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Abstract. We introduce hybridization and postprocessing techniques for the Raviart—Thomas
approximation of second-order elliptic eigenvalue problems. Hybridization reduces the Raviart—
Thomas approximation to a condensed eigenproblem. The condensed eigenproblem is nonlinear, but
smaller than the original mixed approximation. We derive multiple iterative algorithms for solving the
condensed eigenproblem and examine their interrelationships and convergence rates. An element-by-
element postprocessing technique to improve accuracy of computed eigenfunctions is also presented.
We prove that a projection of the error in the eigenspace approximation by the mixed method (of
any order) superconverges and that the postprocessed eigenfunction approximations converge faster
for smooth eigenfunctions. Numerical experiments using a square and an L-shaped domain illustrate
the theoretical results.

Key words. mixed method, hybridization, eigenfunction, postprocessing, superconvergence,
nonlinear eigenvalue

AMS subject classifications. 65N25, 65N30, 66N15

DOI. 10.1137/090765894

1. Introduction. The subject of this paper is the Raviart—Thomas mixed ap-
proximation to the following eigenproblem: Find eigenvalues X in R satisfying

(1) ~V-(aVu)=Au inQ, u=0 on 0%,

for some nontrivial function w. While this problem has been extensively studied by
many authors [3, 7, 9, 17], the aim of the present paper is an investigation of its
facets hitherto left largely untouched, namely, computation by hybridization, post-
processing, and superconvergence of mixed eigenfunctions. Notational definitions and
assumptions on the matrix-valued function « and the domain 2 appear later.

The main features of this work are as follows:

1. We develop a hybridization technique to “condense” the mixed eigenvalue
problem to lower dimensions. The condensed eigenproblem is nonlinear, but
has significantly fewer degrees of freedom than the original mixed approxi-
mation.

2. We show that the mixed eigenfunctions can be postprocessed locally to obtain
more accurate eigenfunction approximations. We also prove that a projection
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of the error in the eigenspace approximation by the mixed method supercon-
verges.

3. We derive iterative algorithms for numerically solving the mixed eigenprob-
lem by two different ways: (i) hybridization followed by linearization, and
(ii) linearization followed by hybridization. We show that the two algorithms
are mathematically equivalent in the sense that they yield the same approxi-
mate eigenpairs at every iteration. We also give an algorithm which exhibits
cubic convergence numerically.

Hybridization [1, 5] is now a well-known technique for dimensional reduction in
the finite element context. It achieves reduction in the number of globally coupled
unknowns by condensing out interior unknowns, thus essentially discretizing a three-
dimensional boundary value problem on a two-dimensional manifold (the union of
mesh faces) if 2 is three-dimensional. This results in efficient numerical methods,
especially when finite elements of high polynomial degree are used. Hybridization
techniques, thoroughly studied for source problems, pose interesting questions when
applied to eigenvalue problems. The primary motivation for considering hybridization
of eigenvalue problems is to achieve the same reduction in size for the eigenproblem
that one achieves for the source problem. However, as we shall see, when this di-
mensional reduction is performed on the linear discrete eigenproblem, we obtain a
nonlinear discrete eigenproblem.

Other examples, where dimensional reduction converts linear eigenproblems to
nonlinear ones, can be found in computational chemistry. Here one approximates
the spectra of a linear Schrédinger operator in high (thousand) space dimensions
by a reduced eigenproblem in three space dimensions, obtained, e.g., via the den-
sity functional theory [14, 4]. While such drastic dimensional reduction poses serious
theoretical challenges, our simple dimensional reduction via hybridization offers an
example for rigorous study. In this example, we reduce a (mixed) linear eigenprob-
lem in n space dimensions to a (hybridized) nonlinear eigenproblem in n — 1 space
dimensions. We show that despite this dimensional reduction, we can capture all the
relevant low energy modes.

To briefly review the background literature on application of mixed finite elements
to eigenproblems, we recall that the first paper to state a result on the convergence
of the Raviart—-Thomas eigenproblem is [17]. This paper uses the abstract theory of
spectral approximations developed by Osborn [18]. The results of [17] were further
clarified and expanded upon in [3].

More recently, the superconvergence of (a projection of) mixed eigenfunctions has
attracted the attention of researchers [3, 10]. Considering that for the mixed approxi-
mation of the source problem, such superconvergence results are well known [1, 22], it
is natural to ask if a similar result can be found for the mixed eigenfunction approx-
imations as well. However, technical difficulties have obscured a clear understanding
of this issue so far, except in the case of the lowest order Raviart—Thomas method.
The fact that the lowest order method is equivalent to a nonconforming method [16]
was utilized in the eigenvalue context by [3]. In [10], Gardini used techniques similar
to those in [3] to prove a superconvergence result for lowest order Raviart—Thomas
eigenfunctions.

However, such techniques do not extend to the higher order case. In this paper,
we lay out a new approach for proving such superconvergence properties for eigenfunc-
tions. We first analyze a postprocessing operator, prove that it yields eigenfunctions
of enhanced accuracy, and as a corollary to this analysis derive the superconvergence
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properties. (In the known techniques for the source problem, one usually proceeds in
the reverse order.)

In the next section, we begin with the preliminaries on the hybridized Raviart—
Thomas method for both source and eigenvalue problems. In section 3, we present
the nonlinear eigenproblem resulting from hybridization of the mixed eigenproblem, as
well as a “close-by” condensed linear eigenproblem. Section 4 is devoted to the study
of a postprocessing scheme and superconvergence of the eigenfunctions. Iterative
algorithms for the numerical solution of the hybridized eigenproblem are described in
section 5. Finally, we present numerical results in section 6.

2. The hybridized Raviart—Thomas method. In this preliminary section,
we recall several well-known features of the hybridized Raviart—Thomas (HRT) mixed
method [1, 5, 20].

2.1. The source problem. Given any “source” f in L*(2), this problem is to
find the flux ¢/ and solution u/ satisfying

(2a) ' +avu =0 on €,
(2b) v ' i = f on Qa
(2¢) ul =0 on 99.

All functions are real-valued in this paper. Throughout, 2 C R" is a polyhedral
domain (n > 2), a: Q +— R™ " denotes a variable matrix-valued coefficient, which we
assume to be symmetric and positive definite on all points in 2. To facilitate our later
analysis, we introduce notation for the “solution operator” T : L?(2) — L?(Q), which
is defined simply by T'f = u/. It is well known that 7" is compact and self-adjoint.
Its spectrum, denoted by o(T"), consists of isolated points on R accumulating at zero.
Clearly, p is an eigenvalue of T if and only if g = 1/ for some A satisfying (1).

Consider the standard finite element setting where the domain 2 is subdivided
into simplices forming a mesh 7, satisfying the usual finite element (geometrical
conformity) conditions. We also assume that .7}, is shape regular. The collection of
interior mesh faces (i.e., the intersections of two adjacent simplices) is denoted by &},.
Let £ be a nonnegative integer. Define

Vi = {t] for every mesh element K, ¥|x € Py(K)" + ZPy(K)},
Wy, = {w| for every mesh element K, w|x € Pyx(K)},
M, = {p| for every interior mesh face e, p| € Pi(e), and plsq = 0}.
Given f in L?(2), the HRT approximations to ¢f and u/ satisfying (2) are given

as follows: (j’,fl, ui, and in addition n,{ (a variable approximating the trace of u/ on
element interfaces) are functions in Vj,, W},, and M}, respectively, satisfying

(3a) (cq Mg — (W, v 7 g + 7 oz, =0 Vit e Vi,
(3b) (V@ w) g = (fiw)g, Ywe W,
(3¢c) (1t (T;fl Moz, =0 Y € My,

where ¢ = a~! and 7 denotes the unit outward normal on element boundaries. The

differential operators above must be applied element by element. This, and the fact
that functions (such as 7) in (3) can have unequal traces from either side on the
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element interfaces, motivates the notation therein, namely,

(v,w)z, = Z (v, W)k and (v,w)oz;, = Z (v, W)oK,

Key, KeT,

where (u,v)p = [, uv dz whenever D is a domain of R", whereas whenever D is
an (n — 1)-dimensional domain, the same is denoted by (u,v)p. When no confusion
can arise, we omit the subscript .7}, to simplify notation. A general version of the
method (3) is considered in [6], wherein it is also proved that the above method is
uniquely solvable for all three variables. In analogy with T, we define the discrete
solution operator T} and the discrete flux operator Qp by Thf = u£ and Qnf = cf,{.
Here u} and ¢! solve (3).

