℎ,𝑗 |𝐹 and ⟨𝑢ℎ,𝑗⟩𝐹 = (𝑢+

ℎ,𝑗 |𝐹 +𝑢−
ℎ,𝑗 |𝐹 )/2 denote the face

jump and face average operators. The term |𝐹 is used to emphasize that the DG solution varies inside each
element and is to be evaluated on the element face. From these figures and tables, several remarks follow.

4For the particular case of statistically stationary flows, which is not the case in the Taylor-Green vortex, the transfer of
kinetic energy from resolved to subgrid scales is approximately equal to the (more common concept of) viscous dissipation in
the subgrid scales.
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Figure 1: Time evolution of kinetic energy dissipation rate in the Taylor-Green vortex at 𝑅𝑒 = 1600 (left) and
𝑅𝑒 = ∞ (right) for the Riemann solvers considered.
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Figure 2: Time evolution of numerical dissipation of kinetic energy, as defined in Eq. (4), in the Taylor-Green vortex
at 𝑅𝑒 = 1600 (left) and 𝑅𝑒 = ∞ (right) for the Riemann solvers considered.

(i) The DG scheme adds numerical dissipation when the exact solution contains subgrid scales, that is, after
𝑡 ≈ 4𝐿/𝑉0. This suggests discontinuous Galerkin methods have a built-in (implicit) subgrid-scale model and
introduce additional dissipation in the presence of under-resolved turbulence.

(ii) The numerical dissipation is negligible before subgrid scales appear in the flow. Unlike the explicit SGS
models in the next section, the implicit model succeeds to detect there are no subgrid scales and does not
add numerical dissipation under those conditions.

Observations (i) and (ii) imply the numerical dissipation of the DG scheme is positive for under-resolved
turbulent flows and vanishes for laminar flows, that is, the implicit model behaves like a dynamical model.
This dynamic behavior is justified as follows: On the one hand, if the exact solution does not contain subgrid
scales, it is well represented in the DG approximation space and the scheme is in the asymptotic convergence
regime. This implies the inter-element jumps are small and in particular ||J𝑢ℎK|| = 𝒪(ℎ𝑘+1) [60, 67, 68],
where ℎ denotes the element size and 𝑘 is the polynomial order of the DG approximation. Indeed, we note
the very small magnitude of the inter-element jumps in Tables 1 and 3. Since the amount of numerical
dissipation per unit element face area in DG methods is of order 𝒪(||J𝑢ℎK||2) [7, 23, 24], it is therefore
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𝒥 (𝜌) 𝒥 (𝜌𝑢) 𝒥 (𝜌𝑣) 𝒥 (𝜌𝑤) 𝒥 (𝜌𝐸)
Study of the Riemann solver

(𝐴𝑛 + |𝐴𝑛|)/2 9.8011E − 6 2.9010E − 5 1.1487E − 4 1.7206E − 4 1.4890E − 3
|𝐴𝑛| 8.0801E − 6 2.5949E − 5 1.0178E − 4 1.5361E − 4 1.4649E − 3
𝜆𝑚𝑎𝑥 5.1404E − 6 5.7829E − 6 2.9427E − 5 7.1974E − 5 1.2707E − 3

Study of the SGS model
ILES 9.8011E − 6 2.9010E − 5 1.1487E − 4 1.7206E − 4 1.4890E − 3

Static Smagorinsky 8.6188E − 6 3.3968E − 5 1.0798E − 4 1.6477E − 4 1.4208E − 3
Dynamic Smagorinsky 7.5943E − 6 2.7226E − 5 9.6104E − 5 1.4933E − 4 1.4087E − 3

Vreman 8.6570E − 6 8.1831E − 5 1.1643E − 4 1.7149E − 4 1.4754E − 3

Table 1: Average absolute-value jump across elements on the periodic plane 𝑥 = −𝐿𝜋 of the Taylor-Green vortex
at 𝑅𝑒 = 1600 and 𝑡 = 3𝐿/𝑉0.

𝒥 (𝜌) 𝒥 (𝜌𝑢) 𝒥 (𝜌𝑣) 𝒥 (𝜌𝑤) 𝒥 (𝜌𝐸)
Study of the Riemann solver

(𝐴𝑛 + |𝐴𝑛|)/2 8.8732E − 5 2.5180E − 4 1.3662E − 3 1.3590E − 3 2.0834E − 2
|𝐴𝑛| 8.7631E − 5 2.0863E − 4 1.2062E − 3 1.1662E − 3 2.0692E − 2
𝜆𝑚𝑎𝑥 9.0532E − 5 6.4432E − 5 3.7080E − 4 3.6441E − 4 2.2635E − 2

Study of the SGS model
ILES 8.8732E − 5 2.5180E − 4 1.3662E − 3 1.3590E − 3 2.0834E − 2

Static Smagorinsky 4.7639E − 5 1.4676E − 4 7.4274E − 4 6.9583E − 4 1.1127E − 2
Dynamic Smagorinsky 6.4393E − 5 1.7776E − 4 8.8756E − 4 8.6082E − 4 1.5112E − 2

Vreman 4.9367E − 5 3.3538E − 4 8.0182E − 4 7.4466E − 4 1.1585E − 2

Table 2: Average absolute-value jump across elements on the periodic plane 𝑥 = −𝐿𝜋 of the Taylor-Green vortex
at 𝑅𝑒 = 1600 and 𝑡 = 8𝐿/𝑉0.

negligible when there are no subgrid scales. On the other hand, when the exact solution contains subgrid
scales (i.e. when the simulation becomes under-resolved), the inter-element jumps grow and stabilize the
scheme by adding numerical dissipation. Hence, the Riemann solver plays the role of a dynamic SGS model
and accounts for the effect of the subgrid scales in a similar way as explicit models do. We note that, while
subgrid scales are most commonly encountered in the simulation of turbulent flows, they may also exist in
laminar flows, such as in the Taylor-Green vortex between 𝑡 ≈ 4𝐿/𝑉0 and 𝑡 ≈ 7 − 9𝐿/𝑉0.

