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A distributed and parallel implementation of a hybridized discontinuous Galerkin (HDG)
solver for the compressible Navier-Stokes equations is presented. This implementation ex-
ploits the characteristics of the HDG method. First, the global degrees of freedom are
reduced to the numerical trace of the solution on the element boundaries. Second, the
conserved quantities and their gradients on each element are obtained in terms of the nu-
merical trace on the element boundary. For meshes composed by a large numer of elements,
the cost of the solver is dominated by the first stage, since the second stage scales linearly
with the number of elements and it can be parallelized. To accelerate the first stage, we
use a distributed GMRES solver with restart pre-conditioned with an algebraic additive
Schwarz domain decomposition with l-levels of overlap (ASDD(l)). Each sub-domain prob-
lem is approximated by an incomplete LU factorization with k-levels of fill-in (ILU(k)).
From the considered tests cases, we conclude that ASDD(1)/ILU(0) presents good weak
scaling characteristics for studying the periodic vortex shedding around an airfoil at low
Reynolds and low Mach number.

I. Introduction

The conservative and stabilized formulation of the discontinuous Galerkin methods provides some benefits
when it is applied to solve conservation problems.1,2 Recently, the hybridized discontinuous Galerkin method
has been introduced in Ref. [3] and further developed in Refs. [4–13]. Several unique features distinguish
the HDG methods from other discontinuous Galerkin methods. First, they provide, for smooth and viscous-
dominated problems, approximations of all the variables which converge with the optimal order of k+1 in the
L2-norm. Second, they possess some superconvergence properties that allow to compute a new approximate
displacement and velocity which converge with order k + 2 for k ≥ 1 by means of an inexpensive element-
by-element postprocessing procedure. Third, they provide a novel and systematic way for imposing several
types of boundary conditions. Fourth, the linear systems that arise from the HDG method is equivalent
to two different linear systems: a first one that couples globally the numerical trace of the solution on
element boundaries, thereby leading to a significant reduction in the degrees of freedom; and a second one
that couples at the element level (locally) the conserved quantities and their gradients and therefore, can be
solved in an element-by-element manner.

The properties above arise from the three main ingredients of the HDG method: (1) a local Galerkin
projection of the underlying PDEs at the element level onto suitable approximation spaces of order k is
performed to parametrize the approximate the solution in terms of the numerical trace; (2) a global jump
condition that enforces the continuity of the numerical flux is stated to derive a global weak formulation in
terms of the numerical trace; and (3) a judicious choice of the numerical flux allows to provide stability and
consistency.

It is important to point out that ingredients (1) and (2) lead to the possibility of solving the linear system
in two stages. This is the advantage that we exploit to propose a scalable parallel implementation of the
HDG method for solving the compressible Navier-Stokes equations. First, we solve the global linear system
with a parallel GMRES iterative solver pre-conditioned with an additive Schwarz domain-decomposition
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with l-levels of overlap.14 Moreover, each one of the sub-problems is approximated using an incomplete ILU
factorization with k-levels of fill-in. Second, we solve in parallel the local problems at the element level with
small amount of communication. The performance of the HDG method is dominated by the solution of the
global linear system, since the local problem scales linearly with the number of elements and is parallelized.

The proposed parallel algorithm presents some advantages when it is compared with a näıve parallel
implementation. That is, such method would solve a monolithic linear system expressed in terms of all the
variables: the conserved quantities, and their gradients at the element level, and the conserved quantities at
the element boundaries. On the contrary, here we propose to solve in parallel the local problems (element
level) with strong scaling properties, and a reduced global system (face level) that requires communication
but with less degrees of freedom. Note that iterative solvers on the CPU have been developed for the CDG
method15 as well as other implicit DG methods1,16–18 . In the case of the HDG method, a deep study of
domain decomposition methods is presented in Ref. 19, and a GPU-accelerated sparse matrix-vector product
for iterative solvers has been proposed in Ref. 20.

The remainder of this paper is organized as follows. In Section II, we present the HDG method and its
application to the compressible Navier-Stokes equations. In Section III, we detail the Newton iteration for
the weak formulation of the HDG method and how to implement it in a sequential processor. In Section IV,
we exploit the structure of the linear systems that arise from the HDG method to propose a distributed and
parallel implementation. In Section V, we present the obtained results.