The hybridized formulation (3) is attractive because it yields a “reduced” system.
To state it, we need more notation. Define A : V), — V3, B : V, — W, and
C:Vy— My by

(4)
(‘Aﬁ: F)Q = (Cﬁaf‘)yha (Bﬁa U)Q = _(U7V . myha <e]5)7 M>a% = </1'7ﬁ ﬁ>a%

for all p, 7€ V,, v € W}, and p € My,. Additionally, we need local solution operators
Q: My Vi, W: My, — W, Qu : L2(Q) = Vi, Uy : L2() — Wy, These operators
are defined using the solution of the following systems:

o GNE-CN 6 DED-Ch)
B 0 Upe 0 ’ B 0 WUy f -Pf
for any y € My, and f € L?(2). Here and throughout, P} denotes the L?(Q)-
orthogonal projection into Wj. The locality and other properties of these operators
are discussed at length in [5, 6], where we also find the following theorem.
THEOREM 2.1 (the reduced system [5, 6]). The functions qj{, ui, and 77£ in
Vi, Wi, and My, respectively, satisfy (3) if and only if 7],{ is the unique function in
My, satisfying

(6) an(71y, 1) = bn(u) € My,
(7) @ =)+, and
(8) uj, = Unj 4+ U f,
where ap(p1, pi2) = (¢ Qpu1, Qua) and by (p) = (f, Up).
We will need one more result. Denote the norm in X by | - ||x, the L*(Q)-norm
by simply || - ||, and set h = max{diam(K) : K € }}. Let II/" denote the Raviart—

Thomas projection [20]. Then we have the following superconvergence result for the
source problem.

THEOREM 2.2 (see [1, 6, 8]). Suppose the solution u/ of (2) and its flux ¢’
satisfies

9) HUfHHs(Q) + |\f7f|\Hs(Q) <l fl
for some 1/2 < s <1 for all f in L*(Q). Then

Juf — Pl || < ORIV 1@ — TEG || a0
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Although this theorem is often stated with s = 1 only, the proof in [6] applies
for any s for which one can apply /1" to ¢. For instance, the assumed condition
that s > 1/2 is sufficient for II/"¢ to be well-defined. Above, and in the remainder
in the paper, C' will be used to denote a generic constant (whose value at different
occurrences may vary) independent of mesh sizes, but possibly dependent on the shape
regularity of the mesh and polynomial degrees.

2.2. The eigenproblem. While (3) represents the source problem, our primary
interest in this paper is the eigenproblem. This is to determine a nontrivial (gx, up, )
in V, x Wy, x My, and a number )\, in R satisfying

(10a) (€Gn,T) 5, — (un, V- 7) 7, + (0, 7 W) oz, =0 vire Vi,
(10b) (V . (Th,w)yh = /\h(uh,w)gh Yw € Wy,
(100) </1,, (Th -ﬁ>a9h =0 VM e My,
or, equivalently,

A Bt ¢ qn 0
(11) B 0 0 Up = _/\h Up

e 0 0 s 0

This is a generalized eigenvalue problem of the type Ax = A\,Bx, but is nonstandard
because of the large kernel of B. Such eigenvalue problems have been considered
previously in [2], where preconditioned iterative techniques are suggested. Our aim
here is to reformulate it into a smaller eigenproblem via hybridization.

Equation (11) can be recast as a standard eigenvalue problem for Tj,. Indeed, it
is easy to see that Thup = Aihuh if and only if A\; and wy, satisfy (11). Furthermore,
note that although we defined 7T}, as an operator on L%(€)), by the definition of the
HRT method,

(12) TP =Ty,

where P}V, as before, denotes the L?(Q)-orthogonal projection into W),. Hence the
nonzero part of the spectrum of T}, is the same as that of Ty |w,, .

Recall that T} is a self-adjoint operator. This follows from the easy identity
(f,Thg) = (cQng, Qnf), which holds for any f, g € L*(Q2). Moreover, T} |y, is positive
definite because if T, f = 0, then by the above equation we find that @, f = 0, which in
turn implies that f = 0 by (3b) whenever f is in W},. Hence, the mixed eigenvalues A,
are all positive. Since the domain and range of Tj|w, equal W}, the numbers {1/A,}
are eigenvalues of a square matrix of dimension dim(W},). Therefore, the number of
mixed eigenvalues, counting according to multiplicity, is exactly dim(W},).

Finally, we recall that the problem of convergence of the mixed eigenvalues and
eigenspaces has been studied by several authors [3, 17]. In particular, it is known
that the elements of the discrete spectrum o(7},) converge to the corresponding exact
eigenvalues in o(7T'). In fact, given any neighborhood (no matter how small) of 1/A €
o(T) containing no other eigenvalue of 7', there is an hy > 0 such that for all A <
ho, there are m eigenvalues of T}, denoted by 1/)\511), 1//\512), cee 1/)\517”) (counting
according to multiplicity) in the same neighborhood. Here, m is the multiplicity of
1/A. Moreover, the following theorem on the rate of convergence is also known [3, 17]
(although it is not stated in this form in these references). Throughout this paper,
we let E\ denote the eigenspace of T' corresponding to eigenvalue 1/\, while we use
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E , to denote the direct sum of the eigenspaces of T}, corresponding to 1/ )\S) for all
i=1,2,...,m. Whenever we use these notations, it is tacitly understood that h has
been made “sufficiently small” so that quantities such as 1/ )\S) can be identified.

THEOREM 2.3 (see [3, 17]). Suppose 1/A € o(T) and sy is the largest positive
number such that

(13) I | ezon ) + ! | reasr (@) < Cregll 2y VI € B

Assume sy > 1/2. Then there are positive constants hg and Cy (both depending on
A) such that for all h < hy,

(14) |)\ — )\S)| S O}\ h2min(s/\’]€+1)’
(15) 5(E)\7E)\,h) < C)\ hmin(sx,k—l—l)’

where §(Ex, Ex ) is the gap between Ey and Eyj, as subspaces of L*().

The above-mentioned “gap” between two subspaces X and Y of L%(f2), denoted
by 6(X,Y), is the number given by
(16) 5(X,Y) = sup dist(z,Y) — s dist(y, X)

eex Izl vey |yl

Above, we have used the simplified definition of the gap in Hilbert spaces [13], since
L?(Q) is Hilbert. Another remark regarding Theorem 2.3 is that the condition sy >
1/2 is required only because the proof uses the Raviart-Thomas projection II}*"§ into
Vi, which is well-defined as soon as the components of ¢ are in H*(2) for s > 1/2.

One of the aims of this paper is to prove that better eigenspace approximations
(with faster convergence rates than in (15)) can be found by postprocessing the com-
puted basis for E) ;. We will return to this issue in section 4. But before that, let us
develop a hybridization technique for the eigenproblem.