(iii) Despite under-resolution, no significant differences between Riemann solvers are observed in the viscous
case. Even in the inviscid limit the role of the Riemann solver is still moderate. We note that the stabilization
matrix 𝜎 = 𝜆𝑚𝑎𝑥 yields much smaller jumps in the momentum fields than the other two stabilization
matrices. This is due to the over-upwinding for the momentum equations provided by Lax-Friedrichs-
type Riemann solvers at low Mach numbers [58], and indicates that DG methods have a (nonlinear) auto-
correction mechanism that adapts the magnitude of the inter-element jumps to partially compensate for
overshoots in the Riemann solver. This auto-correction mechanism in turn justifies the minor role of the
Riemann solver.

(iv) All the Riemann solvers slightly underestimate the peak dissipation with respect to the direct numerical
simulation (DNS) data [77]. That is, the numerical dissipation is smaller than the true SGS dissipation
(only) when the smallest turbulent structures appear. Under those conditions, the DG scheme could benefit
from the addition of an explicit SGS model. However, as will be discussed in Section 3.3.2, this is not the
case in practice since the implicit model is partially inhibited by the use of an explicit model.

Figure 3 shows the one-dimensional kinetic energy spectra at 𝑡 = 8𝐿/𝑉0 and 𝑡 = 9𝐿/𝑉0 for the viscous and
inviscid Taylor-Green vortex, respectively. In all cases, we observe an inertial range in which the spectrum
follows a power law with exponent close to the theoretical value of −5/3 [42]. The inertial range is followed
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𝒥 (𝜌) 𝒥 (𝜌𝑢) 𝒥 (𝜌𝑣) 𝒥 (𝜌𝑤) 𝒥 (𝜌𝐸)
Study of the Riemann solver

(𝐴𝑛 + |𝐴𝑛|)/2 3.8325E − 5 2.5293E − 4 1.6103E − 4 2.3329E − 4 1.9081E − 3
|𝐴𝑛| 3.0998E − 5 2.7685E − 5 1.2543E − 4 1.8016E − 4 1.6249E − 3
𝜆𝑚𝑎𝑥 7.7441E − 6 5.7671E − 6 3.4419E − 5 7.3344E − 5 1.5169E − 3

Study of the SGS model
ILES 3.8325E − 5 2.5293E − 4 1.6103E − 4 2.3329E − 4 1.9081E − 3

Static Smagorinsky 1.9543E − 5 3.1352E − 5 1.2723E − 4 1.8851E − 4 1.6236E − 3
Dynamic Smagorinsky 2.9271E − 5 2.7791E − 5 1.1150E − 4 1.7016E − 4 1.5298E − 3

Vreman 1.7323E − 5 3.5460E − 5 1.3224E − 4 1.9255E − 4 1.6687E − 3

Table 3: Average absolute-value jump across elements on the periodic plane 𝑥 = −𝐿𝜋 of the Taylor-Green vortex
at 𝑅𝑒 = ∞ and 𝑡 = 3𝐿/𝑉0.

𝒥 (𝜌) 𝒥 (𝜌𝑢) 𝒥 (𝜌𝑣) 𝒥 (𝜌𝑤) 𝒥 (𝜌𝐸)
Study of the Riemann solver

(𝐴𝑛 + |𝐴𝑛|)/2 2.3608E − 4 1.2680E − 2 4.7186E − 3 4.9416E − 3 5.3469E − 2
|𝐴𝑛| 2.4658E − 4 1.0320E − 3 4.7063E − 3 4.7594E − 3 5.8251E − 2
𝜆𝑚𝑎𝑥 4.0504E − 4 5.6643E − 4 1.8876E − 3 1.9245E − 3 1.0114E − 1

Study of the SGS model
ILES 2.3608E − 4 1.2680E − 2 4.7186E − 3 4.9416E − 3 5.3469E − 2

Static Smagorinsky 1.1676E − 4 3.7351E − 4 1.8456E − 3 2.1074E − 3 2.7445E − 2
Dynamic Smagorinsky 1.7943E − 4 1.2174E − 3 2.7746E − 3 3.0035E − 3 4.3530E − 2

Vreman 1.3084E − 4 4.0653E − 4 2.1125E − 3 2.3270E − 3 3.1185E − 2

Table 4: Average absolute-value jump across elements on the periodic plane 𝑥 = −𝐿𝜋 of the Taylor-Green vortex
at 𝑅𝑒 = ∞ and 𝑡 = 8𝐿/𝑉0.

by a dissipative range, until the grid Nyquist wavenumber 𝑘𝑁 = 96.0/𝐿 is achieved and no smaller scales
exist in the discretization. In the viscous case, the inertial range extends up to 𝑘 ≈ 20/𝐿, whereas DNS
results [77] indicate it extends until 𝑘 ≈ 40/𝐿. This numerically-induced premature end of the inertial range
is predicted by eigenanalysis [55], Fourier analysis [5] and non-modal analysis [25] theory. Also, note that
no significant differences in the spectra are observed between Riemann solvers in the viscous case (neither
at the times shown nor at other times); which shows that at this Reynolds number the viscous dissipation
has a much larger impact on the dynamics of all the scales than the Riemann solver. We also note the
presence of an energy pileup at large wavenumbers in the inviscid case for the Riemann solver 𝜎 = 𝜆𝑚𝑎𝑥.
These pre-dissipative bumps are predicted by eigenanalysis [55] and non-modal analysis [25] theory, and are
consistent with results in the literature for inviscid low Mach numbers flows when using Riemann solvers
that are based on the maximum-magnitude eigenvalue of 𝐴𝑛 [56, 58]. From these results and the insights
from eigenanalysis and non-modal analysis, the Riemann solver has some impact on the dynamics of the
smallest resolved scales, particularly at low Mach numbers and high Reynolds numbers (more precisely, at
low Mach numbers and high cell Péclet numbers); whereas the large-scale dynamics are affected to a much
lesser extent by the Riemann solver. As the Mach number increases and the cell Péclet number decreases,
the choice of Riemann solver is expected to have a smaller impact on the behavior of the small scales.

3.3.2. Subgrid-scale model study

Figure 4 shows the time evolution of kinetic energy dissipation rate with ILES, the static Smagorinsky,
dynamic Smagorinsky, WALE and Vreman models at both Reynolds numbers. The time evolution of the
volume-averaged dynamic Smagorinsky constant is shown in Figure 5. The average absolute-value jump
across elements on the periodic plane 𝑥 = −𝐿𝜋 for the viscous and inviscid cases, both at 𝑡 = 3𝐿/𝑉0 and
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Figure 3: One-dimensional kinetic energy spectrum in the Taylor-Green vortex at 𝑅𝑒 = 1600 and 𝑡 = 8𝐿/𝑉0 (left),
and 𝑅𝑒 = ∞ and 𝑡 = 9𝐿/𝑉0 (right) for the Riemann solvers considered.