II. HDG method for compressible flow

In this work, we want to solve the compressible Navier-Stokes equations using the HDG method. The
general weak formulation of the HDG method allows solving second-order partial differential equations
resulting from conservative laws, see Section II.A. By choosing the proper values of the fluxes, boundary
operators, boundary functions, and the source term, the general weak formulation can be particularized to
solve the compressible flow equations, see Section II.B.

II.A. The HDG method

The HDG method allows solving second-order systems of partial differential equations for conservation laws,
see Section II.A.1. To derive the HDG method, an equivalent first-order problem is obtained by introducing
a new variable that represents the gradient of the conserved quantities, see Section II.A.2. To obtain the
weak formulation of the method, it is required to introduce the proper discontinuous spaces on the mesh
elements and faces, see Section II.A.3. Then, the general weak form of the method is derived in Section
II.A.4.

II.A.1. Second-order problems for conservation laws

In general terms, the HDG method allows solving second-order partial differential equations in conservative
form:

αu+∇ · F (u,∇u) = s, in Ω ⊂ Rd,
u = gD, on ΓD,

B(u,∇u) · n = gN , on ΓN ,

(1)

where α is a scalar, F is a (nc × d)-dimensional flux, s a source term, and B an operator that determines
the boundary conditions.

II.A.2. Equivalent first-order problem

By introducing a new variable q = ∇u, we obtain an equivalent first-order problem:

q −∇u = 0, in Ω ⊂ Rd,
αu+∇ · F (u, q) = s, in Ω ⊂ Rd,

u = gD, on ΓD,

B(u, q) · n = gN , on ΓN .

(2)
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(a) (b)

Figure 1. HDG discretization: (a) curved and discontinuous elements and faces; and (b) nodes of the corresponding
approximation spaces.

II.A.3. Notation

To describe the HDG weak formulation, we introduce some notation. First, the HDG mesh for a domain Ω
(e.g. Figure 1(a)) is composed by discontinuous and potentially curved elements (Th) and faces (Eh). The
faces can be classifed as interior faces (EIh) and boundary faces (EBh ).

Second, let be Pk(D) denote the space of polynomials of degree at most k on a domain D and let L2(D)
be the space of square integrable functions on D. We introduce the following discontinuous finite element
approximation spaces:

Wk
h = {w ∈ L2(Th) | w|K ∈ Pk(K),∀K ∈ Th},

Wk
h = {w ∈ (L2(Th))nc | w|K ∈ (Pk(K))nc ,∀K ∈ Th},

Vk
h = {v ∈ (L2(Th))nc×d | v|K ∈ [Pk(K)]nc×d,∀K ∈ Th}.

Moreover, we introduce the following finite element spaces for the approximate trace of the solution:

Mk
h = {µ ∈ L2(Eh) | µ|F ∈ Pk(F ),∀F ∈ Eh},

Mk
h = {µ ∈ (L2(Eh))nc | µ|F ∈ (Pk(F ))nc ,∀F ∈ Eh}.

Note that Mk
h and Mk

h both consist of functions which are continuous inside the faces F ∈ Eh and discon-
tinuous at their borders. To illustrate the introduced approximation spaces, we present in Figure 1(b) the
corresponding element and face nodes for a curved mesh of interpolation degree k = 3.

Finally, we define the corresponding inner products for functions in the element spaces:(
w1, w2

)
Th

:=
∑
K∈Th

(
w1, w2

)
K
, for w1, w2 ∈ Wk

h ,

(
w1,w2

)
Th

:=

m∑
i=1

(
w1
i ,w

2
i

)
Th
, for w1,w2 ∈Wk

h,

(
v1,v2

)
Th

:=

m∑
i=1

d∑
j=1

(
v1
ij ,v

2
ij

)
Th
, for v1,v2 ∈ Vk

h,

where
(
w1, w2

)
K

:=
∫
K
w1w2. In addition, the corresponding inner product for functions in the face spaces:〈

µ1, µ2
〉
∂Th

:=
∑
K∈Th

〈
µ1, µ2

〉
∂K

, for µ1, µ2 ∈Mk
h,

〈
µ1,µ2

〉
∂Th

:=

m∑
i=1

〈
µ1,µ2

〉
∂Th

, for µ1,µ2 ∈Mk
h,

where
〈
µ1, µ2

〉
∂K

:=
∫
∂K

µ1µ2.
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II.A.4. Weak formulation