3. Hybridization of the eigenproblem. In the previous section we recalled
that the main advantage of hybridization for the source problem is that all components
of the solution can be recovered by means of a reduced, or “condensed,” system,
namely,

(17) an(nl, p) = (f,Un)  Yu € My,

given by Theorem 2.1. It is natural to ask if such a technique can be designed for the
eigenvalue problem. In particular, since the source problem condenses to (17), one
may hazard a guess that the eigenvalue problem may be related to finding A, and
7, Z 0 satisfying

(18) an (7, 1) = M (Wi, Upt) Y € My

A few immediate questions then arise: First, what is the relationship between the
mixed eigenvalues \j, of (11) with the above A\;? Are they the same? On closer in-
spection, we see that (18) is a generalized matrix eigenvalue problem of size dim(M},),
so the number of \,’s, counting according to multiplicity, is dim(M},). On the other
hand, as we have already seen (in section 2.2), the number of A,’s equal dim(W},).
Since dim(Mjp,) is increasingly smaller than dim(W}) as the polynomial degree & in-
creases, condensed systems like (18) can be expected to lose more and more eigen-
modes as k increases. Have we lost any of the physically important low energy modes?
The purpose of this section is to answer such questions.
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3.1. Reduction to a nonlinear eigenvalue problem. Our first result towards
answering the questions raised above is the next theorem. Let hx = diam(K) for any
element K in the mesh, let h = max{hg : K € J,}, and let || - ||;= denote the
Euclidean norm as well as the norm it induces on n x n matrices.

THEOREM 3.1. There exists a constant C., independent of the polynomial degree
k and the element sizes {hi}, such that any number

(19) Ap < %
satisfies
(20) an(Mhy 1) = A (1 = ApUw) ™ WUnp, Up) Vi € M,
with some nontrivial ny, in My, if and only if the number A\, and the functions
(21) My up = (I —MWw) " Unp,  and  gn = Qi + A Quup
together satisfy (11). We may choose C to be any constant satisfying
9
G < 4 Cmax’

where cmax denotes the mazimum of ||c(x)||ez for all x in Q. Above, the operator I
denotes the identity on Wy, and the inverse in (20) exists whenever (19) holds.

The implications of this theorem are as follows. First, the condensed form a(-, )
does not lose the low energy modes, as the lower eigenvalues satisfy (19). For the
source problem, we know that the condensed form is very useful for high degrees k,
as the dimensional reduction lowers the number of globally coupled unknowns from
O(k™) to O(k™~1). Theorem 3.1 shows that the condensed form retains this advantage
for the eigenproblem.

Second, while (20) is indeed smaller than the original system (11), it presents
a nonlinear eigenvalue problem, for which there are fewer algorithms than standard
eigenvalue problems. We will discuss our algorithmic options in section 5.

Third, consider a fixed mesh and let the polynomial degree k increase. We know
that the extent of the spectrum increases. The theorem indicates that since C, remains
fixed independent of k, the condensed form (20) may miss the oscillatory eigenfunc-
tions at the high end of the spectrum. But the theorem guarantees that the lower
end of the spectrum can be recovered. High k computations are commonly used for
capturing (the smoother) low energy modes with high accuracy. These are the modes
that the formulation (20) does not miss.

Finally, the theorem also tells us that since (20) and (18) are not identical, we do
not expect ;\h and A, to coincide in general. Nonetheless, (20) opens an avenue for
comparing \;, with Ap. We shall do so in section 3.2.

In the remainder of this subsection, we prove Theorem 3.1. First recall from (4)
that the operator Bt : W), — Vj, is the L2-adjoint of the divergence map from V}, to
Wh, i.e.,

(22) (Blw, Mk = (w,V -7k Yw € Wy, V7€ Vi, VK € .

We need the following lemma. Below, the notation || - | p denotes the L?(D)-norm.
LeEMMA 3.1. For all w in Wh,

2
lwllze < 5 hic||Bw k.
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Proof. Consider the right inverse of the divergence map, denoted by D : L?(K)
H(div, K), analyzed in [12]. It is proved in [12, Lemma 2.1] that

(23) v (Dy) =,
(24) [Pl < 2hucllx

for all ¢ in L?*(K), and furthermore that if ¢ € Py(K), then Dt is in ZPy(K).
Therefore, given any w € Wy, we can choose ¥ = Dw|k in (22) to get

(B'w, Dw)k = (w, V- Dw)k = |[wll}

by (23). Thus, applying the Cauchy—Schwarz inequality to the left-hand side and
using (24), we finish the proof. |

Note that the inequality ||w||x < Chxk||B'w||x can easily be derived from a simple
scaling argument, but the constant C' so derived may depend on the polynomial degree.
The use of the D operator in the above proof gives us the k independent constant of
Lemma 3.1.

LEMMA 3.2. Let K be any mesh element and let f,g € L*(K). Then

4
(26) U fllx < emax g PNl
where K, denotes the mazimum of ||c(x)|| ¢ for all x in K.

Proof. Recall from (5) that the local solution operators Qy f and Uy f satisfy
(27) (cQf, ") rk — (Unf, V- T)g =0,
(28) (w, V- Q flx = (f,w)k

for all 7in V}, and all w in W},. The proof of (25) follows immediately from the above
equations:

(f,Uvg)x = (Uwg, V- fx by (28)
= (cQg, WSk by (27).
To prove (26), first note that since B'U,, f = —AQ,, f, using Lemma 3.1,

2 4
I 1 < (ShclBU Sl ) = 391420 11

4 4
< §h§<0£ax(c Qva QWf)K = §h%(6£ax(uwfv f)K

by (25). Thus, an application of the Cauchy—Schwarz inequality proves (26). a0

Proof of Theorem 3.1. Suppose A, up, Gn, and 7y, satisfy (10). Then set f = Apup,
and apply Theorem 2.1 to get up, = Unp + WU f = Unp, + U (Apup). Here 7y, is
nontrivial as it satisfies ap, (1, 1) = (f, Up) for all p with a nonzero f. Now we can
recursively apply this identity ad infinitum:

up = Unp + U (Apur) = Unp + A (U un)
= Uny, + )\huw(unh + uw()\huh))
(29) = (I 4+ AUp) + AU ) + AU )? + -+ ) Unpp.
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The series in (29) converges in norm, as we now show. By Lemma 3.2, ||\, Uy f|| x <

Mckox 3 b3 | fll k- Hence, whenever

4
(30) ek . 3 h% < 1
the L?(K)-operator norm of A\, Uy (+) is less than one and the series in (29) converges.

Set C, to be any constant satisfying
Ci* > % max{ck K € ,}.
Then whenever (19) holds, inequality (30) holds and the series in (29) converges. The
limiting sum of the series is obviously given by
(I = MUw) ™" =T+ (Anl) + Al )® + AUy )® +- -
Hence, returning to (29), we find that
(31) up = (I — MUy )~ Unp,.

Applying Theorem 2.1 and setting f = Apup with the above expression for up, we
conclude that Aj, satisfies (20).

To prove the converse, suppose (20) holds for some nontrivial 7, and some number
A satisfying (19), with the above-defined C,. Then, as we have shown above, the
inverse in (31) exists. Set uy by (31) and f = Apup. Multiplying (31) by I — AUy
and rearranging, we obtain

(32) up = Unp, + Uy f.

Next, set

(33) Gn = Qnn + Qv f.

Also, (20) is the same as

(34) an (1, ) = (f; Upp).-

Equations (32), (33), and (34) imply, by virtue of Theorem 2.1, that the functions
Nhy Gh, un, and f = Apuy, satisfy (10). a

3.2. The perturbed eigenvalue problem. This subsection is devoted to com-
paring the mixed eigenvalues \;, with the eigenvalues An of (18). Clearly, An can be
computed by solving a standard symmetric generalized eigenproblem, for which the
algorithmic state of the art is well developed. On the other hand, the mixed eigen-
values A, satisfy the nonlinear eigenvalue system (20). We will now show that the
easily computable n provide good approximations for A; in the lower range of the
spectrum. In particular, they can be used as initial guesses in various algorithms to
compute \p, (discussed later in section 5).

THEOREM 3.2. Suppose Ap, is an eigenvalue of (10) satisfying (19). Then there
is an ho > 0 (depending on Ap) and a Cy (independent of \p,) such that for all h < ho,
there is an eigenvalue N\, of (18) satisfying

An = Al
h

< C1 M\ B2
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_ Proof. This proof proceeds by identifying two nearby operators for which A, and
A, are eigenvalues. First, define an operator Sy : My, — M}, by

an(Snp,v) = (Up, Wy) Yy € M.
Then (18) implies that the reciprocals of {\,} form the spectrum o(S},), i.e.,
1

Shiih = =— .-
n /\h77

Next, for any number x > 0 such that I — kU, is invertible, define another operator
Sg : Mh — Mh by

an(SEu, ) = ((I — KUy )~ Up, Uy) Yy € Mp,.