𝑡 = 8𝐿/𝑉0, are collected in Tables 1, 2, 3 and 4. Also, Figure 6 shows snapshots of the vorticity norm on
𝑥 = −𝐿𝜋 for the viscous case at 𝑡 = 8𝐿/𝑉0. We recall that the stabilization matrix (1a) is used for the SGS
study. These results can be summarized as follows:

(i) The eddy viscosity in all the explicit SGS models fails to vanish when there are no subgrid scales in
the flow, and produces unphysical dissipation during this phase and also during the under-resolved laminar
phase. Among the explicit models, dynamic Smagorinsky introduces the least amount of dissipation in these
two phases. We note that a larger dissipation of kinetic energy corresponds to effectively solving a lower
Reynolds number flow; which is consistent with the maximum dissipation rate occuring at an earlier time
that is characteristic of the Taylor-Green vortex at lower Reynolds numbers [13].

We emphasize that the built-in stabilization due to inter-element jumps (i.e. the implicit subgrid-scale model)
in the DG scheme provides a more accurate mechanism to detect the absence of subgrid scales, in which
case very little dissipation is added, than the explicit models. This is a critical advantage of the implicit
model to simulate transitional flows.

(ii) When subgrid scales appear in the flow, the amount of dissipation introduced by the implicit model is
closer to the true SGS value than that introduced by the explicit models. Only in the inviscid case in fully
turbulent regime, the dynamic Smagorinsky model performs similarly to the implicit model. We note that,
whenever the simulation is under-resolved, the inter-element jumps with an explicit SGS model are much
smaller than with no model (see Tables 1−4); which is due to the additional stabilization provided by the
eddy viscosity. The use of an explicit model therefore partially inhibits the implicit model, and in fact the
dissipation of kinetic energy in the turbulent regime is smaller with the explicit models.

(iii) While the inter-element jumps in the numerical solution are smaller and the vorticity norm field is
smoother with an explicit SGS model (due to the eddy viscosity dissipation), ILES provides more accurate
results. Therefore, lack of smoothness in the DG solution is not an indicator for low solution quality –and, as
discussed previously, the inter-element jumps are actually responsible for the built-in model in the scheme.

(iv) Regarding the relative performance of the explicit models, no major differences are observed between
static Smagorinsky and Vreman. The WALE model led to nonlinear instability and the simulation breakdown
at 𝑡 ≈ 4.59𝐿/𝑉0 and 2.75𝐿/𝑉0 in the viscous and inviscid cases, respectively. This lack of robustness is due
to the high nonlinearity of the WALE model and may limit its applicability with high-order DG methods.
The dynamic Smagorinsky model provides the most accurate representation of the subgrid scales among the
explicit models.
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Figure 4: Time evolution of kinetic energy dissipation rate in the Taylor-Green vortex at 𝑅𝑒 = 1600 (left) and
𝑅𝑒 = ∞ (right) for ILES, static Smagorinsky, dynamic Smagorinsky, WALE and Vreman LES.
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Figure 6: Snapshot of vorticity norm ||𝜔||𝐿/𝑉0 on the periodic plane 𝑥 = −𝐿𝜋 of the viscous Taylor-Green vortex
at 𝑡 = 8𝐿/𝑉0. Left to right: ILES, static Smagorinsky, dynamic Smagorinsky and Vreman. The WALE model led
to nonlinear instability and the simulation breakdown at 𝑡 ≈ 4.59𝐿/𝑉0.
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Figure 7: One-dimensional kinetic energy spectrum in the Taylor-Green vortex at 𝑅𝑒 = 1600 and 𝑡 = 8𝐿/𝑉0 (left),
and 𝑅𝑒 = ∞ and 𝑡 = 9𝐿/𝑉0 (right) for ILES, static Smagorinsky, dynamic Smagorinsky and Vreman. The WALE
model led to nonlinear instability and the simulation breakdown at 𝑡 ≈ 4.59𝐿/𝑉0 and 2.75𝐿/𝑉0 in the viscous and
inviscid cases, respectively.

Figure 7 shows the one-dimensional kinetic energy spectra for ILES, the static Smagorinsky, dynamic
Smagorinsky and Vreman models at 𝑡 = 8𝐿/𝑉0 and 𝑡 = 9𝐿/𝑉0 for the viscous and inviscid cases, respectively.
The WALE model crashed before these times. We recall that the grid Nyquist wavenumber is 𝑘𝑁 = 96.0/𝐿.
The kinetic energy spectrum in ILES agrees with the theoretical −5/3 slope of decay of the inertial range
for a larger range of wavenumbers than the explicit models. Small differences are observed between the
static Smagorinsky, WALE and Vreman models, both at the times shown as well as at all other times. The
dynamic Smagorinsky spectrum is in between that of the implicit LES and those of the static models. All the
explicit models, especially the static ones, dissipate kinetic energy at larger scales than the implicit model,
and in particular at scales that are much larger than the grid Nyquist wavenumber. This is consistent with
eigenanalysis [3, 55], Fourier analysis [5] and non-modal analysis [25]. The fact that explicit models dissipate
energy at larger scales than the implicit model may have important consequences in practice, as discussed
in Sections 4 and 5.

3.4. Summary

The Taylor-Green vortex results indicate that:

∙ Discontinuous Galerkin methods have a built-in (implicit) subgrid-scale model and numerically dis-
sipate kinetic energy in under-resolved turbulence simulations. The inter-element jumps and the
Riemann solver are responsible for the implicit model.
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∙ The amount of dissipation implicitly introduced by the DG scheme is closer to the actual dissipation
in the subgrid scales than that with the explicit models considered.

∙ The implicit dissipation is more localized near the grid Nyquist wavenumber (i.e. more localized in the
smallest resolved scales) than that introduced by the explicit models.

∙ The implicit model does not add dissipation when there are no subgrid scales, whereas the explicit
models do. That is, the implicit model behaves like a dynamic model.

