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Abstract. We apply the reduced basis methodology to electronic structure calculations with a view to

significantly speeding up this computation when it must be performed many times — as in each time

step of an ab initio MD simulation or inside a geometry optimization procedure. The feasibility and the
efficiency of the approach are demonstrated on several test cases. Promising directions for further research

and application to real-scale computations are indicated and discussed.

1. Introduction

As opposed to other more generic problems of the engineering sciences, computational quantum chemistry
problems are known to be sufficiently specific to justify a dedicated numerical approach. Indeed, the methods
developed over the past sixty years on such problems are very special in nature. This is in particular the
case because (i) the problems to be addressed are incredibly complex, even when compared with infamous
engineering problems of outstanding difficulty; and (ii) the methods have been developed by the community
of chemists and physicists without almost any real involvement of experts in numerical analysis and scientific
computing. Although it is often the case that efficiency is reached at the price of non-genericity, in quantum
chemistry the situation is extreme. As a result, there exist many approaches that have proved successful in
several engineering domains but which have not been at all tested or adapted in the context of computational
chemistry. Reduced basis methods are one instance of such approaches. It is the purpose of the present article
to report on some exploratory applications of this general methodology to the specific quantum chemistry
context. As will be seen, and although definite conclusions on the validity of the approach on real cases are
yet to be obtained, the results are definitely promising and certainly sufficient to motivate further efforts.

Let us briefly give some insight into the mathematical nature of the calculations that are at the heart
of a standard quantum chemistry computation. Basically, all quantum chemistry calculations rely on a first
central computation: electronic ground state of the physical system under study, a molecular system of finite
size or a condensed phase. Excited states predictions, linear response theory calculations, conformations
determinations, ab initio molecular dynamics simulations, etc, all rely on this basic foundation. This central
computation is a challenge on its own: in principle, being given a set of nuclei (which are typically treated as
classical point particles) located at (possibly momentarily) fixed positions in space, the task is to determine
the wavefunction corresponding to the electonic ground state; this solves the quantum N -body problem, pa-
rameterized by the positions of nuclei. Mathematically, the latter problem is the minimization of a quadratic
form on functions varying in L2(R3N ), subject to the constraint that these functions are antisymmetric and
appropriately normalized. For almost all physically relevant cases N ≥ 3, the N -body problem is untractable
and thus the dominant strategy in computational chemistry consists in deriving models approximating this
N -body problem. These approximated models are in turn discretized and solved numerically.

Hartree-Fock (HF) type models [34, 6] and Density Functional Theory (DFT) type models [8, 25, 6]
are the main two categories of approximation models. They both consist of a non-quadratic constrained
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minimization problem. At the discretized level, it is solved in practice by considering a nonlinear eigenvalue
problem, which is the specific form of the Euler-Lagrange equation associated with the constrained mini-
mization problem. A solution to this problem is searched for iteratively so as to (hopefully) minimize the
energy; the procedure is called the Self-Consistent-Field iteration. The existence of this nonlinear eigenvalue
problem at the core of quantum chemistry calculations is the origin of the tremendous overall computational
cost of the problem. To realize this, it suffices to recall that in a geometry optimization calculation (i.e., the
search for the global minimizer — configuration of nuclei and ground state electronic wavefunction — that
minimizes the global energy), or in ab initio molecular dynamics calculations (i.e., the integration in time of
the Newton equations of motion for the nuclei equipped with their electronic cloud assumed in its parame-
terized ground-state) [10, 19], each iteration of the search (or of the numerical integrator, as appropriate)
involves as the inner loop the solution of this nonlinear eigenvalue problem. There is thus much interest in
accelerating this inner loop calculation, and it is a long standing problem of computational chemistry.

What often makes the problem tractable in practice is that the chemists have developed specific case-
dependent basis sets which are remarkably efficient. Owing to the very nature of the basis set functions, the
size of the matrices is kept sufficiently small so that (at least for systems of up to a hundred of electrons)
a solution may be calculated for an acceptable price at excellent accuracy. This is fortunate, because such
calculations are very demanding in terms of accuracy.

However, the efficient basis sets developed are often dependent on the positions of the nuclei. They
typically correspond to solutions of hydrogenoic-like problems (Slater-type orbitals, . . .), or approximations
of thereof, developed for the purpose of computational efficiency (contracted Gaussian basis sets, . . .). In
a situation where the positions of the nuclei vary (and this is the case both in the context of geometry
optimization or time-dependent simulations), such basis sets are often delicate and slow to manipulate.
They are sometimes replaced by more standard basis sets, independent of the positions of the nuclei, that
are less efficient for a fixed configuration of nuclei but more efficient when the latter vary; a typical example
is a plane wave basis set. Such basis sets are also typically used for solid phase calculations, where the
problem is posed on the unit cell of a lattice and subject to periodic boundary conditions. The efficiency of
these more general basis sets comes at a price: the size of the basis set required to reach a good accuracy is
then much larger than was the case for nuclei-dependent basis sets.

All of these considerations indicate that, in the context of varying nuclei positions, there is an opportunity
for better basis sets to be developed. This motivates the application of the reduced basis methodology. The
reduced basis method was first introduced in the late 1970s in the context of nonlinear structural analysis
[1, 24] and subsequently abstracted, analyzed, and extended to a much larger class of parametrized partial
differential equations [9, 28, 14, 27, 16]. The foundation of the reduced basis method is built upon three
important realizations, which we phrase here in the particular context of quantum chemistry.

The first realization is that in the molecular dynamics simulation of a physical system the quantity
of primary importance is typically not the field variable ue — such as the wavefunctions or the electron
density, but rather certain selected output of interest se — such as the ground state energies of the system
and the forces exerted on the nuclei. Both the field variable ue and output se depend on the parameters,
or inputs, µ, which serve to identify a particular configuration of the system. Typical inputs include nuclei
positions, dimensions of the simulation cells, and the dielectric constant. The relevant system behavior is
thus described by an implicit input-output relationship, se(µ), evaluation of which demands solution of the
underlying partial differential equation governing electronic structure. In practice, the exact solution ue(µ)
(respectively, output se(µ)) is not available and must thus be replaced by a “truth” approximation u(µ)
(respectively, s(µ)) which resides in a finite dimensional approximation space of dimension N . Nevertheless,
as mentioned earlier, calculation of the truth approximation u(µ) and output s(µ) can be expensive for
certain classes of quantum chemistry problems.

The second realization is related to the choice of basis sets alluded to earlier. The critical observation is
that u(µ) in fact resides on a very low-dimensional manifold M ≡ {u(µ)|µ ∈ D} induced by the parametric
dependence; here D ∈ IRP is the parameter space in which our input µ — a P -tuple of parameters — varies.
Furthermore, the field variable u(µ) will often be quite regular in µ — the parametrically induced manifold
M is smooth — even when the field variable enjoys only limited regularity with respect to the spatial
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coordinate.1 The reduced basis method explicitly recognizes and exploits dimension reduction afforded by
the low-dimensional — and smooth — parametrically induced solution manifold. More precisely, rather than
general basis sets such as the plane wave basis set, the basis set consists of solutions of the partial differential
equation at Nu selected parameter points µi, 1 ≤ i ≤ Nu. Then, the set of all solutions u(µ) as µ varies
can be approximated very well by its projection on a finite and low dimensional vector space spanned by
the u(µi): for sufficiently well chosen µi, there exist coefficients ci, 1 ≤ i ≤ N(µ) such that the finite sum∑Nu

i=1 ciu(µi) is very close to u(µ) for any µ.
The third realization lies in what we term the “computational opportunities”. Here, we rely on two

observations. The first observation derives from the mathematical formulation: very often, the partial differ-
ential operator can be expressed as the sum of Q products of (known, easily evaluated) parameter-dependent
functions and parameter-independent operators; we shall denote this structure as “affine” parameter depen-
dence. The second observation derives from our context: molecular dynamic simulation requires rapid and
repetitive evaluations of the “input-output” relations and thus places a predominant emphasis on very low
marginal cost — the additional effort associated with each new evaluation. These two observations present
a clear investment-amortization opportunity: we can exploit the underlying affine parametric structure to
design effective offline-online computational procedures which willingly accept greatly increased initial pre-
processing — offline — expense in exchange for greatly reduced marginal — online — “in service” cost.