The HDG method seeks a solution (qh,uh, ûh) ∈ Vk
h ×Wk

h ×Mk
h such that:

rq := (qh,v)Th + (uh,∇ · v)Th − 〈ûh,v · n〉∂Th = 0, ∀v ∈ Vk
h, (3)

ru := α (uh,w)Th − (F ,∇w)Th +
〈
F̂ · n,w

〉
∂Th
− (s,w)Th = 0, ∀w ∈Wk

h, (4)

rû :=
〈
F̂ · n,µ

〉
∂Th\∂Ω

+
〈
F̂ b · n,µ

〉
∂Ω
− 〈g,µ〉∂Ω = 0, ∀µ ∈Mk

h, (5)

where F̂ = F̂ (qh,uh, ûh) is the numerical flux (stabilization), and F̂ b = F̂ b(qh,uh, ûh) determines the
appropiate boundary conditions on ΓD and ΓN . Specifically, the numerical flux is defined as

F̂ (qh,uh, ûh) · n := F (ûh, qh) · n− S(uh, ûh)(uh − ûh),

where S(uh, ûh) is the stabilization matrix. In addition, the boundary conditions are determined by

F̂ b · n :=

{
ûh, on ΓD,

B(ûh, qh) · n− S(uh, ûh)(uh − ûh), on ΓN ,

where

g :=

{
gD, on ΓD,

gN , on ΓN .

On the one hand, Equations (3) and (4) allow to parameterize (qh,uh) in terms of ûh element-by-element

(locally). On the other hand, Equation (5) is responsible of imposing the continuity of F̂ (globally) and F̂ b

(boundary conditions). Note that in F̂ and F̂ b, we ûh instead of uh in the evaluation of both F and B.

II.B. HDG method for compressible flow

We want to solve the steady-state Navier-Stokes equations written in conservative form as:

∇ · (Finv.(u) + Fvis.(u,∇u)) = s, in Ω ⊂ Rd,
u = gD, on ΓD,

B(u,∇u) · n = gN , on ΓN ,

(6)

where: u are the conserved quantities (density, momentum, and energy); Finv.(u) and Fvis.(u,∇u) are the
((d + 2) × d)-dimensional inviscid and viscous fluxes, respectively; s is the source term; and B and g are
defined to determine the appropiate boundary conditions at the inflow, outflow, ans solid wall boundaries.
The nondimensional form of the Navier-Stokes equations as well as the definition of the inviscid and viscous
fluxes can be found in.21 Note that this conservative form corresponds to the general form in Equation (1)
for α = 0, F = Finv. + Fvis., and nc = d + 2. Therefore, the HDG weak formulation for the compressible
Navier-Stokes equations is obtained by substituting these particular expressions in the general weak form
presented in Equations (3), (4), and (5).

III. HDG method: sequential implementation

The weak form of the HDG can be solved using the Newton method. The resulting linear systems
are equivalent to solve a global linear system with a reduced number of degrees of freedom, and a set of
local problems at the element level, see Section III.A. A sequential implementation that exploits these
characteristics is presented in Section III.B

III.A. Linearization of the weak formulation

To solve the HDG weak formulation, we use the Newton method. Therefore, we have to linearize the
components of the residual in Equations (3), (4), and (5) at each Newton iteration. This linearization leads
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to solve linear systems of the form: Jqq Jqu Jqû

Juq Juu Juû

Jûq Jûu Jûû


 δq

δu

δû

 =

 −rq

−ru

−rû

 , (7)

where δq, δu, and δû are the degrees of freedom for qh, uh, and ûh, respectively. Taking into account
Equation (7), we express δq and δu in terms of δû:[

δq

δu

]
=

[
δq(δû)

δu(δû)

]
=

[
Jqq Jqu

Juq Juu

]−1([
−rq

−ru

]
−

[
Jqû

Juû

]
δû

)
. (8)

Finally, by eliminating δq and δu from Equation (7), we obtain the linear system:

Hδû = r, (9)

where

H =
[

Jûû

]
−
[

Jûq Jûu

] [ Jqq Jqu

Juq Juu

]−1 [
Jqû

Juû

]
, (10)

r = [−rû]−
[

Jûq Jûu

] [ Jqq Jqu

Juq Juu

]−1 [
−rq

−ru

]
. (11)

The system in Equation (9) contains only the degrees of freedom for δû.

III.B. Sequential solver

Note that at each iteration of the non-linear solver we need to assemble and solve the linear system in
Equation (7). Taking into account the derivation above, we perform the following three steps: To obtain
the expressions in Equations (9), (10), and (11), we need to compute the: elemental matrices JKqq, JKqu, JKqû,

JKuq, JKuu, JKuû, JKûq, JKûu, and JKûû; and elemental vectors rKq , rKu , and rKû . Furthermore, we have to compute
the inverse of [

Jqq Jqu

Juq Juu

]
.