Except for the second remark above, these numerical observations have been justified by theoretical studies
of DG methods. The second observation could be explained by relating the DG stabilization due to the
inter-element jumps with the subgrid-scale closure terms arising from variational multiscale (VMS) [37] or
Mori-Zwanzig (MZ) [63, 64] approaches. For one-dimensional linear convection, the MZ-VMS procedure
with the assumptions of finite memory and linear quadrature, referred to as 𝜏 -MZ-VMS, actually leads to a
subgrid-scale closure term that is equivalent to the standard upwind flux [65], i.e. the implicit model with
standard upwinding is the same as that given by 𝜏 -MZ-VMS. This analogy is less straightforward in the
case of the Navier-Stokes equations and has not been investigated in this paper.

4. Turbulent channel flow

4.1. Case description

We consider the turbulent channel flow [46] at 𝑅𝑒𝜏 = 182 and 544, where 𝑅𝑒𝜏 = 𝜌0𝑢𝜏𝛿/𝜇 is the Reynolds
number based on the volume-averaged density 𝜌0, the friction velocity 𝑢𝜏 =

√︀
𝜏𝑤/𝜌0 and the channel half-

width 𝛿, and where 𝜏𝑤 denotes the mean wall shear stress. The bulk Mach number is 𝑀𝑏 = 𝑈𝑏/𝑐 = 0.2,
where 𝑈𝑏 =

∫︀ 2𝛿

0
𝑢(𝑦) 𝑑𝑦 / 2𝛿 and 𝑐 are the bulk velocity and the speed of sound at the mean temperature.

The flow is statistically stationary and driven by a uniform pressure gradient, which varies in time to ensure
that the mass flux through the channel remains constant. The top and bottom walls of the channel are
no-slip and adiabatic. This completes the non-dimensional description of the problem.

As is customary in channel flows, the three velocity components are denoted by (𝑢, 𝑣, 𝑤), the time-averaged
velocity by a capital letter, the fluctuations by a prime, and the ensemble average by ⟨ · ⟩. Thus, 𝑈 = ⟨𝑢⟩
and 𝑢 = 𝑈 + 𝑢′, and similarly for the wall-normal and spanwise velocity components.

4.2. Details of the numerical discretization

The channel flow is simulated in a doubly-periodic domain Ω = [0, 4𝜋𝛿) × [0, 2𝛿) × [0, 2𝜋𝛿). Periodicity is
imposed along the 𝑥 (streamwise) and 𝑧 (spanwise) directions. The computational domain is partitioned
into a 48×32×40 Cartesian grid and the third-order Interior Embedded DG (IEDG) scheme [19] is used for
the spatial discretization. The element size is constant along the streamwise and spanwise directions. The
high-order nodes in the wall-normal direction 𝑦 are uniformly distributed in a mapped coordinate 𝜉 that is
related to 𝑦 through

𝑦

𝛿
=

sin(𝜉𝜋/2)

sin(𝜋/2)
+ 1, −1 ≤ 𝜉 ≤ 1. (6)

The distance between high-order nodes (in wall units) is summarized in Table 5. As is customary, the near-
wall velocity, time and length scales for non-dimensionalization are 𝑢𝜏 , 𝜇/𝜌0𝑢2

𝜏 and 𝜇/𝜌0𝑢𝜏 , respectively, and
the superscript + is used to indicate that a quantity is expressed in wall units. A run-up time 𝑇+

1 = 2000
is used for the flow to achieve its stationary distribution on the chaotic attractor. The flow statistics are
then collected over a time window 𝑇+

2 = 1000 to ensure statistical convergence of the mean velocity and the
Reynolds stresses.

We note that the pressure gradient is such that the mass flow is the one that led to the desired 𝑅𝑒𝜏 in DNS
[46]. As a consequence, the 𝑅𝑒𝜏 computed from the wall stress in LES (denoted by 𝑅𝑒𝐿𝐸𝑆

𝜏 hereinafter) may
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Figure 8: Mean velocity profile in turbulent channel flow at 𝑅𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝜏 = 182 (left) and 544 (right) for the Riemann
solvers considered. The wall friction in the simulations is used to compute the near-wall velocity and length scales
for non-dimensionalization.

not exactly agree with the target 𝑅𝑒𝜏 (denoted by 𝑅𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝜏 ) if the resolution is not sufficiently fine to match
the wall stress in DNS. This will be the case at 𝑅𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝜏 = 544 and, for some of the explicit models, also at
182.

𝑅𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝜏 = 182 𝑅𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝜏 = 544
∆𝑥+ 15.9 47.5
∆𝑦+𝑤 0.29 0.87

∆𝑦+𝑎𝑣𝑔 3.79 11.3
∆𝑧+ 9.53 28.5

Table 5: Distance between high-order nodes (in wall units) for turbulent channel flow. Δ𝑦+
𝑎𝑣𝑔 denotes the average

distance along the wall-normal direction. Δ𝑦+
𝑤 denotes the distance from the wall to the first high-order node along

the wall-normal direction.

4.3. Numerical results

Prior to presenting the numerical results, we note that homogeneity in the 𝑥 and 𝑧 directions holds pointwise
in the exact solution, but only elementwise in the DG solution. We shall omit this nuance and compute
ensemble averages (i.e. time averages) as time-, streamwise- and spanwise- averages. This accelerates
convergence of the statistics of the flow, and allows comparison with DNS results for which the ensemble-
averaged quantities are only a function of the wall-normal coordinate.

4.3.1. Riemann solver study

Figure 8 shows the mean velocity profile at 𝑅𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝜏 = 182 and 544 for the Riemann solvers considered.
The Reynolds stresses at 𝑅𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝜏 = 182 are shown in Figure 9, and the values of 𝑅𝑒𝐿𝐸𝑆

𝜏 at both Reynolds
numbers are collected in Table 6. There are no significant differences between Riemann solvers in terms
of wall friction, mean velocity and Reynolds stresses. Further analysis of these results is presented in the
comparison between implicit and explicit models below.
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Figure 9: Reynolds stresses in turbulent channel flow at 𝑅𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝜏 = 182 for the Riemann solvers considered. The
wall friction in the simulations is used to compute the near-wall velocity and length scales for non-dimensionalization.