The eigenvalues of S; are functions of , and we enumerate all of them by {1/ AS) (k)}.
We know from Theorem 3.1 that if we set x to any of the mixed eigenvalues A
satisfying (19), we have

1
Spnn = —nn when k = \p,
Ak

where 7, is the nonlinear eigenfunction corresponding to Ap. In other words, there is
an index £ such that

(35) AP (M) = M.

The index ¢ may depend on Ay, but for every eigenvalue \j, satisfying (19), there is
such an /.

As a next step, we observe that both Sj, and S; are self-adjoint in the ap(-,)-
innerproduct. While the self-adjointness of S is obvious, to conclude that of S},
first note that Uy, is self-adjoint in the L2(£2)-innerproduct. This is because of (25)
of Lemma 3.2. Consequently, so is (I — rly )~ 1. Thus

an (S y) = (I — £Uy) ™ Up, Wy) = (Up, (I = £y )~ Uy) = anlp, SE),

and the self-adjointness of Sj follows. Let N = dim(Mj3), and let us enumerate the
eigenvalues of S}, and S’ monotonically by

AV (k) < AP (R) < -+ < A (w),

A< 3O <<,

IN

Applying Weyl’s theorem [23] on eigenvalues of self-adjoint operators, we conclude
that

1 1

(36) — < | S ISy, — Shlla,
e

where the norm

an((Sy, = Skh)v, 1)
Sy —Sulle = su
155 = Sl et an () 2an (i, 1)/
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is the operator norm induced by ap(-, ).
The final step of this proof consists of estimating the above operator norm. Sub-
tracting the defining equation of S}, from that of S},

an((S; = Sn)v, 1) = (I — KUy )~ Uy — Uy, Up)
= (KU (I = KUy )~ Uy, Ups).

By Lemma 3.2,

/12
T T T g L

——||U

where Cf = 4cE, /9. Choosing hg to be sufficiently small, we can find a 6 > 1 such
that (1 — kCjh%)~1 < 6 for all h < hg. Hence,

(37) an((Sy = Su)v, 1) < 0CT K R? U [[Upll.

To bound the right-hand side appropriately, we now recall two inequalities. The first,
proved in [6, Lemma 3.3], states that

(38) [Upll < Collplln, — where ullz = Y hllplFzom),
Ke7y,

for all p in Mj,. The second is the Poincaré-type inequality
(39) Cillplli < an(p,p) Y € My,

which is established in [11] (see the proof of [11, Theorem 2.3]). (The constants Ca, Cs
are independent of h, but may depend on the shape regularity of the mesh and k.)
These two inequalities, when applied to the right-hand side of (37), imply that

an((SF = Su)y, 1) < Cikh2an(y, 7)Y 2an(p, p)"/?

for all v, u € My, with C; = 0C;C3/C3. Hence ||Sf — Splla < C1rh>.
To conclude, we return to (36), which now implies that

AV (k) = AP < O AP AP (k) 12,

We apply this inequality with k = Aj,. In view of (35), this means that for every A,
we have a ;\Ef) satisfying |\ — ;\Ef)| < C’S\g))\ﬁ h2. O

In section 6, we verify numerically that a few values at the lower end of (S}) are
indeed O(h?)-approximations of the corresponding eigenvalues in o(T},). Therefore we
conjecture that the convergence rate with respect to h given in Theorem 3.2 cannot
be improved in general. We conclude this subsection by noting that in the lowest
order case k = 0, the mixed eigenvalues A, as well as the perturbed eigenvalues
An of Sp, converge to the exact eigenvalue at the same rate of O(h?), assuming the
eigenfunctions are smooth enough. It pays to be wary of this coincidence, as it holds
only in the lowest order case. Indeed, to recover the full rate of approximation in the
higher order case, we must compute \j, not M.
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4. Superconvergence and postprocessing. It has long been known that the
solution obtained by the mixed method for the source problem can be postprocessed
to obtain new solutions of enhanced accuracy. This was first shown in [1]. Better
postprocessing procedures were obtained later in [22]. In this section, our goal is to
generalize the latter to the eigenproblem.

Before we embark on this, let us note a major difference in the analysis of postpro-
cessing between the source and eigenvalue problems. The efficacy of postprocessing
for the source problem is proved using the superconvergence result of Theorem 2.2.
However, for the eigenproblem, such a superconvergence result is not yet available
(except in the lowest order case [10]). Therefore, we first present a technique for ana-
lyzing the postprocessing scheme directly without any knowledge of superconvergence
of eigenfunctions. Furthermore, we show afterward that this postprocessing result
implies a superconvergence property for the eigenfunction error.

Let us first define the local postprocessing operator L,(u’,q’), following [22].
Given a pair of functions u’,q’, the operator gives a function v”’ = Ly(v/,q’) in
Pi11(K) defined element by element as follows:

(40a) (V" ,Vwes1)x = —(cq',V Wis1)k Vwyi1 € Py (K),
(40Db) (u” ) = (v, vp) Vg € Py(K)

for all elements K € .7;,. Here Pkili (K) denotes the L?(K)-orthogonal complement
of Pp(K) in Pry1(K). The following theorem is essentially contained in [22]. The
estimate of the theorem can be proved by a local scaling argument.

THEOREM 4.1 (see [22]). The system (40) uniquely defines u” in Pyy1(K) for
all0 < ¢ <k, given u' and ¢' in L*(K). Furthermore, for any u in H'(SY), setting

—

7= —aVu, we have
" —ull < C(lulsoy + BT’ — 71+ 1P = w)])

forall0<t<k+2and all0</{<k.

The postprocessed eigenfunctions are obtained by first computing a mixed eigen-
function w, and its corresponding flux ), (see (10) for their definitions) and then
applying Ly to this pair:

(41) Un,e = Lo(qh, un).

To describe the corresponding eigenspace precisely, recall the notation and asser-
tions of Theorem 2.3. For sufficiently small h, we know that the direct sum of the
eigenspaces corresponding to all the eigenvalues )\S) approximating A, namely, F) p,
approaches the exact eigenspace E\. If m is the multiplicity of A, then there are m

linearly independent eigenfunctions ugj), 1=1,2,...,m, of T}, each corresponding to

the eigenvalue /\Ef). Let (f,gi) denote the flux of ugf). Then the postprocessed eigenspace

is defined by
(42) B, =span{a ), al), ..., a7}, where 4, = Lo(q",ul)).

The following theorem shows that the postprocessed eigenfunctions converge at a
higher rate than in Theorem 2.3 for sufficiently smooth eigenfunctions.
THEOREM 4.2. Suppose sy is the largest positive number such that

(43) 1 1o () + 1w [Lzrens1 () < CYENf N2
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holds for all f in E\. Assume that sy > 1/2. Then there are positive constants hg
and C, depending on \, such that for all h < hg, the postprocessed eigenspace satisfies

(44) 5(E)\,E§’h) < Ohmin(sx,l)hmin(sx,k—!—l)
for all0 <0 < k. We also have the superconvergence estimate

(45) 5(P;‘;VE)\,E)\J1) < Ohmin(s,\,l)hmin(sthrl).

In the case of a simple eigenvalue A, for small enough h, there is just one element
of the spectrum o(7}) approximating A as h — 0. In this case, Ej; is the one-
dimensional eigenspace of that eigenvalue. If (43) holds with sy > k+ 1, and u € Ej,
up, € Eyp, and 4y, € E§7h are all functions of unit L2(Q)—n0rm, then Theorem 4.2
implies that

lu— (F)anl < CH*2,
1Py u — (F)un|l < Ch*2,

where the notation ||u — (£)v]| = min(||ju — v||, ||u + v||) is used to disambiguate any
directional mismatch between the eigenfunction and its approximation. For multi-
dimensional eigenspaces, we must of course use the more general notion of the gap
defined by 4(-, ).