In the more recent past the reduced-basis approach and in particular associated a posteriori error esti-
mation procedures have been successfully developed for (i) linear elliptic and parabolic PDEs that are affine
in the parameter [20, 21, 29, 37, 13] ; and (ii) elliptic PDEs that are at most quadratically nonlinear in
the first argument [36, 23, 35]. In these cases a very efficient offline-online computational strategy can be
developed. The operation count for the online stage — in which, given a new parameter value, we calculate
the reduced-basis output and associated error bound — depends only on Nu (typically small) and Q, but it
is independent of N , the dimension of the underlying “truth” approximation.

Unfortunately, in quantum chemistry computations based on Hartree-Fock type models or Density Func-
tional Theory type models, the underlying PDEs do not have the same nice structure that allows us to apply
the methodology developed in earlier work. There are three main issues: (i) the equations can contain both
non-affine terms and also very nasty nonlinear terms, for example associated with an exchange-correlation
term; (ii) the solution sought is not scalar — for each µ, we look for a a set of eigensolutions; and (iii)
the parameterizations of the PDEs can be complex, for example due to a set of moving nuclei and periodic
boundary conditions. In fact, the above three issues are the main difficulties faced by any numerical approx-
imation of the PDEs obtained in computational chemistry and are the deciding factors when determining
the appropriate numerical approach to employ. From this particular mathematical standpoint, Hartree-Fock
type models and Density Functional Theory type models are, with all due respect, similar.

In this paper, we will address theses issues albeit in an idealized “model” context. In Section 2, we review
the recently developed “empirical interpolation procedure” [2, 12] through a simple model elliptic problem.
Then in Section 3 and Section 4, we apply the approach within the quantum chemistry context: in Section
3 to a (non-affine) HF hydrogen molecular system; and in Section 4 to a (nonlinear) DFT one-dimensional
model. Section 3 also addresses, or at least introduces, issues of geometric and parametric complexity.
And Section 4 proposes a “solution” to the many-electron difficulty. We will not handle issues related to
a posteriori error estimators in this paper, but they are essential to our overall reduced-basis methodology
and will be addressed in our future work.

Note that our reduced-basis approximation is built (offline) upon the “truth” approximation; in subse-
quent sections, the “truth” approximation is based on the finite element approximation. The choice is purely
for convenience; certainly there are other and better choices — and hence any discussions of offline effort
are, at best, notional. We could in fact use other basis sets; in [26], the planewave method is the choice of
“truth” approximation.

1The smoothness is deduced from the equation for the sensitivity derivatives; the stability and continuity properties of the
partial differential operator are crucial. Clearly the latter are a delicate matter in the context of eigenvalue problems.
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2. Methodology

2.1. Abstract Formulation. To simplify our presentation, we will describe our methodology based on
a nonlinear elliptic problem. Extensions to nonlinear eigenvalue problems of interest in quantum chemistry
will be discussed in subsequent sections. The abstract statement of the nonlinear elliptic problem is as
follows: given any µ ∈ D ⊂ RP , we evaluate the output se(µ) as

(2.1) se(µ) = `(ue(µ))

where ue(µ) ∈ Y e is the solution of

(2.2) µa0(ue(µ), v) +
∫

Ω

g(ue(µ);x;µ)v = f(v), ∀v ∈ Y e.

Here D is the parameter domain in which our P -tuple (input) parameter µ resides (here P = 1); Y e(Ω)
is an appropriate Hilbert space with the associated inner product (w, v)Y e =

∫
Ω
∇w · ∇v + wv and norm

|| · ||Y e = (·, ·)1/2
Y ; Ω is a bounded domain in Rd with Lipschitz continuous boundary ∂Ω; g(w;x;µ) is a

general nonaffine nonlinear function of w ∈ Y , spatial coordinate x, and the parameter µ; a0(·, ·) is a Y e-
continuous bilinear functional; and f(·) and l(·) are Y e-continuous linear functionals. These functionals are
not parameter-dependent. Our function space Y e(Ω) will satisfy (H1

0 (Ω))ν ⊂ Y e(Ω) ⊂ (H1(Ω))ν ⊂ (L2(Ω))ν ,
where ν = 1 for a scalar field variable and ν = d for a vector field variable. Here H1(Ω) (respectively, H1

0 (Ω))
is the usual Hilbert space of derivative square-integrable functions (respectively, derivative square-integrable
functions that vanish on the domain boundary ∂Ω) and L2(Ω) is the Lebesgue space of square-integrable
functions [30].

More often than not, the exact solution is not available and we thus replace ue(µ) with a “truth”
approximation, u(µ), which resides in (say) a suitably fine piecewise-linear finite element approximation
space Y ⊂ Y e of very large dimension N . The abstract statement for the resulting problem is thus: given
any µ ∈ D, we evaluate s(µ) = `(u(µ)), where u(µ) ∈ Y satisfies

(2.3) µa0(u(µ), v) +
∫

Ω

g(u(µ);x;µ)v = f(v), ∀v ∈ Y.

We shall assume — hence the appellation “truth” — that the discretization is sufficiently rich such that u(µ)
and ue(µ) and hence s(µ) and se(µ) are indistinguishable at the accuracy level of interest. The reduced-basis
approximation shall be built upon this reference (or “truth”) finite element approximation, and the error of
this approximation will thus be evaluated with respect to u(µ) ∈ Y . Our formulation must be stable and
efficient as N →∞. Note that Y inherits the inner product and norm from Y e.

We shall make the following assumptions. First, we assume that the bilinear form a0(·, ·) : Y × Y → R
is symmetric, a0(w, v) = a0(v, w),∀ w, v ∈ Y . We shall also make two crucial hypotheses related to well-
posedness. Our first hypothesis is that the bilinear form a0 satisfies the following stability and continuity
conditions:

(2.4) 0 < α ≡ inf
v∈Y

µa0(v, v)
‖v‖2Y

, ∀µ ∈ D ,

(2.5) sup
w∈Y

sup
v∈Y

µa0(w, v)
‖w‖Y ‖v‖Y

≡ γ <∞, ∀µ ∈ D,

and that f ∈ L2(Ω). In the second hypothesis, we require g : R × Ω × D → R to be continuous in its
arguments, increasing in its first argument, and g(z;x;µ) ≥ 0, ∀z ∈ R, ∀x ∈ Ω and ∀µ ∈ D. With these
assumptions, the problems (2.2) and (2.3) are then well-posed [12].

2.2. Reduced-Basis Approximation.
2.2.1. Empirical Interpolation Procedure. We first introduce the nested samples, Su

N = {µu
1 ∈ D,

. . . , µu
N ∈ D}, 1 ≤ N ≤ Nmax, and associated nested Lagrangian [28] reduced-basis spaces Wu

N =
span{u(µu

n), 1 ≤ n ≤ N} = span {ζn, 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax, where u(µu
n) is the solution of

(2.2) at µ = µu
n and ζn, 1 ≤ n ≤ N are the orthonormalized bases of u(µu

n), 1 ≤ n ≤ N with respect
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to (·, ·)Y . The classical reduced-basis approximation [20, 21, 29, 37, 13] is then obtained by a standard
Galerkin projection: given µ ∈ D, we evaluate

(2.6) sN (µ) = `(uN (µ)) ,

where uN (µ) ∈Wu
N satisfies

(2.7) µa0(uN (µ), v) +
∫

Ω

g(uN (µ);x;µ) v = f(v), ∀v ∈Wu
N .