4.3.2. Subgrid-scale model study

Figures 10 and 11 show the mean velocity profile at 𝑅𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝜏 = 182 and 544, respectively, with ILES,
the static Smagorinsky, dynamic Smagorinsky, WALE and Vreman models. Two different types of non-
dimensionalization are used on the left and right images. On the left images, the inner boundary layer
scales, namely the near-wall velocity and length scales, are used for non-dimensionalization. These scales
are computed from the wall friction in the simulations, as opposed to the target wall friction. This is the
proper choice to investigate if the viscous, buffer and log sublayers of the boundary layer are accurately
resolved, as we will discuss below. On the right images, the outer boundary layer scales, namely 𝑈𝑏 and
𝛿, are used for non-dimensionalization so that all simulations are non-dimensionalized with respect to the
same reference values. This way, the scaling factor between dimensional and non-dimensional data is the
same in all cases, and the dimensional velocity profiles can be directly compared. Both choices of non-
dimensionalization complement each other and help understand the performance of the models and the
reasons for the mismatch (if any) between LES and DNS.

Figure 12 shows the Reynolds stresses at 𝑅𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝜏 = 182, Figure 13 the dynamic Smagorinsky constant at
both Reynolds numbers, and Table 6 the values of 𝑅𝑒𝐿𝐸𝑆

𝜏 at both Reynolds numbers. Prior to discussing
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𝑅𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝜏 = 182 𝑅𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝜏 = 544
Study of the Riemann solver

(𝐴𝑛 + |𝐴𝑛|)/2 180.8 478.7
|𝐴𝑛| 181.0 479.1
𝜆𝑚𝑎𝑥 181.1 477.7

Study of the SGS model
ILES 180.8 478.7

Static Smagorinsky 191.5 658.1
Dynamic Smagorinsky 177.6 474.4

WALE 173.3 452.6
Vreman 170.1 468.4

Table 6: Values of 𝑅𝑒𝐿𝐸𝑆
𝜏 computed from the wall friction in the LES simulations.

these results, we introduce the two following quantities

𝜇𝑟
𝑒 := −𝜇 ⟨𝑢′𝑣′⟩+

(︂
𝑑𝑈+

𝑑𝑦+

)︂−1

, (7a)

𝜇*
𝑒 := 𝜇

[︂(︂
1 − 𝑦+

𝑅𝑒𝜏

)︂(︂
𝑑𝑈+

𝑑𝑦+

)︂−1

− 1

]︂
. (7b)

From these definitions, it follows that 𝜇𝑟
𝑒 𝑑𝑈/𝑑𝑦 = −𝜌0⟨𝑢′𝑣′⟩ and (𝜇+𝜇*

𝑒) 𝑑𝑈/𝑑𝑦 = 𝜏𝑤(1−𝑦/𝛿). Note that the
mean shear stress varies linearly across the channel due to the uniform pressure gradient and 𝑥-momentum
conservation, and therefore 𝜏𝑤(1− 𝑦/𝛿) = ⟨𝜏𝑥𝑦⟩. Note also that −𝜌0⟨𝑢′𝑣′⟩ ≈ −⟨𝜌𝑢′′𝑣′′⟩, where 𝑢′′ and 𝑣′′ are
the Favre fluctuating velocities, and thus this term corresponds to the net resolved 𝑥-momentum turbulent
transport, per unit area, across 𝑦-planes. From these considerations, 𝜇𝑟

𝑒 can be interpreted as an eddy
viscosity due to the resolved turbulent motion, and will be referred to as the resolved eddy viscosity; whereas
𝜇*
𝑒 can be regarded as a total eddy viscosity or an effective eddy viscosity in the simulation, and accounts

for the turbulent transport due to the explicit model, the implicit model and the resolved turbulence. Note
that, for the exact solution, it holds that 𝜇*

𝑒 = 𝜇𝑟
𝑒. Also, a modeled eddy viscosity, accounting for the implicit

and explicit models, is not straightforward to define in the context of DG methods and in fact it cannot be
computed as 𝜇*

𝑒 − 𝜇𝑟
𝑒.

The resolved eddy viscosity in the viscous and buffer layers for the SGS models considered is shown in the top
of Figure 14. The total eddy viscosity is shown in the bottom of the figure. Except for static Smagorinsky, 𝜇*

𝑒

vanishes as expected in the viscous layer, and grows in the buffer layer as the turbulent transport increases
and dominates the molecular transport. We emphasize that these eddy viscosities inform of the turbulent
transport, and not of the dissipation of kinetic energy which was the focus in the Taylor-Green vortex.
While eddy viscosity SGS models account for the subgrid scale contribution to these two terms through an
(the same) explicit eddy viscosity, these terms are of a fundamentally different nature, as apparent from the
filtered momentum and kinetic energy equations [32].

All the ingredients are now in place to discuss the numerical results. We focus first on the viscous sublayer,
then on the buffer layer, and finally on the log layer.

Viscous sublayer (𝑦+ . 10): This layer is characterized by ⟨𝜏𝑥𝑦⟩ ≈ 𝜏𝑤 and the fact that molecular
transport dominates turbulent transport; which yields the well-known result 𝑈+ ≈ 𝑦+. Since this velocity
law is independent of the Reynolds number, all simulations should ideally match the DNS data on the left
images of Figures 10−11, despite the slightly different Reynolds number in LES. From these two figures, the
viscous sublayer is accurately resolved at both Reynolds numbers by implicit LES, the dynamic Smagorinsky,
the WALE and the Vreman models. Provided that there is enough resolution to capture the mean flow and
that no eddy viscosity is added by the SGS model, this is expected due to the lack of subgrid scales in
this laminar sublayer. The eddy viscosity, however, does not vanish near the wall with static Smagorinsky
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Figure 10: Mean velocity profile in turbulent channel flow at 𝑅𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝜏 = 182 for the SGS models considered. Inner
(based on the wall friction in the simulation) and outer boundary layer scales are used for non-dimensionalization in
the left and right figures, respectively.
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Figure 11: Mean velocity profile in turbulent channel flow at 𝑅𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝜏 = 544 for the SGS models considered. Inner
(based on the wall friction in the simulation) and outer boundary layer scales are used for non-dimensionalization in
the left and right figures, respectively.

(see 𝜇*
𝑒 in Figure 14) and this leads to inaccurate wall friction and mean velocity in this layer. While

no significant differences were observed between static Smagorinsky and the other static models, namely
WALE and Vreman, for the wall-free flow conditions in the Taylor-Green vortex, this is not the case for this
wall-bounded flow and, as expected, points to the inability of the static Smagorinsky model to vanish near
walls as one the main limitations of the model.