To this end, we group the degrees of freedom δq and δu by elements. Thus, the matrix becomes block
diagonal and therefore, it can be inverted independently for each element K in Th:[

JKqq JKqu
JKuq JKuu

]−1

. (12)

Furthermore, we can compute the elemental contribution to H and r, Equations (10) and (11), for each
element K in Th as:

HK =
[

JKûû

]
−
[

JKûq JKûu

] [ JKqq JKqu
JKuq JKuu

]−1 [
JKqû
JKuû

]
, (13)

rK =
[
−rKû

]
−
[

JKûq JKûu

] [ JKqq JKqu
JKuq JKuu

]−1 [
−rKq
−rKu

]
. (14)

Finally, by assembling these element contributions we form the global linear system in Equation (9). We
obtain δû by solving the linear system in Equation (9).

To obtain δq and δu we substitute δû in Equation (8). Moreover, we take into account that the degrees
of freedom δq and δu are grouped by elements. That is, for each element K in Th we compute δqK and δuK

by means of: [
δqK

δuK

]
=

[
δq(δû)

δu(δû)

]
=

[
JKqq JKqu
JKuq JKuu

]−1([
−rKq
−rKu

]
−

[
JKqû
JKuû

]
δû∂K

)
. (15)
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Algorithm 1: Sequential solver for the HDG linear system

Input: q, u, û
Output: δq, δu, δû

1 begin Compute matrix H and vector r from q, u, û
2 for K in Th do
3 HK , rK ← Elemental contributions from qK , uK , û∂K

4 H, r ← Assemble HK and rK for all K in Th
5 δû ← Solve Hδû = r
6 begin Obtain δq and δu from δû
7 for K in Th do
8 δqK , δuK ← Recover element solution from δû∂K

9 δq, δu ← Assemble δqK and δuK for all K in Th

III.C. Proposed sequential implementation

The sequential implementation of the HDG solver can be summarized by Algorithm 6. Specifically, from q,
u, and û we want to obtain δq, δu, and δû. To this end, matrix H and vector r are computed element-
by-element, Lines 1-4. Then, the global linear system is solved in Line 5. Finally, the obtained value of δû
allows obtaining δq and δu in an element-wise manner, Lines 6-9.

It is important to point out that all the previous element-by-element loops can be performed in parallel,
since the computations on each element do not depend on the rest of elements. Specifically, the computation
of the element: quantities, inverses in Equation (12), contributions in Equations (13) and (14), and the
local linear systems in Equation (15). In addition, the global linear system can be solved with standard
distributed and parallel method. Taking into account these observations, we present in Section IV the
proposed distributed and parallel implementation of the HDG solver.

IV. HDG method: distributed and parallel implementation

To solve the non-linear weak formulation, we use Newton’s method with a backtracking line search.
Specifically, we consider the following Newton iteration. First, we obtain a partition of the mesh that takes
into account the stencil of the HDG method, see Section IV.A. This partition is used to determine the
distribution maps required to parallelize the HDG method. Second, we compute in parallel the elemental
quantities required to solve the linear system in Equation (7). Third, we obtain the solution increments
δû, δq, and δu by solving the linear system in Equation (7). According to III.B, we solve the linear system
in two stages. In the first stage we obtain δû by solving in parallel the global linear system in Equation
(9), see Section IV.C. In the second stage, we obtain δq and δu by evaluating in parallel the element-
wise expression in Equation (15), see Section IV.C.2. Then, we obtain a scaling scalar α by means of a
bactracking line search method. The scaling value α ensures a sufficient decrease of the norm of the residual
r and therefore, it helps to improve the global convergence of the method. Finally, α and δû, δq, and δu are
used to update the solution vectors q← q + αδq,u← u + αδu, and û← û + αδû.