Unfortunately, the presence of strong nonlinearity in g does not allow an efficient offline-online procedure
outlined in [36, 23]. As a result, although the dimension of the system (2.7) is small, solving it is actually
expensive: the evaluation of the nonlinearity term

∫
Ω
g(uN (µ);x;µ)v will scale as some power of N . Due

to this O(N ) dependence, it is somewhat disingenuous to interpret (2.7) as a reduced-order model since the
resulting computational advantage relative to classical approaches using advanced iterative techniques can
be modest.

Our goal is to efficiently compute sN (µ) such that the incurred computational cost is dependent on
the dimension of reduced-basis approximation spaces and the parametric complexity of the problems, but
independent of N . Towards this end, we develop a collateral reduced-basis expansion for the nonlinear term
by using the empirical interpolation procedure [2, 12] reviewed below.

In particular, we consider the approximation of the parameter-dependent nonlinear function g(w;x;µ)
by a reduced-basis expansion gw

M (x;µ) based upon the empirical interpolation procedure outlined in [2, 12].
The procedure includes three steps. In the first step, we introduce nested samples Sg

M = {µg
1 ∈ D, . . . , µ

g
M ∈

D}, 1 ≤ M ≤ Mmax and associated nested approximation spaces W g
M = span{ξm ≡ g(u(x;µg

m);x;µg
m), 1 ≤

m ≤ M}. The construction of Sg
M and W g

M is based on a greedy selection process. We first define
the best approximation g∗M (x;µ) ≡ arg minz∈W g

M
‖g(u(x;µg

m); · ;µ) − z‖L∞(Ω) and the associated error
ε∗M (µ) ≡ ‖g(u(x;µg

m); · ;µ) − g∗M ( · ;µ)‖L∞(Ω). Then, we choose our first sample point to be µg
1 =

arg maxµ∈Ξ
g ‖g( · ; · ;µ)‖L∞(Ω), and define Sg

1 = {µg
1}, ξ1(x) ≡ g(u(x;µg

1);x;µ
g
1), and W g

1 = span {ξ1};
here Ξg is a suitably large but finite-dimensional parameter set in D. For M ≥ 2, we determine µg

M =
arg maxµ∈Ξ

g ε∗M−1(µ), and define Sg
M = Sg

M−1 ∪µ
g
M , ξM (x) = g(u(x;µg

M );x;µg
M ), and W g

M = span {ξm, 1 ≤
m ≤ M}. In essence, W g

M comprises basis functions from the parametrically induced manifold Mg ≡
{g(u( · ;µ); · ;µ) | µ ∈ D}.2

In the second step, we construct nested sets of interpolation points TM = {t1, . . . , tM}, 1 ≤M ≤Mmax.
We first set t1 = arg ess supx∈Ω |ξ1(x)|, q1(x) = ξ1(x)/ξ1(t1), B1

11 = 1. Then for M = 2, . . . ,Mmax, we solve
the linear system

∑M−1
j=1 σM−1

j qj(ti) = ξM (ti), 1 ≤ i ≤M −1, and set rM (x) = ξM (x)−
∑M−1

j=1 σM−1
j qj(x),

xM = arg ess supx∈Ω |rM (x)|, qM (x) = rM (x)/rM (tM ), and BM
i j = qj(ti), 1 ≤ i, j ≤M .

Finally, for any given w ∈ Y andM , we may approximate g(w;x;µ) by gw
M (x;µ) =

∑M
m=1 ϕM m(µ)qm(x),

where
∑M

j=1 BM
i j ϕM j(µ) = g(w(ti); ti;µ), 1 ≤ i ≤ M and BM

i j = qj(ti). Although this “composed”
interpolant is defined for general w ∈ Y , we expect good approximation only for w (very) close to the
manifold Mu ≡ {u(µ) | µ ∈ D} on which W g

M is constructed. Theoretical and numerical aspects of the
empirical interpolation have been analyzed in great detail in [2, 12]. We summarize here the main results:
(i) the process is stable — BM is a well-conditioned lower triangular matrix with dominant unity diagonal;
and (ii) εM (µ) ≤ ε∗M (µ)(1 + ΛM ), where εM (µ) = ||g(u(·;µ); ·;µ)− gu(µ)

M (·;µ)||L∞ [2, 12] and the Lebesgue
constant, ΛM , is bounded above by 2M − 1.3

We may now replace g(uN (µ);x;µ) — as required in our reduced-basis projection for uN (µ) — with
g

uN,M

M (x;µ). Our reduced-basis approximation is thus: given µ ∈ D, we evaluate

(2.8) sN,M (µ) = `(uN,M (µ)) ,

2Thanks to our truth approximation, the optimization for g∗M−1(x; µ) and hence ε∗M−1(µ) is a standard linear program. In

actual practice, rather than the L∞(Ω)-norm, we exploit the L2(Ω)-norm surrogate in our best approximation, the construction

of Sg
M is considerably less expensive.

3The bound is very pessimistic and of little practical value. In applications, the actual asymptotic behavior of the Lebesgue
constant is much lower than the upper bound 2M − 1, typically O(M); however, the bound does provide a theoretical basis for

some stability.
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where uN,M (µ) ∈Wu
N satisfies

(2.9) µa0(uN,M (µ), v) +
∫

Ω

g
uN,M

M (x;µ)v = f(v), ∀ v ∈Wu
N .

As shown in the next subsection, this reduced-basis formulation enables us to develop a very efficient offline-
online procedure for the computation of sN,M (µ).

Finally, we address the issue related to the choice of our parameter samples Su
N and thus the corre-

sponding reduced-basis spaces Wu
N . We could in fact generalize the greedy selection process outlined in

Section 2.2.1 for the construction of any Su
N [29, 36, 23]. We assume that we are given a sample Su

N

and hence reduced-basis space Wu
N and associated reduced-basis approximation (procedure to determine)

uN,M (µ) and sN,M (µ), ∀µ ∈ D. Then, for a suitably fine grid ΞTest over the parameter space D, we determine
µ∗N = arg maxµ∈ΞTest ε

u
N,M (µ) and append µ∗N to Su

N to form Su
N+1 and hence Wu

N+1. There is considerable
flexibility in the definition of εu

N,M (µ), the measure of the approximation error — for example, we may use

error in sN,M (µ) : |sN,M (µ)− s(µ)|,(2.10)
error in uN,M (µ) : ||uN,M (µ)− u(µ)||Y ,(2.11)

projection error : min
ν∈IRN

||
N∑

n=1

νnζn − u(µ)||Y .(2.12)

The procedure is repeated until maxµ∈ΞTest ε
u
N,M (µ) is below a tolerance we desire. In essence, this strategy

ensure “maximally independent” snapshots and hence a rapidly convergent reduced-basis approximation.
This, in conjunction with our orthogonalization procedure, also guarantees a well-conditioned reduced-basis
discrete system. This strategy is clearly not very effective in high-dimensional parameter spaces, as it requires
solutions of (2.3) at all parameter points in ΞTest. Note however that if a rigorous a posteriori error estimator
is available, a more efficient procedure is possible [29, 23].