Condition (43) is an assumption on the regularity of eigenfunctions. It is known to
hold with sy depending on the angles of reentrant corners as well as symmetries in €2,
when « is smooth. For example, suppose a = ¢ = 1 and (2 is a polygon having a vertex
formed by edges meeting at an angle 7/w measured from within Q. If w is an integer,
then the eigenfunction is infinitely smooth near that vertex. If not, it is of the form
Cr¥ sin(wf) near the vertex [15] (with r, 8 being the local polar coordinates), which
limits the number s, in assumption (43). In the case of an L-shaped domain in R
numerical experiments with the lowest order Raviart—-Thomas elements are reported
in [10]. The eigenfunction u;, computed there approximates an eigenfunction w in
H*+1(Q) (with its flux § € H*(Q)) with s arbitrarily close to 2/3. The observed rate
of convergence for ||[Pu — (+)uy| reported in [10] is approximately 4/3, which is
in accordance with Theorem 4.2. We will report further numerical experiments in
section 6.

The remainder of this section is devoted to proving Theorem 4.2. The proof relies
on the properties of the operator T,EE) : L2(Q) = L2(Q) defined by

(46) TA;Ez)f = Lo(Qnf, Trf).

The following lemma establishes the important properties of this operator when ¢ = k.
LEMMA 4.1. The nonzero eigenvalues of T,Ek) coincide with the nonzero eigenval-
ues of Ty,. Furthermore, if up is an eigenfunction of Ty such that

(47) Thuh = ﬁuh
for some B > 0, then

(48) T 4y, = By,
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where Gy, = Li(qh,up) and gy, is the flux of up. The multiplicity of 8, as an eigenvalue
of Ty, or T,Ek), s the same.

Proof. Let W,j- denote the orthogonal complement of W), in L?(Q2). Since the
right-hand side of the equations of the method, specifically (3b), vanishes if we set f
to any wt in Wb, we find that Tj,w’ = Q,w' = 0, which implies that

T,Ek)wL =0 Vuwt e Wik

Therefore T,Ek) can have at most dim(W},) nonzero eigenvalues, counting according to
multiplicity.

Let us now prove that each eigenvalue of T}, is also an eigenvalue of T,Ek) Let up,
satisfy (47) and set @y, = Lk (qh,un). Then

kg

h Li(Qntin, Thiig) by (46)
Lk(QhPh tp, T Py tin) by (12)
= Li(Qnun, Thun) by (40b)
= Lk(Bah, Bun) = B,

and so we have shown (48).
That the multiplicity of 3 is unaltered follows from the injectivity property that if
0 = tp = Lk(qh,un), then up = 0, an obvious consequence of (40b) when ¢ = k. a
Proof of Theorem 4.2. As a first step, we prove (44) when ¢ = k. In this case,

by Lemma 4.1, the postprocessed functions are eigenfunctions of the operators T,Ek).
Hence the distance between their span and the exact eigenspace can be bounded using
the abstract theory of eigenvalue approximations of [18, Theorem 1], yielding

(k)

. Tf—7T

(49) 5B B ) < ¢ sup JTI =TT
R S T

To bound the numerator above, we use Theorem 4.1 to get
(50) [l = afll < C(R 2l ey + hIG, - @ + lluf, — BT,

where ﬁ£ = T,gk)f and ¢t < k. Since we have assumed (43), we know that (9) holds
with s = sy, so Theorem 2.2 implies

luf = By || < CR™eAD (|17 — 15 || + || v - (@ — 1257 ))
< CR ™D (B | s ) + BTV @ e o)
with 7 + 1 = min(sy, k + 1). Note that V-¢’ = f = \uf for all f in E), so the
higher order norm on V - ¢/ can be bounded using higher norms of u/. We bound the
right-hand side of (50) using the above, as well as the well-known estimate
la, — &'l < Cld — I ).

Then we obtain

||uf - Aﬁ” S Cht+2|uf|Ht+2(Q) + Chmin(shl) (hr+l|(7f|Hr+1(Q) + hr+1|)\uf|Hr+1(Q)).
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We set t = r so that ¢t + 2 = min(sy + 1,k + 2) and the regularity estimate (43) can
be used to bound the higher order norms on the right-hand side. Thus,

||Tf - T;Ek)f” _ Huf _ ah” < O(hmin(s,\+l7k+2) + hmin(s,\,l)JrrJrl) ||f||
< Chmin(sk,l)—o—min(sk,k—i—l)”f”

for all f in Ey. Using this in (49), we prove (44) for the case ¢ = k.
Our next step is to prove (45). By the definition of the gap (16),

dist(PYu, E
O(Py Ex,Exp) = sup w
vt lul

By the definition of the postprocessing in the ¢ = k case, we know that E)j; =
P,f"E])’f_’h. Hence

dth17%}17E§h)

§(Py Ex, Exn) = sup

ueB) [l
Now, since
dist(Py u, ngth) < dist(u, E§7h),
we have
(51) 8P Ex, Ean) < sup S IAN) s ey < one

uEEy |

by using (44) with ¢ = k. Here 0 = min(sy, 1) + min(sx, k + 1). This proves (45).
The final step to end the proof of the theorem involves proving (44) for ¢ < k —1.
We know from (45) that

sup dist(Py u, Ex ) < Ch?,
ueEy, ||lul|=1

with o as in (51). Therefore, for all v in Fy with unit norm, we have

(52) min ||P¥Yu — o] < Ch?.
\.h

vpEE
This minimum is attained by the function u}, in F) j satisfying
(53) (P u—up,vp) =0 Yoy € Exp.

Expanding the above-found u), in terms of the eigenfunctions ug) that span Ej 3,

m
i=1

for some numbers ~;, we define a postprocessed function ), in Ef\ n by

i, = Lo(@up),  where g =Y ma.
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By Theorem 4.1,
(54) lu—anll < CCR"™ 2 Jul vy + Ay — Gl + luj, — Py ull),

with ¢ + 2 = min(sy + 1,k + 2). To bound the flux error on the right-hand side, note
that

(e(q—= ap) 117G = Gp) = (u =y, V- (I17"7 = ) by (10a) and (10c)
= (PYu—up, PV -§—V-qy)) as V- Il = B v+
= (ng — up, AP U—Z)\h ’yzuh ) by (10b).

=1

Because of (53), we can replace the last sum by any function in E} p, in particular
by Auj,. Hence,

(e (7= an), "G — Gy) = M Py u — up ||,
and consequently
17— anll < C(IPw — | + llg— 117" G-

Now returning to (54) and using this estimate there, together with the standard
approximation estimate for I/", we obtain

lu—ap |l < C(R 2 ul e ) + B2 T geer o) + llug, — P ull)
< Ch'™2 4+ C|\uj, — PP ul.

Here we used the regularity assumption (43). We could do so because t + 1 =
min(sy, k 4+ 1). We have also used the fact that [Ju| = 1. Since @), is in the post-
processed eigenspace Ef{ 5, the above estimate implies that

dist(u, 5 ) < Ch'*? + C|luj, — PV u.

The last term can be estimated using (52), because the minimum there is attained by
u},. Moreover, since these arguments hold for every v in E\ with unit norm, we have

sup  dist(w, Ef’h) < C(h'™2 +h9),
u€EN,|lull=1

Since t + 2 < o, we have thus proved (44) for all ¢. a

Remark 4.1. That the dimensions of E \n and Ey coincide was immediately clear
for the £ = k case from Lemma 4.1. The spaces are of equal dimension even for other
values of ¢. This follows as a corollary of (44), by which we can conclude that the
gap between the spaces becomes less than one for small enough h and by standard
results on the gap (see, e.g., [13, Lemma 221]). Thus, for sufficiently small h, there is
no danger of two linearly independent eigenmodes being postprocessed into linearly
dependent ones, even when ¢ = 0.