IV.A. Partition of the HDG mesh

The goal is to form and solve in parallel the linear system arising from the HDG method. To this end, we
need to partition the degrees of freedom in a load balanced manner. Note that in the HDG method a degree
of freedom is determined by the discontinuous approximation spaces on the elements and faces, see Section
II.A.3. That is, a degree of freedom is either on an element or a face. If we group the degrees of freedom by
elements and faces, we need only a partition in colors of the elements and faces of the mesh. To this end,
we assign a global numbering to all the elements and faces of the mesh. Then, we express each element of
the mesh in terms of the global numbering of its bounding faces. With the resulting connectivity graph,
we use METIS22 to obtain a mesh partition that groups elements and faces of the same color. Then, the
color of a degree of freedom is determined by the color of either the element or the face that owns it. This
mesh partition is used later to compute in parallel the elemental quantities required to form the Jacobian
and residual. In addition, this partition is used to solve the two stages of the HDG linear system. First, the
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(a) (b) (c)

Figure 2. Partition of the elements and faces of a HDG mesh in four colors: (a) full partition, (b) interior by colors,
and (c) interface by colors.

partition is used to assign colors to the matrix and vector rows. Specifically, the rows in color a correspond
to the degrees of freedom of the group of elements (faces) that also have color a. This color map allows the
distribution of the rows in several processors. In this way, the operations with sparse matrices and vectors,
required by the pre-conditioned iterative solver, can be performed in parallel, see Section IV.C.1. Second,
this partition is used to solve the element level linear systems in parallel for all the colors, see Section IV.C.2.

The communication requirements of the parallel implementation are determined by the structure of the
connections between the degrees of freedom of the HDG method. Specifically, two degrees of freedom are
connected (adjacent) if they both appear with a non-zero coefficient in at least one equation. Since all the
degrees of freedom are either on an element or on a face, the connection of structure can be expressed in
terms of elements and faces. That is, all the possible adjacencies of the HDG method are described by the
following cases: an element K is adjacent to all the faces that are on ∂K; a face is adjacent to an element
K if it is on ∂K; and two faces are adjacent if they are adjacent to the same element.

To describe the parallel implementation in terms of the HDG adjacencies and the mesh partition, we
consider the following definitions:

• Tha, Eha: on-processor elements and faces of color a.

• Tha,a, Eha,a: on-processor elements and faces of color a only adjacent to faces of color a (interior).

• Tha,b, Eha,b: on-processor elements and faces of color a that have an adjacent face of color b (interface
with processor b).

• Tha,∗, Eha,∗: on-processor elements and faces of color a that have an adjacent face with different color
(interface of processor a with other processors).

• Th∗,a, Eh∗,a: off-processor elements and faces that have an adjacent face with of color a (interface of
other processors with processor a).

• Color a is adjacent to color b if Tha,b or Eha,b are not empty.

IV.B. Parallel implementation

The parallel implementation of the HDG method that corresponds to Algorithm 6 is presented in Algorithm 8.
Before describing the algorithm, we want to point out that underlined vectors denote that their components
are distributed among the memory that corresponds to each processor. That is, q, u, û, δq, δu, δû are
vectors with distributed components. The parallel distributed implementation of the HDG method seeks to
obtain δq, δu, δû from q, u, û. To this end, each processor executes Line 1 to obtain the current processor
number. Then, the distributed matrix H and vector r are computed from q, u, û, Lines 2-6. Then, the global
linear system is solved with a distributed solver, Line 7. This operation is performed by a GMRES solver
pre-conditioned with an ASDD(l) and an ILU(k) factorization as an approximated sub-domain problem.
Finally, δq and δu are obtained from δû, Lines 8-12.
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Algorithm 2: Distributed solver for the HDG linear system

Input: q, u, û
Output: δq, δu, δû

1 a ← Current processor
2 begin Compute distributed matrix H and vector r from q, u, û
3 Gather qK , uK , û∂K from q,u,û for all K in Tha

4 for K in Tha do
5 HK , rK ← Elemental contributions from qK , uK , û∂K

6 H, r ← Assemble HK and rK for all K in Tha

7 δû ← Distributed solve Hδû = r
8 begin Obtain δq and δu from δû
9 Gather δû∂K from δû for all K in Tha

10 for K in Tha do
11 δqK , δuK ← Recover element solution from δû∂K

12 δq, δu ← Distribute δqK and δuK for all K in Tha

It is important to highlight that there are two main differences with the sequential solver. First, the
element-wise loops are scatter among processors. Second, the components of the vectors have to be scattered
and gathered, Lines 3 and 9. Basically, there are two types of vectors according to the type of entity: the
DOFs on the elements; and the DOFs on the faces. First, the element vectors are distributed in sub-domains
of elements. Moreover, it is required to: gather qK , uK from q and u for all K in Thp; and distribute δqK and

δuK for all K in Thp to form δq, and δu, respectively. To this end, each processor p stores the components
associated with the elements in Thp (element sub-domains). Second, the face vectors are distributed in sub-
domains of faces. Furthermore, it is required to gather û∂K from û and δû∂K for all K in Thp. To this end,
each processor p stores the components associated with the faces in Ehp (face sub-domains). Specifically, a
processor a has to receive from a processor b the components associated with the faces in Ehb that are also
in ∂Tha.