2.2.2. Offline–Online Procedure. We now demonstrate how the incorporation of the empirical inter-
polation method into the reduced-basis approximation leads to an efficient online–offline computational
strategy. To see this more clearly, we expand our reduced-basis approximation and empirical interpolation
approximation as

(2.13) uN,M (µ) =
N∑

j=1

uN,M j(µ)ζj , g
uN,M

M (x;µ) =
M∑

m=1

ϕM m(µ)qm(x) .

Inserting these representations into (2.9) yields

(2.14) µ

N∑
j=1

AN
i juN,M j(µ) +

M∑
m=1

CN,M
i m ϕM m(µ) = FN i, 1 ≤ i ≤ N ;

where AN ∈ RN×N , CN,M ∈ RN×M , FN ∈ RN are given by AN
i j = a0(ζj , ζi), 1 ≤ i, j ≤ N , CN,M

i m =∫
Ω
qmζi, 1 ≤ i ≤ N, 1 ≤ m ≤ M , and FN i = f(ζi), 1 ≤ i ≤ N , respectively. Furthermore, ϕM (µ) ∈ RM is

given by
M∑

k=1

BM
m kϕM k(µ) = g(uN,M (tm;µ); tm;µ), 1 ≤ m ≤M

= g
( N∑

n=1

uN,M n(µ)ζn(tm); tm;µ
)
, 1 ≤ m ≤M .(2.15)

We then substitute ϕM (µ) from (2.15) into (2.14) to obtain the following nonlinear algebraic system

(2.16) µ
N∑

j=1

AN
i juN,M j(µ) +

M∑
m=1

DN,M
i m g

( N∑
n=1

ζn(tm)uN,M n(µ); tm;µ
)

= FN i, 1 ≤ i ≤ N ,

where DN,M = CN,M (BM )−1 ∈ RN×M .
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To solve (2.16) for uN,M j(µ), 1 ≤ j ≤ N , we may apply a Newton iterative scheme: given a current
iterate ūN,M j(µ), 1 ≤ j ≤ N, we must find an increment δuN,M j , 1 ≤ j ≤ N, such that

(2.17)
N∑

j=1

(
µAN

i j + ĒN
i j

)
δuN,M j(µ) = FN i − µ

N∑
j=1

AN
i j ūN,M j(µ)

−
M∑

m=1

DN,M
i m g

( N∑
n=1

ζn(tm)ūN,M n(µ); tm;µ
)
, 1 ≤ i ≤ N ;

here ĒN ∈ RN×N must be calculated at every Newton iteration as

(2.18) ĒN
i j =

M∑
m=1

DN,M
i m g′

( N∑
n=1

ζn(tm)ūN,M n(µ); tm;µ
)
ζj(tm), 1 ≤ i, j ≤ N ,

where g′(w; t;µ) is the first derivative of g with respect to w. Finally, the output can be evaluated as

(2.19) sN,M (µ) =
N∑

j=1

uN,M j(µ)LN j ,

where LN ∈ RN is the output vector with entries LN j = `(ζj), 1 ≤ j ≤ N . We observe that we can now
develop an efficient offline-online procedure for the rapid evaluation of sN,M (µ) for each µ in D.

In the offline stage — performed once — we generate nested reduced-basis spacesWu
N = {ζ1, . . . , ζN}, 1 ≤

N ≤ Nmax, nested approximation spaces W g
M = {q1, . . . , qM}, 1 ≤ M ≤ Mmax, and nested sets of interpo-

lation points TM = {t1, . . . , tM}; we then form and store AN , BM , DN,M , and FN . In the online stage —
performed many times for each new µ — we solve (2.17) for uN,M j(µ), 1 ≤ j ≤ N . The operation count
of the online stage is essentially the predominant Newton update component: at each Newton iteration, we
first assemble the right-hand side and compute ĒN at cost O(MN2) — note we perform the sum in the
parenthesis of (2.18) before performing the outer sum; we then form and invert the left-hand side (Jacobian)
at cost O(N3). The online complexity depends only on N , M and number of Newton iterations; we thus
recover online N independence.

2.3. A Simple Example. We consider a particular instantiation of our abstract statement in which

(2.20) a0(w, v) =
∫

Ω

∇w · ∇v, f(v) =
∫

Ω

v, g(w) = |w|2/3w,

and ` = f ; here Ω =]0, 1[∈ R, w and v ∈ Y ≡ H1
0 (Ω), and µ ∈ D ≡ [0.001, 1]. Our model problem is clearly

well-posed. In addition, small µ results in boundary layer solutions as shown in Figure 1.
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0.4

0.6
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x

µ = 1.0
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µ = 0.0658

µ = 0.0163

µ = 0.001

Figure 1. Solution u(µ) for several values of µ.
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We now present numerical results for the reduced-basis approximation. To begin, we introduce a pa-
rameter sample ΞTest ⊂ D of size 100 and define εs

N,M = maxµ∈ΞTest |s(µ) − sN,M (µ)|/|s(µ)|. We show in
Figure 2 convergence of εs

N,M with respect to N and M . We observe that the reduced-basis approximation
converges very rapidly. In addition, the quality of our reduced-basis approximation depends on N and M in
a strongly coupled manner: for a fixed value of M , the error decreases monotonically with N for N ≤ NM ,
where NM is such that there is no appreciable change in εs

N,M for N > NM . However, when M is increased,
the achievable εs

N,M decreases further and NM increases; this strongly suggests that the reduced-basis error
is strongly limited by the error in the initial construction of our empirical interpolation approximation.

2 4 6 8 10
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

N

M=4
M=6
M=8
M=10

Figure 2. Convergence of the maximum relative error εs
N,M as a function of N and M .

3. Hydrogen Molecule

In this section, we use the reduced-basis method to rapidly determine the ground state energy of a hydro-
gen molecule. We then demonstrate the computational savings afforded by our reduced-basis approximation
in a molecular dynamics (MD) simulation of the hydrogen molecule. Although the hydrogen molecule is the
simplest multi-electron molecule, numerical calculation of its properties was the first demonstration of the
power of the Schrödinger equation in quantum chemistry.

3.1. Problem Description.
3.1.1. Exact Statement. We consider the interaction of an hydrogen molecular system consisting of a

pair of electrons and two nuclei, each with effectively infinite mass and charge Z = 1. The positions of
the nuclei in the Cartesian coordinates r are denoted by Ri, i = 1, 2, those of the electrons are denoted by
ri, i = 1, 2, and the internuclear separation is denoted by R. Then, the Hamiltonian of this molecular system
reads as

(3.1) H = −
2∑

i=1

∇2
i

2
+

2∑
j=1

Z

|ri −Rj |

+
1

|r1 − r2|
+
Z2

R
,

for which the ground state solution is described by a ground-state wavefunction ψe. By applying the Born-
Oppenheimer approximation and the restricted Hartree-Fock (RHF) theory [34, 15, 6, 18, 17], which
expresses the wavefunction as the determinant of two single-electron wavefunctions with similar spatial
component, we obtain the RHF problem: the ground-state molecular orbital Ue is given by

(3.2) Ue = arg inf
w∈H1(R3)

{
Ee

RHF(w),
∫

R3
w2dr = 1

}
,

where the energy Ee
RHF(w) is given by

(3.3) Ee
RHF(w) =

1
2

∫
R3
|∇w|2dr −

∫
R3

w2

|r −R1|
dr −

∫
R3

w2

|r −R2|
dr +

1
2

∫
R3

∫
R3

w2(r)w2(r′)
|r − r′|

dr′dr .
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Recall that H1(R3) is the Hilbert space in R3. For any w ∈ H1(R3), let

(3.4) Φ(w) =
∫

R3

w2(r′)
|r − r′|

dr′ ,

it thus follows that Φ(w) is the solution of the Poisson problem

(3.5) −∇2Φ(w) = 4πw2 in R3 .