5. Algorithmic strategies. The aim of this section is to discuss various al-
gorithmic options for solution of the mixed eigenproblem. We begin by considering
the nonlinear eigenproblem (20). Although it is not easy to solve a general nonlin-
ear eigenproblem, we are in the fortunate situation of having very accurate initial
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approximations by solving one standard eigenproblem, namely, the perturbed prob-
lem analyzed in section 3.2. Therefore, standard locally convergent iterations such as
Newton’s method are well suited for solving (20), as discussed in section 5.1. We can
also solve the original mixed eigenproblem (11) directly by recasting it as a nonlinear
system ready for Newton iteration. The linearized system needing solution in each
Newton step can then be hybridized for efficiency. This process can be viewed as
linearization followed by hybridization. We investigate this approach in section 5.2.
In contrast, the above-mentioned approach of section 5.1 consists of hybridizing (11)
first to get a nonlinear eigenproblem and then applying a Newton iteration; i.e., it is
hybridization followed by linearization. One of our results in this section (proved in
section 5.3) is that both approaches yield the same algorithm. This is pictorially illus-
trated in the commuting diagram of Figure 1. In section 5.4, we derive an algorithm
which exhibits cubic convergence numerically.

5.1. Solving the nonlinear eigenproblem. Hybridization of (11) gives rise to
the nonlinear eigenproblem (20). Here, we will recast this as a problem of finding the
zero of a differentiable function and apply the Newton iteration. This is a standard
approach to solve nonlinear eigenproblems [21]. First, define the operator A : My —
My, by

(Ap,y) = an(p,y) Y,y € M.

Above, the notation (-,-) (without any subscript) denotes the L?(&},)-innerproduct,
e, (1,7) = D ces, (1, 7)e- Also define M () to be the operator-valued function of A
given by

(MM, ) = (I = AUy) ™ Ups, Uy).

The nonlinear eigenproblem then takes the following form: Find n € M, and A > 0
satisfying

(55) F(n,\) = (A”@; %]\{ @’7) =0.

The first equation of the above system is the same as (20), while the second is a
normalization condition. Other normalization conditions can also be used. We apply
Newton’s method to solve (55). Calculating the Fréchet derivative of F' at an arbitrary
(n,A) and writing down the Newton iteration, we find that the next iterate (', \') is
defined by

(A=AM)(0 —n) = (N = )NXN)n\ _
(56) < 2(n,n' — 1) > =—F(n,A),

where N(\) = M(\) + AdM/dA. Tt is easy to see that
(N ) = (I = Xy ) "2 Ups, Uy).
Assuming that the initial approximation n satisfies (n,n) = 1, we can rewrite (56) as

(57a) (A=AMN)n" = (N = AN,
(57b) <77777I> =1
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This is the basis of our first algorithm. Observe that the first equation implies that
1’ depends linearly on \' — \. Hence we can decouple the above system and rearrange
the computations, as stated in the next algorithm.
ALGORITHM 5.1 (hybridization followed by linearization). To solve for a nonlin-
ear eigenvalue and eigenfunction satisfying (20), proceed as follows:
1. First obtain an initial approximation 7y and Ay by solving the linear eigen-
problem

A770 = )\0M(0)’I70

2. For n=0,1,2,..., until convergence, perform the following steps:
(a) Compute 77 by solving the linear system

(58) (A - /\nM()‘n))ﬁ = N(/\n)nn-

(b) Set 6 = 1/{, mn).
(c) Update the eigenvalue: A,41 = \p, + 0x.
(d) Update the nonlinear eigenfunction: 7,41 = 7.
Step 1 of the algorithm gives good initial approximations, as already established
in Theorem 3.2. The value of §), equaling the difference of successive eigenvalue
iterates, is determined by (57b).

5.2. Linearization followed by hybridization. Now we wish to investigate
what happens if we perform hybridization after we apply Newton iteration on the
original mixed eigenproblem. Let us first recast (11) as the problem of finding a zero
of a nonlinear function on V; x Wj, x M}, x R defined by

A B e [{ 0

N B 0 0 ul +X|u

F(q,u,m,\) = e o0 o , 0
(m,m) —1

A derivative calculation easily shows that the Newton iteration for this F' defines a
new iterate (¢’,u’,n’, \'), given an initial iterate (q,u,n, \), by

A Bt @t q’ 0
(59a) B D 0 W]l =-\N=XN[u],

¢ 0 0 7 0
(59b) <77/777> =1,

where D : Wy, +— W}, is defined by
(Du,v) = A(u,v) Yu,v € Wp,.

The next step is to hybridize (59a). Our aim is to obtain an iteration (after hybridiza-
tion) in M}, which has fewer degrees of freedom than W), as k increases. Notice that,
in anticipation of this possibility, we have chosen to normalize 1 in (59b), not u as
one might typically do.

To hybridize (59a), we need local solution operators analogous to the earlier ones
in (5). Define the operators Q*, U*, Q}\, and W) by

o (35) (we) = (0" (5 D) 8- (ay)-
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Now an important difference from the situation in (5) arises; namely, the invertibility
of the above local operators depends on D, i.e., on A. From the identity

I 0\ (A BY (A Bt
84! 1)\ D) \0o D-—BA !B

and the fact that A is invertible, it is clear that (é %t) is invertible if and only if
D — BA~IBt is invertible. Thus, a sufficient condition for the local solution operators

n (60) to be well-defined is that
(61) Mu,u) — (A7 B, Blu) > 0.

By Lemma 3.1, ||Jul|% < &, (4/9)h% (A~ 1B, Blu)k. Hence, whenever A\ satis-
fies (19) with C\ < 9/4c¢max, inequality (61) holds and consequently the local maps
in (60) are well-defined. Then we have the following result. Its proof proceeds as the
proof of Theorem 2.1 (see [6]), so we omit it. (In fact a lower order term is included
in [6, Theorem A.1], albeit with a sign opposite to what we have here.)
PROPOSITION 5.1. Suppose A satisfies (19). Then the functions ¢',u’, and ' in

Vi, Wh, and My, respectively, satisfy (59a) if and only if 0 satisfies

an(n' 1) = (N = A)(u, Un) Vi € M,
7 =" + (N - NQu, and
o =W+ (N = AW,

where
an(pins po) = (€ Q 1, QM p2) — AU g, UM o).

In view of this result, we have the following implementation of (59). Again, we
exploit the linearity of the n’ with respect to M’ — A to decouple the two equations
of (59).

ALGORITHM 5.2 (linearize and hybridize). To solve the mixed eigenproblem (11),
proceed as follows:

1. Set Ao and 71y by solving the linear eigenproblem Any = Ao M (0)np.

2. Set ug = (I — /\()uw)_lun().

3. For n=0,1,2,..., until convergence, perform the following steps:
(a) Compute 7 by solving the linear system

(62) ap (i, 1) = (un, UM ) Vi € My

(b) Set dx =1/, 7n).

(c) Update the eigenvalue by A\,41 = Ay, + 0.

(d) Update the approximation from M}, by n,4+1 = dx7.

(e) Update eigenfunction u by w11 = (I — Ap1 Uy ) "1 Unpn1.

Notice that this algorithm maintains an iterate u,, in W}, in addition to the n,’s
in Mj. The computation of w,, is local and inexpensive. The formula for updating
Uy, in step 3(e) is motivated by the form of exact eigenfunction u, as seen from (21)
of Theorem 3.1.

5.3. Equivalence of the algorithms. We are now in a position to precisely
state what we indicate in Figure 1. We show that the two algorithms presented earlier
are mathematically equivalent (assuming no roundoff) in the next theorem.
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Mixed eigenproblem b Nonlinear eigenproblem

linearize
oz1IRAUI]

. . hybridize .
Newton iterations Same algorithm

Fic. 1. Two strategies yielding the same algorithm.

THEOREM 5.1. The iterates n, and A, of Algorithms 5.1 and 5.2 are identical.