IV.C. Solve the linear system

As we have seen in Section III.A, the linear system that arise from HDG can be solved in two stages:

IV.C.1. Solving the global linear system

The first stage corresponds to solve the linear system with unknowns δû on the faces, Equation (9). To
solve this linear system, we use the Trilinos23 library. Specifically, we use the provided Generalized Minimal
RESidual (GMRES) iterative solver pre-conditioned with an algebraic additive Schwarz domain decomposi-
tion with l-levels of overlap. Moreover, each one of the overlapped sub-problems is approximated with an
ILU(k) factorization. Note that the domains of the decomposition are determined by the mesh partition
used to distribute the problem.

The GMRES solver is an iterative solver of the family of the Krylov methods. Recall that Krylov methods
are projection (Galerkin) techniques for solving linear systems

Ax = b,

and they are based on the generation of the Krylov subspace

Kj := span{r0,Ar0,A
2r0, . . . ,A

j−1r0},

where r0 := b−Ax. The main advantage of Krylov methods is that they allow solving large linear systems,
since the have lower memory footprint than direct solvers. Specifically, the GMRES method with restart
helps to reduce even more the memory footprint.

The cost of GMRES is dominated by the computation of a sparse matrix-vector product at each iter-
ation. It is important to point out that the sparse matrix-vector product can be parallelized to improve
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the performance of the iterative solver. Furthermore, GMRES can be pre-conditioned to reduce the num-
ber of iterations. To this end, an algebraic additive Scharz domain decomposition with l-levels of overlap
(ASDD(l)) is used. In addition, the ASDD(l) is combined with an approximate solver for the sub-domains.
Specifically, with an incomplete LU factorization with k-levels of fill-in (ILU(k)).

Note that ASDD(l) is a divide-and-conquer approach to pre-condition a linear system. Therefore, it is
suitable for distributed parallel computations. To this end, it is required to obtain a mesh partition that
determines np sub-domains from the graph of DOFs connections. The ASDD(l) pre-conditioners is the
operator:

M−1 =

np∑
p=1

RT
p Ã−1

p Rp,

where np is the number of sub-domains (processors), Rp restricts a vector to the p-th sub-domain (Boolean

matrix), and Ãp approximates RpART
p .

In this work, Ãp is an incomplete LU factorization with k-levels of fill-in (ILU(k)). Specifically, an LU

factorization where the entries out of the original sparsity pattern of Ãp are drop. Furthermore, in the case
of k-levels of fill-in the sparsity pattern is enhanced to ensure that the neighbours at distance k of each
degree of freedom are also considered.

Finally, to reduce the number of iterations of the domain decomposition pre-conditioner, l-levels of sub-
domain overlapping are considered. That is, each sub-domain is augmented with the DOFs on the faces of
other sub-domains that are at distance l (trhough DOF connections) of the current sub-domain. Note that
zero-levels corresponds to a block Jacobi pre-conditioner where each block is determined by the DOFs on
the faces of each sub-domain.

IV.C.2. Solving the local linear system

Once the solution vector δû is obtained with the desired accuracy, we obtain the element-wise solution
vectors δq and δu by evaluating in parallel for all processors the element-wise expression in Equation (8). It
is straigtforward to see that the sequential version of this stage scales linearly with the number of elements.
Furthermore, it can be element-wise parallelized. Therefore, the cost of solving the HDG linear system, for
meshes composed by a large number of elements, is dominated by the first stage.