We shall exploit this potential in what follows.
To further simplify (3.2), we exploit the symmetry of the solution Ue and recast the problem into an

infinite half-plane R2
+; we denote the axial and radial coordinates as y1 and y2, respectively. Let the origin

of the coordinate system be the midpoint between the two nuclei; the positions of the two nuclei are thus
(−µ/2, 0) and (µ/2, 0). Here, µ ≡ R, the internuclear separation, is the only parameter of interest, and
varies in the range D ≡ [0.5, 6]. By introducing ue

∞(y) =
√

2πUe(y),∀y = (y1, y2) ∈ R2
+, we can rewrite the

above RHF problem as

(3.6) ue
∞(y;µ) = arg inf

w∈H1
0 (R2

+)

{
Ee
∞(w;µ),

∫
R2

+

w2y2dy1dy2 = 1

}
.

Here the energy functional Ee
∞(w;µ) is given by

(3.7) Ee
∞(w;µ) =

1
2

∫
R2

+

|∇w|2y2dy1dy2 −
∫

R2
+

go(y;µ)w2dy1dy2 +
1
2

∫
R2

+

φe
∞w

2y2dy1dy2 ,

where

(3.8) go(y;µ) =
y2√

(y1 + µ/2)2 + y2
2

+
y2√

(y1 − µ/2)2 + y2
2

,

(3.9) −∇2φe
∞ = 2w2 in R2

+ .

The boundary conditions for both ue
∞ and φe

∞ are homogeneous Neumman on y2 = 0 and homogeneous
Dirichlet at infinity.

We next truncate the infinite half-plane domain to a large parameter-dependent computational domain
Ωo(µ) ≡]−25−µ/2, 25+µ/2[×]0, 25[ as shown in Figure 3(a); since the largest possible value of µ is 6 � 25,
Ωo is sufficiently large that the truncation will not adversely affect our solution. As a result, the RHF
problem for the hydrogen molecular system is being approximated by

(3.10) ue
o(y;µ) = arg inf

w∈H1
0 (Ωo(µ))

{
Ee

o(w;µ),
∫

Ωo(µ)

w2y2dy1dy2 = 1

}
,

where

(3.11) Ee
o(w;µ) =

1
2

∫
Ωo(µ)

|∇w|2y2dy1dy2 −
∫

Ωo(µ)

go(y;µ)w2dy1dy2 +
1
2

∫
Ωo(µ)

φe
ow

2y2dy1dy2 ,

(3.12) −∇2φe
o = 2w2 in Ωo(µ) .

The outputs of interest are seo(µ) = Ee
o(u

e
o(µ);µ) and ∂seo(µ)/∂µ = ∂Ee

o(u
e
o(µ);µ)/∂µ from which we may

calaculate the ground state energy of the hydrogen molecular system Ee
o H2

(µ) = 2seo(µ) + 1/µ and the force
exerted on the nuclei, F e

o H2
(µ) = 2∂seo(µ)/∂µ − 1/µ2. The boundary conditions for both ue

o and φe
o are

homogeneous Neumman on y2 = 0 and homogeneous Dirichlet on the rest of the boundary.
3.1.2. Mapped Formulation on Reference Domain. We next introduce a reference domain Ω = Ωo(µ =

3) =]− 26.5, 26.5[×]0, 25[ as shown in Figure 3(b). We decompose Ωo(µ) and Ω as

(3.13) Ωo(µ) = Ω
1

o(µ) ∪ Ω
2

o(µ) ∪ Ω
3

o(µ), Ω = Ω
1 ∪ Ω

2 ∪ Ω
3
,

where Ω1
o(µ) ≡] − 25 − µ/2,−µ/2[×]0, 25[, Ω2

o(µ) ≡] − µ/2, µ/2[×]0, 25[, Ω3
o(µ) ≡]µ/2, 25 + µ/2[×]0, 20[,

Ω1 ≡] − 26.5,−1.5[×]0, 25[, Ω2 ≡] − 1.5, 1.5[×]0, 25[, Ω3 ≡]1.5, 26.5[×]0, 25[. We now consider a piecewise
affine mapping F from Ω to Ωo(µ): the mapping is (y1, y2) = (x1 + 1.5 − µ/2, x2) from Ω1 to Ω1

o(µ); the
mapping is (y1, y2) = (µ

3x1, x2) from Ω2 to Ω2
o(µ); the mapping is (y1, y2) = (x1 − 1.5 + µ/2, x2) from Ω3 to

Ω3
o(µ).
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Figure 3. Truncated computational domains: (a) original domain, and (b) reference domain.

Our exact solution on the original domain, ue
o(y;µ), can then be expressed in terms of the solution on

the mapped domain, ue(x;µ), as ue
o(y;µ) = ue(F−1(y);µ). The solution on the mapped domain, ue(x;µ) ∈

Y e ≡ H1
0 (Ω) satisfies

(3.14) ue(x;µ) = arg inf
w∈Y e

{Ee(w;µ), m(w,w;µ) = 1} ,

where

(3.15) Ee(w;µ) =
1
2
a0(w,w;µ)− a(w,w; g(x;µ)) +

1
2
b(w,w, φe(w);µ) ,

(3.16) a0(φe(w), v;µ) = 2b(w,w, v;µ), ∀ v ∈ Y e .

Here the forms are given by
(3.17)

a0(w, v;µ) =
∫

Ω1
∇w∇vx2dx1dx2+

3
µ

∫
Ω2

∂w

∂x1

∂v

∂x1
x2dx1dx2+

µ

3

∫
Ω2

∂w

∂x2

∂v

∂x2
x2dx1dx2+

∫
Ω3
∇w∇vx2dx1dx2

(3.18) m(w, v;µ) =
∫

Ω1
wvx2dx1dx2 +

µ

3

∫
Ω2
wvx2dx1dx2 +

∫
Ω3
wvx2dx1dx2

(3.19) b(w, v, z;µ) =
∫

Ω1
wvzx2dx1dx2 +

µ

3

∫
Ω2
wvzx2dx1dx2 +

∫
Ω3
wvzx2dx1dx2

(3.20) a(w, v; g(x;µ)) = a1(w, v; g1(x;µ)) + a2(w, v; g2(x;µ)) + a3(w, v; g3(x;µ))

where

a1(w, v; g1(x;µ)) =
∫

Ω1
g1(x;µ)wvdx1dx2

a2(w, v; g2(x;µ)) =
∫

Ω2
g2(x;µ)wvdx1dx2

a3(w, v; g3(x;µ)) =
∫

Ω3
g3(x;µ)wvdx1dx2

and

g(x;µ) =


g1(x;µ) = x2√

(x1+1.5)2+x2
2

+ x2√
(x1+1.5−µ)2+x2

2

, x ∈ Ω1 ,

g2(x;µ) = µ
3

x2q
(µ

3 x1+
µ
2 )2

+x2
2

+ µ
3

x2q
(µ

3 x1−µ
2 )2

+x2
2

, x ∈ Ω2

g3(x;µ) = x2√
(x1−1.5+µ)2+x2

2

+ x2√
(x1−1.5)2+x2

2

, x ∈ Ω3 .