Buffer layer (10 . 𝑦+ . 40): The mean velocity 𝑈+ = 𝑈+(𝑦+) in the buffer layer is also approximately
independent of the Reynolds number [10, 18, 36, 46, 50, 54], and therefore LES should ideally match DNS
on the left images of Figures 10−11. At 𝑅𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝜏 = 182, the buffer layer is only accurately resolved with
ILES. At 𝑅𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝜏 = 544, the buffer layer is not accurately resolved in any of the LES simulations. From the
top images in Figure 14, the use of an explicit model reduces the resolved turbulent transport. As discussed
before and justified by linear analysis techniques [5, 55, 25], the explicit models damp the large scales more
than the implicit model does. Since the large turbulent scales are responsible for most of the turbulent
transport, this justifies the smaller 𝜇𝑟

𝑒. From the bottom images in Figure 14, the total eddy viscosity 𝜇*
𝑒 is
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Figure 12: Reynolds stresses in turbulent channel flow at 𝑅𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝜏 = 182 for the SGS models considered. The wall
friction in the simulations is used to compute the near-wall velocity and length scales for non-dimensionalization.
The color legend is shown in Figures 10 and 11.

also smaller with an explicit model, and so is the total turbulent transport.

Log layer (𝑦+ & 40): This layer is characterized by ⟨𝜏𝑥𝑦⟩ ≈ 𝜏𝑤 and the fact that turbulent transport
dominates molecular transport. This, combined with the mixing-length hypothesis ℓ = 𝜅 𝑑𝑤, where ℓ is the
mixing length, 𝜅 is the von Kármán constant and 𝑑𝑤 is the distance to the wall, leads to 𝑈+ ≈ 𝜅−1 log 𝑦++𝐵,
where 𝜅,𝐵 > 0 are positive constants that, for channel flows, are approximately independent of the Reynolds
number. DNS [10, 18, 36, 46, 50, 54] and experimental [53, 71] data have confirmed the existence of
this log layer, and in particular 𝜅 ≈ 0.384 and 𝐵 ≈ 4.27 [46]. The left images in Figures 10 and 11
show that all simulations succeed to predict this logarithmic dependence with the correct mixing length
ℓ = 𝜅𝐿𝐸𝑆 𝑑𝑤, 𝜅𝐿𝐸𝑆 ≈ 0.38. The matching velocity between the buffer and log layers, however, does not
agree with DNS, and thus 𝐵𝐿𝐸𝑆 ̸= 4.27, if the buffer layer is not accurately resolved. This leads to an
incorrect outer velocity seen by the viscous sublayer; which is responsible for the misprediction of the wall
friction and thus 𝑅𝑒𝐿𝐸𝑆

𝜏 in Table 6.

To conclude, we note that the Reynolds stresses have a stronger dependence on the Reynolds number [46].
Since the simulations with different SGS models predict slightly different wall frictions, and thus solve
slightly different Reynolds numbers, it is challenging to infer additional conclusions, beyond those already
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discussed, from the Reynolds stresses in Figures 9 and 12.

5. Conclusions

We investigated the ability of discontinuous Galerkin methods to predict under-resolved turbulent flows.
The Taylor-Green vortex and the turbulent channel flow at various Reynolds numbers were considered to
this end. Numerical results showed that DG methods without an explicit subgrid-scale model (implicitly)
introduce numerical dissipation in under-resolved turbulence simulations. This implicit subgrid-scale model
is due to the inter-element jumps and the Riemann solver, and behaves like a dynamic model in the sense
that it vanishes for laminar flows that do not contain subgrid scales; which is a critical feature to accurately
simulate transitional flows. In addition, for the moderate-Reynolds-number turbulence problems considered,
the implicit model provided a more accurate representation of the actual subgrid scales than state-of-the-art
explicit eddy viscosity models. Theoretical results for DG methods were used to justify these numerical
observations.

Some premises that are widely accepted in the LES community do no longer hold in the context of high-order
DG methods. First, the built-in subgrid-scale model in the DG scheme is partially inhibited when using
an explicit model, and the total amount of dissipation does not necessarily increase with an explicit model.
Second, since eddy viscosity models dissipate kinetic energy at larger scales than the implicit model, they
reduce more significantly the energy content of scales that are larger than the grid Nyquist wavenumber;
which may have important consequences in practice. In particular, explicit eddy viscosity models may
not allow taking advantage of the low numerical dissipation at large scales of high-order DG methods
[25, 55]; which is critical for transition prediction and moderate-Reynolds-number turbulence. From these
two observations, a change in the current best practices for subgrid-scale modeling may be required with DG
methods. This is not completely surprising considering that the state-of-the-art subgrid-scale models, based
on the Boussinesq eddy viscosity assumption and an augmented viscous operator, have been developed
and successfully applied with discretization schemes whose built-in stabilization (if any) and dissipation
characteristics are different from those in discontinuous Galerkin methods.

To conclude, we briefly discuss how our results are expected to extend to higher accuracy orders. For accuracy
orders up to about seven, similar results to those in this paper are expected. For accuracy orders beyond
about eight, the numerical dissipation in the DG scheme becomes very small also at high wavenumbers
[25], and some form of regularization/model may be required to enhance stability and accuracy. It will
be critical that the explicit regularization/model used with high-order DG schemes localizes dissipation at
the desired wavenumbers and is consistent with the expected SGS dissipation spectrum [14, 43, 45]; which
could be achieved with Spectral Vanishing Vicosity [74, 39, 40, 57], Variational Multiscale [16, 37, 38] and
Mori-Zwanzig [63, 64, 65] type approaches.
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Appendix A. The hybridized discontinuous Galerkin methods for the compressible Euler and
Navier-Stokes equations

Governing equations

Let 𝑡𝑓 > 0 be a final time and let Ω ⊂ R𝑑, 1 ≤ 𝑑 ≤ 3 be an open, connected and bounded physical domain
with Lipschitz boundary 𝜕Ω. The unsteady, compressible Navier-Stokes equations in conservation form read
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as

𝑞 −∇𝑢 = 0, in Ω × [0, 𝑡𝑓 ), (A.1a)
𝜕𝑢

𝜕𝑡
+ ∇ · 𝐹 (𝑢) + ∇ ·𝐺(𝑢, 𝑞) = 0, in Ω × [0, 𝑡𝑓 ), (A.1b)

𝐵(𝑢, 𝑞) = 0, on 𝜕Ω × [0, 𝑡𝑓 ), (A.1c)
𝑢− 𝑢0 = 0, on Ω × {0}. (A.1d)