V. Results: SD7003 airfoil, α = 5.0◦, Re = 10000, M∞ = 0.1

In the following examples, the weak scaling of the considered global linear system solver and an unsteady
flow that presents a periodic vortex shedding regime are studied. To this end, we consider the compressible
Navier-Stokes solution for the flow around an SD7003 airfoil at an angle of attack of 5.0◦, with a Reynolds
number Re = 10000 and a free-stream Mach number of M∞ = 0.1. All the results have been obtained on
a computer with four eight-core AMD Opteron 6320 CPUs, each one with a clock frequency of 2.8GHz,
and 24MB of cache, and a total memory of 512 GBytes. The solver has been fully developed with the
interpreted language Python equipped with the SciPy, Numpy, and PyTrilinos libraries. Before performing
the simulations, several C-type structured meshes composed by high-order triangular elements have been
generated. The code corresponds to the implementation presented in this work, and uses a diagonally implicit
Runge-Kutta (DIRK) of order 3 in 3 stages for time stepping. The Newton solver use a convergence tolerance
of 10−8 and a backtracking line search method. In each Newton iteration, a GMRES solver with convergence
tolerance of 10−12 that restarts every 30 iterations is called. The iterative solver uses an algebraic additive
Schwarz domain decomposition with or without overlap, and where the sub-domain solver corresponds to an
incomplete LU factorization with or without fill-in.

Several parameters have been varied to obtain the results. First, the code has been launched with different
number of processors (np), that also correspond to the number of sub-domains. To this end, meshes with
different interpolation degree (p) and number of elements (ne) and faces (nf ) have been generated. Depending
on the test case, different time steps (dt) for the numerical time integration have been used. Finally, four
pre-conditioning options have been considered. Specifically, the additive Schwarz domain decomposition has
been run with l-levels of overlap, for l = 0, 1. Furthermore, the sub-domain ILU has been tested with k-levels
of fill-in, for k = 0, 1.
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Number of iterations of one linear solve

ASDD(0) ASDD(1)

np ne nf dt ILU(0) ILU(1) ILU(0) ILU(1)

1 192 308 0.0056 28 18 28 18

2 408 641 0.0040 40 31 26 19

4 768 1192 0.0028 60 59 39 26

8 1540 2368 0.0020 111 112 29 23

16 3072 4688 0.0014 135 127 35 26

32 6164 9358 0.0010 109 106 39 26

Table 1. Weak scaling according to the number of processors np = 1, 2, 4, 8, 16, 32 (≈ 192 elements and ≈ 288 faces per
processor): number of iterations of the GMRES linear solver with an ASDD(l)/ILU(k) pre-conditioner.

Total time of one linear solve (s.)

ASDD(0) ASDD(1)

np ne nf dt ILU(0) ILU(1) ILU(0) ILU(1)

1 192 308 0.0056 0.52 5.59 0.69 5.77

2 408 641 0.0040 0.60 5.98 0.70 6.40

4 768 1192 0.0028 0.63 5.73 0.74 6.19

8 1540 2368 0.0020 0.90 6.00 0.75 6.46

16 3072 4688 0.0014 1.23 6.32 0.95 6.68

32 6164 9358 0.0010 2.03 8.20 1.62 8.92

Table 2. Weak scaling according to the number of processors np = 1, 2, 4, 8, 16, 32 (≈ 192 elements and ≈ 288 faces per
processor): total time of the GMRES linear solver with an ASDD(l)/ILU(k) pre-conditioner.

V.A. Scaling of the global linear system

The HDG linear system requires at each Newton iteration the solution of a global linear system that cor-
responds to the DOFs on the mesh faces. In this test case, the weak scaling according to the number of
processors of the corresponding linear solver is considered. Specifically, how the number of iterations and
the total time for the linear solve scales when the problem size is doubled.

To obtain the results for this test case, four possible pre-conditioners have been used with a different
number of processors, np = 1, 2, 4, 8, 16, 32. The different pre-conditioners are characterized by varying the
number of levels of overlap and fill-in, l, k = 0, 1. That is, additive Schwarz domain decomposition (ASDD)
with (ASDD(1)) or without (ASDD(0)) overlap, and ILU(0) or ILU(1) have been combined. Note that
for one processor (np = 1), ASDD(0) and ASDD(1) are the same pre-conditioner since there is not an
interface between DOFs on different processors. According to the number of processors, six different meshes
of interpolation degree p = 3 have been generated. Each mesh is composed by a number of elements that
ensures that, after mesh partitioning, each sub-domain is composed by approximately 192 elements and 288
faces. To ensure that the comparison is fair, the time step is divided by

√
2 each time the number of mesh

elements is doubled. That is, the time step is related with the average element size to ensure a system of
equivalent difficulty for the different meshes.

The weak scaling results for the number of iterations of one linear solve is presented in Table 1. The
results show that if ASDD(0) is used, the number of iterations grows when the number of processors and
elements is doubled. On the contrary, the number of iterations remains more stable when ASDD(1) is used.
Finally, is important to point out that ILU(1) always help to reduce the number of iterations but, less
significantly than ASDD(1).