Our outputs of interest are then evaluated as se(µ) = Ee(ue(µ);µ) and ∂se(µ)/∂µ = ∂Ee(ue(µ);µ)/∂µ. In
this reference domain, the ground state energy of the hydrogen molecular system is then given by Ee

H2
(µ) =

2se(µ) + 1/µ and the force exerted on the nuclei is given by F e
H2

(µ) = 2∂se(µ)/∂µ− 1/µ2.
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3.1.3. Truth Approximation. We now introduce the “truth” approximations u(µ) ∈ Y and φ(µ) ∈ Y ,
where Y ⊂ Y e is a truth linear finite approximation space of dimension N . By application of the Euler-
Lagrange formulation, we obtain a generalized nonlinear eigenvalue system for (u(µ), φ(µ), λ(µ)) ∈ Y ×Y ×R
given by

1
2
a0(u(µ), v;µ)− a(u(µ), v; g(x;µ)) + b(φ(µ), u(µ), v;µ) = λ(µ)m(u(µ), v;µ), ∀v ∈ Y ,(3.21)

1
2
a0(φ(µ), v;µ) = b(u(µ), u(µ), v;µ), ∀v ∈ Y ,(3.22)

m(u(µ), u(µ);µ) = 1 .(3.23)

Here λ(µ) is the Lagrange multiplier. It then follows that s(µ) = λ(µ) − 1
2b(φ(µ), u(µ), u(µ);µ), and after

simple algebraic manipulations, we obtain

(3.24) ∂s(µ)/∂µ =
1
2
a′0(u(µ), u(µ);µ)− a′(u(µ), u(µ); g(x;µ)) + b′(φ(µ), u(µ), u(µ);µ)

− λ(µ)m′(u(µ), u(µ);µ)− 1
4
a′0(φ(µ), φ(µ);µ) ;

where the prime denotes the partial derivative of the forms with respect to the parameter µ. The ground
state energy of the hydrogen molecular system is then given by EH2(µ) = 2s(µ) + 1/µ and the force exerted
on the nuclei is given by FH2(µ) = 2∂s(µ)/∂µ− 1/µ2.

The Newton’s method is then used to solve the above system: given a current iterate (ū(µ), φ̄(µ), λ̄(µ)) ∈
Y × Y × R, we find an increment (δu(µ), δφ(µ), δλ(µ)) ∈ Y × Y × R such that

1
2
a0(δu(µ), v;µ)− a(δu(µ), v; g(x;µ)) + b(φ̄(µ), δu(µ), v;µ)− λ̄(µ)m(δu(µ), v;µ) + b(δφ(µ), ū(µ), v;µ)

−δλ(µ)m(ū(µ), v;µ) = λ̄(µ)m(ū(µ), v;µ)− 1
2
a0(ū(µ), v;µ) + a(ū(µ), v; g(x;µ))

−b(φ̄(µ), ū(µ), v;µ), ∀v ∈ Y ,

b(δu(µ), ū(µ), v;µ)− 1
4
a0(δφ(µ), v;µ) =

1
4
a0(φ̄(µ), v;µ)− 1

2
b(ū(µ), ū(µ), v;µ), ∀v ∈ Y ,

m(δu(µ), ū(µ);µ) =
1
2
(1−m(ū(µ), ū(µ);µ)) .

To accelerate the convergence, the already computed solution at a particular parameter µ = µold is taken as
an initial guess when solving the system for µ = µnew.

3.2. Reduced-Basis Formulation. We realize that the problem is nonlinear in u(µ) and φ(µ) and
nonaffine in µ. Since the nonlinearity is only quadratic, the nonlinear terms can be efficiently treated by
the usual reduced-basis formulation [13, 23, 35]. To achieve an economical reduced-basis approximation of
N -independent online complexity, however, the empirical interpolation method is needed to deal with the
nonaffine terms.

3.2.1. Discrete Equations. To begin, we introduce two samples Su
Nu = {µu

1 , . . . , µ
u
Nu} and Sφ

Nφ ={
µφ

1 , . . . , µ
φ
Nφ

}
and two associated reduced-basis approximation spacesWu

Nu = span
{
ζj ≡ u(µu

j ), 1 ≤ j ≤ Nu
}

and Wφ
Nφ = span

{
ςj ≡ φ(µφ

j ), 1 ≤ j ≤ Nφ
}

. We next construct three samples Sg1
Mg1 = {µg1

1 , . . . , µ
g1
Mg1},

Sg2
Mg2 = {µg2

1 , . . . , µ
g2
Mg2}, and Sg3

Mg3 = {µg3
1 , . . . , µ

g3
Mg3}; associated approximation spaces W g1

Mg1 = span
{g1(x;µg1

j ), 1 ≤ j ≤ Mg1} = span {qg1
1 , . . . , q

g1
Mg1}, W

g2
Mg2 = span

{
g2(x;µ

g2
j ), 1 ≤ j ≤Mg2

}
= span {qg2

1 ,
. . ., qg2

Mg2}, and W g3
Mg3 = span

{
g3(x;µ

g3
j ), 1 ≤ j ≤Mg3

}
= span{qg3

1 , . . . , q
g3
Mg3}; and three sets of interpola-

tions points T g1
Mg1 = {tg1

1 , . . . , t
g1
Mg1}, T

g2
Mg2 = {tg2

1 , . . . , t
g2
Mg2}, T

g3
Mg3 = {tg3

1 , . . . , t
g3
Mg3} following the empirical

interpolation procedure outlined in Section 2.2.1. For simplicity of exposition, throughout this section we
assume that Nφ = Nu ≡ N and Mg1 = Mg2 = Mg3 ≡M .

By applying a standard Galerkin projection and replacing the nonaffine functions g1(x;µ), g2(x;µ), and
g3(x;µ) with our coefficient function approximations g1M (x;µ), g2M (x;µ), and g3M (x;µ), we obtain the
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reduced-basis formulation: given µ ∈ D, we evaluate

(3.25) sN,M (µ) = λN,M (µ)− 1
2
b(φN,M (µ), uN,M (µ), uN,M (µ);µ) ,

and

(3.26)
∂sN,M (µ)

∂µ
=

1
2
a′0(uN,M (µ), uN,M (µ);µ)−a′1(uN,M (µ), uN,M (µ); g1M (x;µ))−a′2(uN,M (µ), uN,M (µ); g2M (x;µ))

− a′3(uN,M (µ), uN,M (µ); g3M (x;µ)) + b′(φN,M (µ), uN,M (µ), uN,M (µ);µ)

− λ(µ)m′(uN,M (µ), uN,M (µ);µ)− 1
4
a′0(φN,M (µ), φN,M (µ);µ) ;

where (uN,M (µ), φN,M (µ), λN,M (µ)) ∈Wu
N ×Wφ

N × R is the solution of

1
2
a0(uN,M (µ), v;µ)− a1(uN,M (µ), v; g1M (x;µ))− a2(uN,M (µ), v; g2M (x;µ))− a3(uN,M (µ), v; g3M (x;µ))

+b(φN,M (µ), uN,M (µ), v;µ) = λN,M (µ)m(uN,M (µ), v;µ), ∀v ∈Wu
N ,(3.27)

1
2
a0(φN,M (µ), v;µ) = b(uN,M (µ), uN,M (µ), v;µ), ∀v ∈Wφ

N ,(3.28)

m(uN,M (µ), uN,M (µ);µ) = 1 .(3.29)

Here g1M (x;µ), g2M (x;µ), and g3M (x;µ) are given by

(3.30) g1M (x;µ) =
M∑

m=1

βg1
m (µ)qg1

m (x), g2M (x;µ) =
M∑

m=1

βg2
m (µ)qg2

m (x), g3M (x;µ) =
M∑

m=1

βg3
m qg3

m (x) ,

where, for j = 1, . . . ,M ,

(3.31)
M∑

m=1

qg1
m (tg1

j )βg1
m (µ) = g1(t

g1
j ;µ),

M∑
m=1

qg2
m (tg2

j )βg2
m (µ) = g2(t

g2
j ;µ),

M∑
m=1

qg3
m (tg3

j )βg3
m (µ) = g3(t

g3
j ;µ) .