Here, 𝑢 = (𝜌, 𝜌𝑣𝑗 , 𝜌𝐸) ∈ R𝑚, 𝑗 = 1, ..., 𝑑 is the 𝑚-dimensional (𝑚 = 𝑑+ 2) vector of conservation variables,
𝑢0 is an initial condition, 𝐵(𝑢, 𝑞) is a boundary operator, and 𝐹 (𝑢) and𝐺(𝑢, 𝑞) are the inviscid and viscous
fluxes of dimensions 𝑚× 𝑑, given by

𝐹 (𝑢) =

⎛⎝ 𝜌𝑣𝑗
𝜌𝑣𝑖𝑣𝑗 + 𝛿𝑖𝑗𝑝
𝑣𝑗(𝜌𝐸 + 𝑝)

⎞⎠ , 𝐺(𝑢, 𝑞) = −

⎛⎝ 0
𝜏𝑖𝑗

𝑣𝑖𝜏𝑖𝑗 − 𝑓𝑗

⎞⎠ , 𝑖, 𝑗 = 1, . . . , 𝑑, (A.2)

where 𝑝 is the thermodynamic pressure, 𝜏𝑖𝑗 the viscous stress tensor, 𝑓𝑗 the heat flux, and 𝛿𝑖𝑗 the Kronecker
delta. For a calorically perfect gas in thermodynamic equilibrium, 𝑝 = (𝛾 − 1)

(︀
𝜌𝐸 − 𝜌 ||𝑣||2 /2

)︀
, where

𝛾 = 𝑐𝑝/𝑐𝑣 > 1 is the ratio of specific heats and in particular 𝛾 ≈ 1.4 for air. 𝑐𝑝 and 𝑐𝑣 are the specific
heats at constant pressure and volume, respectively. For a Newtonian fluid with the Fourier’s law of heat
conduction, the viscous stress tensor and heat flux are given by

𝜏𝑖𝑗 = 𝜇

(︂
𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑣𝑗
𝜕𝑥𝑖

− 2

3

𝜕𝑣𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗

)︂
+ 𝛽

𝜕𝑣𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗 , 𝑓𝑗 = −𝜅
𝜕𝑇

𝜕𝑥𝑗
, (A.3)

where 𝑇 denotes temperature, 𝜇 the dynamic (shear) viscosity, 𝛽 the bulk viscosity, 𝜅 = 𝑐𝑝 𝜇/𝑃𝑟 the thermal
conductivity, and 𝑃𝑟 the Prandtl number. In particular, 𝑃𝑟 ≈ 0.71 for air, and additionally 𝛽 = 0 under
the Stokes’ hypothesis. The unsteady, compressible Euler equations are obtained by dropping the viscous
flux in Eq. (A.1b).

Finite element mesh

We denote by 𝒯ℎ a collection of stationary, non-singular, conforming, 𝑝-th degree curved elements 𝐾 that
partition5 Ω, and set 𝜕𝒯ℎ := {𝜕𝐾 : 𝐾 ∈ 𝒯ℎ} to be the collection of the boundaries of the elements in 𝒯ℎ. For
an element 𝐾 of the collection 𝒯ℎ, 𝐹 = 𝜕𝐾 ∩𝜕Ω is a boundary face if its 𝑑−1 Lebesgue measure is nonzero.
For two elements 𝐾+ and 𝐾− of 𝒯ℎ, 𝐹 = 𝜕𝐾+ ∩ 𝜕𝐾− is the interior face between 𝐾+ and 𝐾− if its 𝑑− 1
Lebesgue measure is nonzero. We denote by ℰ𝐼

ℎ and ℰ𝐵
ℎ the set of interior and boundary faces, respectively,

and we define ℰℎ := ℰ𝐼
ℎ ∪ ℰ𝐵

ℎ as the union of interior and boundary faces. Note that, by definition, 𝜕𝒯ℎ
and ℰℎ are different. More precisely, an interior face is counted twice in 𝜕𝒯ℎ but only once in ℰℎ, whereas a
boundary face is counted once both in 𝜕𝒯ℎ and ℰℎ.

Finite element spaces

Let 𝒫𝑘(𝐷) denote the space of polynomials of degree at most 𝑘 on a domain 𝐷 ⊂ R𝑛, let 𝐿2(𝐷) be the space
of Lebesgue square-integrable functions on 𝐷, and 𝒞0(𝐷) the space of continuous functions on 𝐷. Also, let
𝜓𝑝

𝐾 denote the 𝑝-th degree parametric mapping from the reference element 𝐾𝑟𝑒𝑓 to an element 𝐾 ∈ 𝒯ℎ in

5Strictly speaking, the finite element mesh can only partition the problem domain if 𝜕Ω is piecewise 𝑝-th degree polynomial.
For simplicity of exposition, and without loss of generality, we assume that the elements in 𝒯ℎ actually partition Ω. In addition,
the term partition actually refers to Lebesgue mod 0 partition.
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the physical domain, and 𝜑𝑝
𝐹 be the 𝑝-th degree parametric mapping from the reference face 𝐹𝑟𝑒𝑓 to a face

𝐹 ∈ ℰℎ in the physical domain. We then introduce the following discontinuous finite element spaces in 𝒯ℎ

𝒬𝑘
ℎ =

{︀
𝑟 ∈ [𝐿2(𝒯ℎ)]𝑚×𝑑 : (𝑟 ∘𝜓𝑝

𝐾)|𝐾 ∈ [𝒫𝑘(𝐾𝑟𝑒𝑓 )]𝑚×𝑑 ∀𝐾 ∈ 𝒯ℎ
}︀
, (A.4a)

𝒱𝑘
ℎ =

{︀
𝑤 ∈ [𝐿2(𝒯ℎ)]𝑚 : (𝑤 ∘𝜓𝑝

𝐾)|𝐾 ∈ [𝒫𝑘(𝐾𝑟𝑒𝑓 )]𝑚 ∀𝐾 ∈ 𝒯ℎ
}︀
, (A.4b)

and the following finite element space on the mesh skeleton ℰℎ

ℳ𝑘
ℎ =

{︀
𝜇 ∈ [𝐿2(ℰℎ)]𝑚 : (𝜇 ∘ 𝜑𝑝

𝐹 )|𝐹 ∈ [𝒫𝑘(𝐹𝑟𝑒𝑓 )]𝑚 ∀𝐹 ∈ ℰℎ, and 𝜇|ℰE
ℎ
∈ [𝐶0(ℰE

ℎ )]𝑚
}︀
, (A.5)

where ℰE
ℎ is a subset of ℰℎ. Different choices of ℰE

ℎ lead to different discretization methods within the
hybridized DG family that have different properties in terms of accuracy, stability, and number of globally
coupled unknowns [21, 61]. In particular, the HDG, EDG and IEDG methods are obtained by setting
ℰE
ℎ = ∅, ℰE

ℎ = ℰℎ and ℰE
ℎ = ℰ𝐼

ℎ, respectively.