Proof. Both algorithms start with the same initial approximation. Algorithm 5.1
updates the iterates after solving (58), while Algorithm 5.2 requires the solution
of (62). These two linear systems can be rewritten as

(63) an (i, 1) — AT — ANUy) ™ Wi, Up) = (1 — AUy ) ~2Un, Upa),
(64) ap (2, 1) = (I — AUy )~ Un, UM p),

where 7 and X\ are the iterates at any stage. To distinguish the solutions of (58)
and (62), we have denoted them 7); and 7j2, respectively.

To compare these systems, we first examine the difference between Q*, U* and
Q,U. Rewriting the definition (60) of Q*u, UMy as

ERIEONED)

we find, by linear superposition, that UMy = Uy + Uy (AU ) and Q = Qu +
Qy (AU ). Therefore, we can express 9, UMy using the original local solvers in (5)
by

(66) W= (I = AUy)  Up,
(67) QM= Qu + Qy (A — AUy ) ™M Up).

Equation (66) already yields that the right-hand sides of (63) and (64) coincide:
Indeed,

(1 = AU ) ™M Un, W) = (T = AUy )~ Unp, (1 = AUy) ™ Ups)
= ((I = AUy ) ~*Un, Up),

where we have used that (I — AU, )~ ! is self-adjoint in L?(Q2), a fact that follows
immediately from (25).
We will now show that the left-hand sides of (63) and (64) also coincide:

ap(n, ) = (¢Qn, Q) — MUy, UM ) by Proposition 5.1
(68) = (9™, Q%) = A((1 = Aly) ™ U, Up) by (66).
Now we use (67). To simplify, we note that by [5, Lemma 2.2], (¢Qu, Qv f) = 0, so
(cQ™ ), QM) = (¢ Qn, Qu) + (€ Qy (A — AUy ) " Un), Qv (AT — AUy )~ Up))
= (29, 9p) + (AT = Ny ) ™1, o (AT — AUy )~ 1))
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by (25) of Lemma 3.2. Using this in (68) and simplifying, we find that

ap(n, 1) = an(n, ) — AM(I — AUy) ™ Un, Up),

hence the solutions 7j; and 72 of (63) and (64) coincide. Therefore, all the remaining
quantities in both the algorithms coincide. O

5.4. A variant of the algorithm. We discuss one more algorithm, motivated
by the Rayleigh quotient iteration [19], known to yield cubic convergence (while New-
ton iteration generally yields only quadratic convergence). To derive it we consider
the iterates 7,41 of Algorithm 5.2. Since (62) is derived from (59), we know that 7,11
solves

A B e\ (G 0
(69) B Dy 0| | tnss | =0 [un |,
¢c 0 0 NMnt1 0

where D, v = \yv, U = (I — AUy ) "2 Uny, and Jy = A1 — \,. Hence, in place of
step 3(c) in Algorithm 5.2, the new algorithm updates A, 1 as the Rayleigh quotient
of the current iterate, namely, \ni1 = (¢@ui1, Gus1)/||Tny1]|?. Since tpy = (I —
)‘nuW)il (unnJrl +U,W(S)\’U,n) and (TnJrl = Q771’Hr1 + QW ()‘nanJrl + 6)\un) by Theorem 2'17
we have the following algorithm.
ALGORITHM 5.3 (hybridized Rayleigh quotient iteration). To solve (11), proceed
as follows:
1. Set Ao and 1y by solving the linear eigenproblem Ang = Ao M (0)np.
2. Set ug = (I — /\Quw)71u770.
3. For n=0,1,2,..., until convergence, perform the following steps:
(a) Compute 7 by solving (58), i.e., (A — Ay M (M) = N(Ap)1n.
(b) Set dx = 1/(#),1n).
(¢) Update:

NMn+1 = 5)\777
7:Ln—i—l - (I - A77,(1/(4/1/)_1(funn—i—l + UWCS)\U”),
(TnJrl — anJrl + QW()\nanJrl + 6Aun)7

(C Cfn+1a @L—H)

Ant1 = —
! [t ]2

In our numerical studies in section 6, this algorithm yields the best performance.

6. Numerical results. In this section we present numerical examples to illus-
trate the theoretical results of sections 3 and 4. Moreover, we investigate the perfor-
mance of various algorithms proposed in section 5. Numerical results are presented
for a square and an L-shaped domain.

6.1. Square domain. We consider the domain Q@ = (0,7) x (0,7). In this
case, the exact eigenvalues and eigenfunctions are given by A™"* = m?2 + n?, and
u™"(x,y) = sin(mx) sin(ny), respectively, for m,n € Ny. These eigenfunctions have
infinite regularity.

We obtain an initial mesh of 2 by subdividing it into a uniform 4 x 4 grid of con-
gruent squares (h = 7/4) and splitting each square into two triangles by its positively
sloped diagonal. Successively finer meshes are obtained by subdividing each triangle
into four congruent subtriangles. The mesh of “level £7 (h = 7/2¢*2) is obtained from
the original mesh by £ refinements.
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TABLE 1
Convergence of the eigenvalues \p, .

Degree | Mesh First mode Second mode Fourth mode Sixth mode
k Y4 Error Order Error Order Error Order Error Order
0 3.24e-2 — 1.66e-1 —— 7.66e-2 —— 5.86e-1 ——
1 8.45e-3 1.94 3.60e-2 2.20 1.19e-1 —0.63 | 1.85e-1 1.66
0 2 2.13e-3 1.98 8.83e-3 2.03 3.32e-2 1.84 4.84e-2 1.93
3 5.35e-4 2.00 2.20e-3 2.01 8.50e-3 1.97 1.23e-2 1.98
4 1.34e-4 2.00 5.49e-4 2.00 2.14e-3 1.99 3.08e-3 2.00
0 1.78e-3 —_— 1.13e-2 —— 8.99e-2 —_— 7.34e-2 ——
1 1.17e-4 3.93 7.32e-4 3.95 7.01e-3 3.68 5.96e-3 3.62
1 2 7.35e-6 3.99 4.58e-5 4.00 4.63e-4 3.92 3.88e-4 3.94
3 4.60e-7 4.00 2.85¢-6 4.01 2.93e-5 3.98 2.44e-5 3.99
4 2.87e-8 4.00 1.78e-7 4.00 1.84e-6 4.00 1.52e-6 4.00
0 2.78e-5 —— 3.11e-4 —— 5.91e-3 —— 7.59e-3 ——
1 4.52e-7 5.94 5.94e-6 5.71 1.10e-4 5.74 1.45e-4 5.71
2 2 7.12e-9 5.99 9.73e-8 5.93 1.80e-6 5.94 2.39e-6 5.92
3 1.10e-10  6.01 1.53e-9 5.99 2.85e-8 5.99 3.78e-8 5.98
4 4.83e-12  4.52 | 2.51e-11  5.93 | 4.17e-10  6.09 | 6.37e-10  5.89
TABLE 2
The differences |\p, — Ap| for various h and k.
Degree | Mesh First mode Second mode Fourth mode Sixth mode
k 4 Error  Order | Error Order | Error Order | Error  Order
0 7.33e-2 —— 4.37e-1 —— 1.30e-0 —— 1.81e-0 ——
1 1.74e-2 2.07 1.08e-1 2.02 2.93e-1 2.15 4.31le-1 2.07
0 2 4.30e-3 2.02 2.68e-2 2.01 6.97e-2 2.07 1.07e-1 2.01
3 1.07e-3 2.00 6.70e-3 2.00 1.72e-2 2.02 2.68e-2 2.00
4 2.68e-4 2.00 1.67e-3 2.00 4.29e-3 2.00 6.69e-3 2.00
0 5.11e-2 —— 3.19e-1 —— 8.20e-1 —— 1.24e-0 ——
1 1.28e-2 1.99 8.0le-2 1.99 2.04e-1 2.00 3.18e-1 1.96
1 2 3.21e-3 2.00 2.01le-2 2.00 5.13e-2 1.99 8.01e-2 1.99
3 8.03e-4 2.00 5.02e-3 2.00 1.28e-2 2.00 2.0le-2 2.00
4 2.0le-4 2.00 1.25e-3 2.00 3.21e-3 2.00 5.02e-3 2.00
0 3.34e-2 —— 2.11e-1 —— 5.52e-1 —— 8.73e-1 ——
1 8.26e-3 2.02 5.18e-2 2.03 1.34e-1 2.05 2.09e-1 2.06
2 2 2.06e-3 2.00 1.29e-2 2.01 3.30e-2 2.02 5.16e-2 2.02
3 5.14e-4 2.00 3.21e-3 2.00 8.23e-3 2.00 1.29e-2 2.01
4 1.29e-4 2.00 8.03e-4 2.00 2.06e-3 2.00 3.21e-3 2.00

We first present the error and order of convergence in Table 1 for some eigenmodes.
The approximate eigenvalues converge at order 2k+2, in accordance with Theorem 2.3.
(For this example, we may choose s in Theorem 2.3 to be as large as we wish due to
the infinite regularity.) Moreover, we observed that the proposed algorithms correctly
capture the multiplicity of the eigenvalue of the second and sixth eigenmodes.