The reduced-basis approximation to the ground state energy of the hydrogen molecular system is then given
by EN,M H2(µ) = 2sN,M (µ) + 1/µ and the reduced-basis approximation to the force exerted on the nuclei is
given by FN,M H2(µ) = 2∂sN,M (µ)/∂µ − 1/µ2. It remains to address the computational complexity of the
reduced-basis approximation.

3.2.2. Offline-Online Procedure. We first expand our reduced-basis approximations uN,M (µ) and φN,M (µ)
as

(3.32) uN,M (µ) =
N∑

j=1

uN,M j(µ)ζj , φN,M (µ) =
N∑

j=1

φN,M j(µ)ςj .

Inserting these representations and the coefficient-function approximations from (3.30) into (3.27)-(3.29)
yields

1
2

N∑
j=1

{
a0(ζj , ζi;µ)−

M∑
m=1

(
βg1

m (µ)a1(ζj , ζi; qg1
m ) + βg2

m (µ)a2(ζj , ζi; qg2
m ) + βg3

m (µ)a3(ζj , ζi; qg3
m )
)}

uN,M j(µ)

+
N∑

j=1

N∑
k=1

b(ςj , ζk, ζi;µ)φN,M j(µ)uN,M k(µ) = λN,M (µ)
N∑

j=1

m(ζj , ζi;µ)uN,M j(µ), 1 ≤ i ≤ N,

1
2

N∑
j=1

a0(ςj , ςi;µ)φN,M j(µ) =
N∑

j=1

N∑
k=1

b(ζj , ζk, ςi;µ)uN,M j(µ)uN,M k(µ), 1 ≤ i ≤ N,

N∑
j=1

N∑
k=1

m(ζj , ζk;µ)uN,M j(µ)uN,M k(µ) = 1 .
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In a similar fashion as described in Section 2.2.2, this algebraic nonlinear system of 2N +1 equations can be
readily solved by the Newton’s method for uN,M j(µ), φN,M j(µ), 1 ≤ j ≤ N, and λN,M (µ). The reduced-basis
outputs can then be calculated as

(3.33) sN,M (µ) = λN,M (µ)− 1
2

N∑
k=1

N∑
j=1

N∑
i=1

φN,M k(µ)uN,M j(µ)uN,M i(µ)b(ςk, ζj , ζi;µ) ,

and

(3.34)
∂sN,M

∂µ
(µ) =

N∑
j=1

N∑
i=1

uN,M j(µ)uN,M i(µ)
(1

2
a′0(ζj , ζi;µ)− λ(µ)m′(ζj , ζi;µ)

−
M∑

m=1

(
βg1

m
′(µ)a1(ζj , ζi; qg1

m ) + βg2
m
′(µ)a2(ζj , ζi; qg2

m ) + βg3
m
′(µ)a3(ζj , ζi; qg3

m )
)

+
N∑

k=1

φN,M k(µ)b′(ςk, ζj , ζi;µ)
)
− 1

4

N∑
j=1

N∑
i=1

φN,M j(µ)φN,M i(µ)a′0(ςj , ςi;µ) ,

where βg1
m
′(µ), βg2

m
′(µ), and βg3

m
′(µ) are obtained from

(3.35)
M∑

m=1

qg1
m (tg1

j )βg1
m
′(µ) = g′1(t

g1
j ;µ),

M∑
m=1

qg2
m (tg2

j )βg2
m
′(µ) = g′2(t

g2
j ;µ),

M∑
m=1

qg3
m (tg3

j )βg3
m
′(µ) = g′3(t

g3
j ;µ) .

For efficient computation, we employ the offline-online computational strategy.
Towards this end, we may express (3.17)-(3.20) as

(3.36) a0(ζj , ζi;µ) =
∫

Ω1∪Ω3
∇ζj∇ζix2dx1dx2 +

3
µ

∫
Ω2

∂ζj
∂x1

∂ζi
∂x1

x2dx1dx2 +
µ

3

∫
Ω2

∂ζj
∂x2

∂ζi
∂x2

x2dx1dx2

(3.37) a0(ςj , ςi;µ) =
∫

Ω1∪Ω3
∇ςj∇ςix2dx1dx2 +

3
µ

∫
Ω2

∂ςj
∂x1

∂ςi
∂x1

x2dx1dx2 +
µ

3

∫
Ω2

∂ςj
∂x2

∂ςi
∂x2

x2dx1dx2

(3.38) b(ςk, ζj , ζi;µ) =
∫

Ω1∪Ω3
ςkζjζix2dx1dx2 +

µ

3

∫
Ω2
ςkζjζix2dx1dx2

(3.39) m(ζj , ζi;µ) =
∫

Ω1∪Ω3
ζjζix2dx1dx2 +

µ

3

∫
Ω2
ζjζix2dx1dx2

(3.40) a1(ζj , ζi; qg1
m ) =

∫
Ω1
qg1
m ζjζidx1dx2

(3.41) a2(ζj , ζi; qg2
m ) =

∫
Ω2
qg2
m ζjζidx1dx2

(3.42) a3(ζj , ζi; qg3
m ) =

∫
Ω3
qg3
m ζjζidx1dx2

(3.43) a′0(ζj , ζi;µ) = − 3
µ2

∫
Ω2

∂ζj
∂x1

∂ζi
∂x1

x2dx1dx2 +
1
3

∫
Ω2

∂ζj
∂x2

∂ζi
∂x2

x2dx1dx2

(3.44) a′0(ςj , ςi;µ) = − 3
µ2

∫
Ω2

∂ςj
∂x1

∂ςi
∂x1

x2dx1dx2 +
1
3

∫
Ω2

∂ςj
∂x2

∂ςi
∂x2

x2dx1dx2

(3.45) b′(ςk, ζj , ζi;µ) =
1
3

∫
Ω2
ςkζjζix2dx1dx2

(3.46) m′(ζj , ζi;µ) =
1
3

∫
Ω2
ζjζix2dx1dx2 .
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It should now be clear that we can develop an efficient offline-online procedure for the rapid evaluation of
sN,M (µ) and ∂sN,M (µ)/∂µ for each µ in D.

The operation count of the online stage is essentially the predominant Newton update component: at
each Newton iteration, we first assemble the right-hand side and form the Jacobian matrix at a cost of
O(2N3) (for a linear problem the scaling would be O(2N2) — the quadratic terms introduces another factor
of N); we then invert the Jacobian matrix at cost O((2N + 1)3). Note that we solve for βg1

m (µ), βg2
m (µ),

βg3
m (µ), βg1

m
′(µ), βg2

m
′(µ), βg3

m
′(µ) at cost O(6M2) by appealing to the triangular property of BM and form the

affine parameter-dependent quantities and their partial derivatives at cost O(3MN2 +N3) before pursuing
the Newton steps. In summary, the operation count of the online stage is O(6M2 +K(2N + 1)3), where K
is the number of Newton iterations. The online complexity is thus independent of N .

3.3. Numerical Results. We first present in Figure 4(a) the finite element calculation of the ground
state energy of the hydrogen molecular system EH2 as a function of the internuclear separation µ for the
truth linear finite element approximation of dimension N = 8601. The minimum binding energy is −1.1687
and the equilibrium internuclear separation, µ, is 1.4; this is in good agreement with the calculated binding
energy of −1.1745 and the calculated equilibrium internuclear separation of 1.4 given in [33]. Figure 4(b)
shows the wavefunction u(µ) at the equilibrium internuclear separation.

1 2 3 4 5 6

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

µ
(a) (b)

Figure 4. (a) EH2 as a function of µ, and (b) u(µ) at the equilibrium internuclear separation
µ = 1.4.