We finally define several inner products associated with these finite element spaces. In particular, given
𝑤,𝑣 ∈ 𝒱𝑘

ℎ, 𝑊 ,𝑉 ∈ 𝒬𝑘
ℎ and 𝜂, 𝜁 ∈ ℳ𝑘

ℎ, we write

(𝑤,𝑣)𝒯ℎ
=

∑︁
𝐾∈𝒯ℎ

(𝑤,𝑣)𝐾 =
∑︁

𝐾∈𝒯ℎ

∫︁
𝐾

𝑤 · 𝑣, (A.6a)

(𝑊 ,𝑉 )𝒯ℎ
=

∑︁
𝐾∈𝒯ℎ

(𝑊 ,𝑉 )𝐾 =
∑︁

𝐾∈𝒯ℎ

∫︁
𝐾

𝑊 : 𝑉 , (A.6b)

⟨𝜂, 𝜁⟩𝜕𝒯ℎ
=

∑︁
𝐾∈𝒯ℎ

⟨𝜂, 𝜁⟩𝜕𝐾 =
∑︁

𝐾∈𝒯ℎ

∫︁
𝜕𝐾

𝜂 · 𝜁, (A.6c)

where : denotes the Frobenius inner product of two matrices.

Hybridized DG discretization

The hybridized DG discretization of the (unfiltered) unsteady compressible Navier-Stokes equations reads
as follows: Find

(︀
𝑞ℎ(𝑡),𝑢ℎ(𝑡), ̂︀𝑢ℎ(𝑡)

)︀
∈ 𝒬𝑘

ℎ × 𝒱𝑘
ℎ ×ℳ𝑘

ℎ such that(︀
𝑞ℎ, 𝑟

)︀
𝒯ℎ

+
(︀
𝑢ℎ,∇ · 𝑟

)︀
𝒯ℎ

−
⟨︀̂︀𝑢ℎ, 𝑟 · 𝑛

⟩︀
𝜕𝒯ℎ

= 0, (A.7a)(︁𝜕 𝑢ℎ

𝜕𝑡
,𝑤

)︁
𝒯ℎ

−
(︁
𝐹 (𝑢ℎ) +𝐺(𝑢ℎ, 𝑞ℎ),∇𝑤

)︁
𝒯ℎ

+
⟨ ̂︀𝑓ℎ(̂︀𝑢ℎ,𝑢ℎ) + ̂︀𝑔ℎ(̂︀𝑢ℎ,𝑢ℎ, 𝑞ℎ),𝑤

⟩
𝜕𝒯ℎ

= 0, (A.7b)⟨ ̂︀𝑓ℎ(̂︀𝑢ℎ,𝑢ℎ) + ̂︀𝑔ℎ(̂︀𝑢ℎ,𝑢ℎ, 𝑞ℎ),𝜇
⟩
𝜕𝒯ℎ∖𝜕Ω

+
⟨̂︀𝑏ℎ(̂︀𝑢ℎ,𝑢ℎ, 𝑞ℎ),𝜇

⟩
𝜕Ω

= 0, (A.7c)

for all (𝑟,𝑤,𝜇) ∈ 𝒬𝑘
ℎ × 𝒱𝑘

ℎ ×ℳ𝑘
ℎ and all 𝑡 ∈ [0, 𝑡𝑓 ), as well as (︀

𝑢ℎ|𝑡=0 − 𝑢0,𝑤
)︀
𝒯ℎ

= 0, (A.7d)

for all 𝑤 ∈ 𝒱𝑘
ℎ. Here, 𝑛 denotes the unit normal vector pointing outwards from the elements, ̂︀𝑏ℎ is the

boundary condition term (whose precise definition depends on the type of boundary condition), and ̂︀𝑓ℎ and̂︀𝑔ℎ are the inviscid and viscous numerical fluxes defined as

̂︀𝑓ℎ(̂︀𝑢ℎ,𝑢ℎ) = 𝐹 (̂︀𝑢ℎ) · 𝑛+ 𝜎(̂︀𝑢ℎ,𝑢ℎ;𝑛) · (𝑢ℎ − ̂︀𝑢ℎ), (A.8a)̂︀𝑔ℎ(̂︀𝑢ℎ,𝑢ℎ, 𝑞ℎ) = 𝐺(̂︀𝑢ℎ, 𝑞ℎ) · 𝑛. (A.8b)

We note that this form of the numerical flux does not involve an explicit Riemann solver on the element
faces. Instead, it is the so-called stabilization matrix 𝜎 ∈ R𝑚×𝑚 that implicitly defines the Riemann solver
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in hybridized DG methods. The interested reader is referred to [22] for a discussion on the relationship
between the stabilization matrix and the resulting Riemann solver. The hybridized DG discretization of
the unsteady compressible Euler equations is obtained by dropping Eq. (A.7a) and the viscous terms in
Equations (A.7b)−(A.7c). Finally, in the context of explicit LES, we augment the viscous stress tensor and
heat flux in (A.3) with the modeling terms

𝜏𝑆𝐺𝑆
𝑖𝑗 = 𝜌 𝜈𝑒

(︂
𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑣𝑗
𝜕𝑥𝑖

− 2

3

𝜕𝑣𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗

)︂
+ 𝜏𝑆𝐺𝑆

𝑖𝑠𝑜 𝛿𝑖𝑗 , 𝑓𝑆𝐺𝑆
𝑗 = − 𝜌 𝜈𝑒 𝑐𝑝

𝑃𝑟𝑒

𝜕𝑇

𝜕𝑥𝑗
, (A.9)

where 𝜈𝑒 is the kinematic eddy viscosity, 𝜏𝑆𝐺𝑆
𝑖𝑠𝑜 the isotropic part of the subgrid-scale stress tensor, and 𝑃𝑟𝑒

the SGS eddy Prandtl number, and are computed using the subgrid-scale models discussed in Section 2.
Additional details on the hybridized DG methods for compressible flows are presented in [21].
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