To decide between one of the four explored combinations of pre-conditioner, it is also important to
consider the total time of the linear solver. To this end, Table 2 presents the results for the weak scaling
of the total time for the four possible pre-conditioners. The results show that pre-conditioners that use a
sub-domain solver with ILU(1) are more expensive that the corresponding ILU(0) combinations. The main
reason, is that the resulting sub-domain approximate solver requires a matrix with more non-zero entries
and therefore, the creation of the pre-conditioner and its application to a vector (backward and forward
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substitution) are more expensive. On the contrary, the use of 1-level of overlap on the ASDD increases the
time but less significantly than the use of 1-level of fill-in for the ILU.

It is also important to point out that this code has been executed in a computer node with 32 cores
and 512 GBytes of shared-memory. Therefore, the solver time degenerates when more processors are used.
This is due to the fact the memory BUS gets more charge when more processors are used. Specifically, the
memory bandwidth of the computer is under-used for 1 and 2 cores, efficiently used for 4 or 8 cores, and
over-used for 16 or 32 cores.

To choose the option that scales better, one has to take into account the weak scaling for the number of
iterations and the total time of one linear solve. On the one hand, the ASDD with one-level of overlap shows
a stable number of iterations. On the other hand, the ILU(0) requires smaller computational time than
ILU(1). Therefore, we can conclude that ASDD(1)/ILU(0) is the option that scales better for the considered
application and computer.

V.B. Vortex shedding regime

In this test case, a compressible Navier-Stokes solution of the flow around a SD7003 airfoil at an angle
of attack of 5.0◦, with a Reynolds number Re = 10000 and a free-stream Mach number of M∞ = 0.1, is
presented. In this regime, the flow involves the formation of a laminar separation bubble along its upper
surface that results in periodic vortex shedding. This regime has already been studied with a high-order
discontinuous Galerkin solver by Uranga et al. in Ref. [24,25]. Herein, we have run the proposed high-order
and parallel HDG solver with 16 cores. Accordingly, the mesh has been partitioned in 16 sub-domains.
Specifically, the mesh is composed by 1728 elements and 2656 faces of interpolation degree p = 5. This
results in 311040 DOFS on the elements and 63744 DOFs on the faces. Then, the time integration has
been performed using a time step dt = 0.05. Finally, the global linear system has been pre-conditioned with
ASDD(1)/ILU(0).

The velocity magnitude for this flow case is presented at two different times in Figures 3(a) and 3(b). On
the one hand, Figure 3(a) shows that the flow around the airfoil at time t = 5.0 is laminar and the separation
bubble is still growing. On the other hand, Figure 3(b) shows the periodic vortex shedding regime at time
t = 7.5. Note that the first vortex is released approximately at time t = 5.5.

VI. Concluding remarks

We have seen that HDG method leads to linear systems that have a structure that can be exploited in
terms of a parallel implementation. The resulting linear systems can be solved in two stages. A first stage
where a sparse linear system composed by dense blocks is obtained. This linear system has to be solved
with a standard distributed and parallel linear solver. However, this system has the main advantage that
it only depends on the degrees of freedom on the boundaries of the elements. This reduction of the global
degrees of freedom results in a smaller computational cost. The second stage allows obtaining the values
of the conserved quantities and their gradients in terms of the solution on the element boundaries. This
operation can be performed independently for all the elements of the mesh. Therefore, it scales linearly with
the number of elements and it can be parallelized. We exploit this characteristic to solve the second stage of
the linear system in parallel and with small communication. Therefore, the cost of each Newton iteration is
dominated by the cost of solving the global linear system. To reduce the cost of of solving the global linear
system, we have considered a distributed solver that consists on GMRES with restart pre-conditioned with
an algebraic additive Schwarz domain decomposition with l-levels of overlap (ASDD(l)). To approximate
the sub-domains problems, we have used an incomplete LU factorization with k-levels of fill-in (ILU(k)).
Taking into account the number of iterations and the total time per linear solve, we have concluded that
GMRES with restart pre-conditioned with ASDD(1)/ILU(0) presents the best weak scaling. To show the
possibilities of the proposed parallel implementation of the HDG method, we have included the study of the
unsteady flow around an airfoil that presents periodic vortex shedding.
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(a)

(b)

Figure 3. Velocity magnitude for the SD7003 airfoil (α = 5.0◦, Re = 10000, and M∞ = 0.1) at: (a) t = 5.0; and (b) t = 7.5.
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