Next, in Table 2, we report the difference between the mixed and perturbed
eigenvalues (A, and \p) of section 3.2, as a function of h for £ = 0,1,2. We observe
that |\, — A\ | converges at rate O(h?) (irrespective of k), as predicted by Theorem 3.2.

In Table 3, we present the convergence of both the approximate and postprocessed
eigenfunctions for the first and fourth eigenmodes. The numerical results indicate
convergence of order k 4 2 for the postprocessed eigenfunctions, in accordance with
Theorem 4.2.

Finally, we report the performance of a few iterative algorithms considered in
section 5. In Figure 2, we plot ) versus the iteration level n in log scale for the first
eigenmode for the case £ = 2 and k = 1. When we set the initial guess as the eigenpair
of the linear discrete eigenproblem (18), all the proposed algorithms required at most
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TABLE 3
Convergence of the approzimate (uy) and postprocessed (u}) eigenfunctions.

Eigenmode First Fourth
Degree | Mesh [Ju — up| [l —upy || lu —up]| [lu —uy ]l

k 14 Error  Order | Error  Order Error  Order | Error  Order
0 2.43e-2 —— 5.90e-2 —— 5.56e-1 - 5.79-1 ——
1 6.13e-3  1.99 | 1.50e-2  1.97 || 8.92e-2  2.64 | 9.79e-2  2.56

0 2 1.53e-3  2.00 | 3.77e-3 1.99 1.99e-2 2.16 2.27e-2 2.11
3 3.82e-4  2.00 | 9.44e-4  2.00 4.85e-3 2.04 | 5.58e-3 2.02
4 9.55e-5 2.00 2.36e-4  2.00 1.21e-3 2.01 1.39e-3 2.01
0 1.64e-3 - 6.10e-3 - 2.39e-2 - 5.09e-2 -
1 2.06e-4 1.98 7.66e-4  2.99 2.34e-3 1.94 | 6.28e-3  3.02

1 2 2.60e-5 2.00 | 9.56e-5 3.00 2.35e-4 1.98 7.70e-4  3.03
3 3.25e-6  2.00 | 1.19e-5  3.00 2.70e-5  2.00 | 9.56e-5  3.01
4 4.07e-7  2.00 1.49e-6  3.00 3.29e-6 2.00 1.19e-5  3.00
0 1.09e-4 —— 5.84e-4 —— 3.05e-3 —— 9.09e-3 ——
1 6.66e-6  2.98 | 3.7le-5  3.98 1.20e-4 292 | 5.86e-4  3.96

2 2 4.18e-7  2.99 2.33e-6  3.99 6.83e-6 2.98 3.7le-5  3.98
3 2.63e-8  3.00 | 1.46e-7 4.00 || 4.23e-7  2.99 | 2.33e-6  3.99
4 2.56e-9  3.00 1.04e-8  3.81 3.68e-8 3.00 1.58e-7  3.88

1
n

Fi1c. 2. A plot of 5 versus n for Algorithm 5.1 (dashed line) and Algorithm 5.3 (solid line) for
the first eigenmode (using £ =2 and k =1).

three iterations to achieve dy less than 10712, To better see the convergence rates,
we repeated by setting the initial guess as a random perturbation of the solution
of (18). The results are shown in Table 4, where we report J) versus the iteration
level n for £ =1,2,3 and k = 1. Algorithm 5.1 appears to converge quadratically, and
Algorithm 5.3 cubically. Similar convergence behaviors were observed for many other
eigenmodes on different meshes and polynomial degrees.

6.2. L-shaped domain. To study the limitations imposed by singularities of
eigenfunctions, we consider the L-shaped domain Q = Q0\;, where Qo = (0,2) X
(0,2) and ©q = (1,2) x (1,2) are the square domains. Since (2 has a reentrant corner
at the point (1,1), the exact eigenfunctions are singular. Specifically, we may only
expect (43) to hold with sy = % — ¢ for an arbitrarily small € > 0. We shall focus on
the numerical approximation of the ground state. As before, we consider triangular
meshes that are successive uniform refinements of an initial uniform mesh. The initial
mesh is obtained as in section 6.1 using a 4 x 4 uniform grid of 2, except we now omit
all triangles in €. Since the exact values are not known, errors are estimated using
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TABLE 4
The value of 0y wversus the iteration level n for £ = 1,2,3 for the computation of the first
eigenmode using k = 1.

Tter. Algorithm 5.1 Algorithm 5.3

n =1 =2 =3 (=1 (=2 =3
0 2.13e-0  2.03e-0 2.03e-0 || 2.75e-0  3.09e-0  3.15e-0
1 1.30e-2  3.19e-2  3.29e-2 5.02e-2 6.28e-2 5.93e-2
2 1.62e-4 4.23e-4 4.92e-4 6.07e-6 1.45e-5 1.29e-5
3 2.62e-8 7.12e-8 1.05e-7 || 4.61le-15 9.85e-15 4.24e-15

TABLE 5
Convergence history for the eigenpair (Ap,up) and postprocessed eigenfunction uj for the L-
shaped domain.

Degree | Mesh [ T3 = M| To—un] o=y
k ¢ Error  Order | Error Order | Error  Order
0 7.77e-1 —— | 3.92e-1 —— | 2.47e-1 ——

1 3.18e-1 1.29 1.95e-1 1.01 7.41e-2 1.74

0 2 1.30e-1 1.29 9.73e-2 1.01 2.38e-2 1.64
3 5.22e-2 1.31 4.85e-2 1.00 8.26e-3 1.53

4 2.06e-2 1.34 2.42e-2 1.00 3.01e-3 1.45

0 1.38e-1 —_— 1.03e-1 —_— 6.23e-2 —_—

1 5.89e-2 1.22 2.76e-2 1.90 1.67e-2 1.90

1 2 2.32e-2 1.34 7.61e-3 1.86 4.92e-3 1.76
3 8.85¢-3  1.39 | 2.20e-3  1.79 | 1.56e-3  1.66

4 3.15e-3 1.49 6.56e-4 1.75 4.98e-4 1.65

F1G. 3. The approzimate eigenfunction uy, (left) and postprocessed eigenfunction uy (right) on
the mesh level £ =1 for k = 1.

the approximate eigenvalue and postprocessed eigenfunction computed with degree
k = 2 on the mesh level ¢ = 5.

The apparent orders of convergence for the approximate and postprocessed eigen-
function are reported in Table 5 for £k = 0 and £ = 1. The convergence rates agree
with Theorem 2.3. Furthermore, the postprocessed eigenfunction converges close to
the order 4/3, in good agreement with Theorem 4.2. Figure 3 shows the approximate
and postprocessed eigenfunctions on the mesh level £ = 1 for £k = 1. Clearly, the post-
processing technique visually improves the approximation of the eigenfunction even
in this singular case. Note, however, that Table 5 shows that improvement obtained
by postprocessing is limited by the regularity of the eigenfunction. In particular, the
gain in accuracy after postprocessing is not as significant for the k£ = 1 case as it is
for the k = 0 case.
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