We next introduce a parameter sample ΞTest ⊂ D of size 111 and define εs
N,M = maxµ∈ΞTest |s(µ) −

sN,M (µ)|/|s(µ)|, εds
N,M = maxµ∈ΞTest |∂s(µ)/∂µ−∂sN,M (µ)/∂µ|/|∂s(µ)/∂µ|, and ελ

N,M = maxµ∈ΞTest |λ(µ)−
λN,M (µ)|/|λ(µ)|. We present in Figure 5 εs

N,M as a function of N and M . We observe very rapid convergence
of the reduced-basis approximation. Again, we note that the “plateau” in the curves for M fixed and
the “drop” in the N → ∞ asymptotes as M increases: for fixed M the error in our coefficient function
approximation gM (x;µ) to g(x;µ) will ultimately dominate at large N ; increasing M renders the coefficient
function approximation more accurate, which in turn leads to the drops in the asymptotic error. We tabulate
in Table 1 εs

N,M , εds
N,M , and ελ

N,M for different values of N and M . We observe that the reduced-basis outputs
converge very rapidly and that, as expected, sN,M (µ) and λN,M (µ) converge faster than ∂sN,M/∂µ(µ).
Indeed, it is clear from Figure 5 that we can further reduce the errors in Table 1 by using larger M .

We now present in Table 2 the online computational times to calculate ∂sN,M/∂µ(µ) as a function of
N and M ; the values are normalized with respect to the computational time for the direct calculation of
the truth approximation output ∂s/∂µ(µ). We achieve significant computational savings: for a relative
accuracy of close to 0.1 percent (corresponding to N = M = 10 in Table 1) in the output, the online saving
is more than a factor of 5000 relative to the FEM. Of course, when competing with more efficient quantum
chemistry methods particularly developed for solution of the RHF problems, the computational savings will
be not really that great. Nevertheless, the reduced-basis approach does provide an attractive alternative to
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Figure 5. Convergence of the maximum error εs
N,M as a function of N and M .

N M εs
N,M εds

N,M ελ
N,M

2 2 1.17E – 01 1.18E – 00 1.72E – 01
4 4 3.94E – 02 5.86E – 01 3.88E – 02
6 6 8.76E – 04 4.29E – 02 1.11E – 03
8 8 6.37E – 05 6.98E – 03 6.17E – 05
10 10 8.30E – 06 1.07E – 03 1.07E – 05
12 12 1.54E – 07 3.96E – 06 4.75E – 07

Table 1. Maximum relative errors for different values of (N,M) for the hydrogen molecule example.

the existing methods, in particular for problems with moving nuclei (this section) and problems that are
periodic (the solid state models considered in the next section).

Online time (Online) time
N M for for

∂sN,M (µ)/∂µ ∂s(µ)/∂µ
2 2 1.26E – 05 1
4 4 3.98E – 05 1
6 6 8.07E – 05 1
8 8 1.18E – 04 1
10 10 1.82E – 04 1
12 12 2.44E – 04 1

Table 2. Online computational times (normalized with respect to the time to solve for
∂s(µ)/∂µ) for the hydrogen molecule example.

Finally, we apply our reduced-basis approximation to the real-time molecular dynamics (MD) simulation
of the hydrogen molecular system by using the velocity Verlet time integration scheme [10, 19, 17]. We
present the time evolution of the internuclear separation and velocity in Figure 6 for small initial distance
R0 = 1.0 near the equilibrium internuclear separation and in Figure 7 for large initial distance R0 = 5.0
far from the equilibrium internuclear separation. In both cases, we take N = M = 10 and use a constant
timestep of 0.02 for 2500 time steps. We see that in the first case the two nuclei interact with higher
frequency and smaller magnitude than in the second case; and that in the first case the response is relatively
harmonic whereas anharmonic effects dominate in the second case. The crucial new ingredient is fast output
evaluations that allow us to perform a real-time MD simulation of the hydrogen molecular system: the “ab
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initio” molecular dynamics results are obtained online in less than 53 seconds on a Pentium 1.73 GHz laptop.
(The same simulation would take 73 hours with the (admittedly sub-optimal) FE approximation. )
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Figure 6. MD simulation of the H2 system for R0 = 1.0: (a) internuclear separation and (b) velocity.
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Figure 7. MD simulation of the H2 system for R0 = 5.0: (a) internuclear separation and (b) velocity.

4. 1-D Kohn Sham Equation

4.1. Problem Formulation. We shall now consider a one-dimensional periodic quantum problem4:
we determine the ground state energy of a model periodic system with lattice parameter µ and hence unit
cell Ωo(µ) ≡ ] − µ

2 ,
µ
2 ] based on the spinless Density Functional Theory [6, 8, 25, 22]. We further assume

that a single nucleus of charge Z lies at the center of the cell and the number of electrons per nucleus is ne,
with ne = Z for charge neutrality. This model is rudimentary in the understanding of crystalline solids and
has been studied in [31] and more recently [5].

This problem offers several opportunities for us to exercise the methodology described in previous sec-
tions: the parameterization procedure allows for efficient implementation of the online-offline computational
framework; the empirical interpolation procedure allows for coefficient function approximation of the non-
linear terms; and the reduced-basis procedure enables significant reduction in model size and computational
cost in the online stage. More importantly, this problem introduces the computational challenges imposed
by multiple electrons, and allows us to introduce in Section 4.2 a new ingredient that enables us to construct
an efficient reduced-basis space and ultimately a smaller reduced-basis problem.

4For a more general treatment of 3-D periodic quantum systems, work is currently being pursued to exploit existing planewave
codes [11] to efficiently construct the reduced-basis spaces [26].
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For simplicity, the parameter space consists of µ only; each new Z constitutes a new problem in our
reduced-basis approximation. Some possible applications from studying a system with varying µ includes
the determination of forces exerted on the nuclei when the structure is deformed, and the characterization
of the nonlinear behavior of the elasticity constant.

4.1.1. Energy Statement. The equilibrium ground state energy of the above model can be obtained by
solving a minimization problem for ûo([Z, µ∗]) ≡ (uo 1, . . . , uo ne), where [3, 7, 18, 17]

ûo([Z, µ]) = arg inf
ŵo

{
Eo(ŵo ≡ (wo 1, . . . , wo ne); [Z, µ]), wo,i ∈ Yo,(4.1) ∫
Ωo(µ)

wo iwo j = δij , 1 ≤ i, j ≤ ne

}
,

µ∗(Z) = arg inf
µ

{
Eo(ûo([Z, µ]); [Z, µ]);µ > 0

}
;(4.2)

here Yo ≡ H1
per(Ωo(µ)) is the space of µ-periodic functions in H1(IR); δij = {1 if i = j, 0 otherwise}; and

uo i is the Kohn-Sham orbital associated with the ith electron. (In practice, as in previous sections, Yo is
in fact our “truth” approximation, in this case a linear finite element approximation; a planewave (Fourier
spectral) “truth” approximation is also possible.) The electronic energy Eo(ŵo; [Z, µ]) is defined as

Eo(ŵo; [Z, µ]) = Cw

ne∑
i=1

∫
Ωo(µ)

(∇wo i)2 − Z

ne∑
i=1

∫
Ωo(µ)

Go wo i
2

+
1
2
Cc

∫
Ωo(µ)

∫
Ωo(µ)

(
ne∑
i=1

w2
o i(y1)

)
Go(y1 − y2)

 ne∑
j=1

w2
o j(y2)

 dy1 dy2

− Cx

ne∑
i=1

∫
Ωo(µ)

 ne∑
j=1

w2
o j

4/3

w2
o i,(4.3)

where we have used the X-α approximation to approximate the exchange-correlation term. Here, y denotes a
point in Ωo(µ); Cw, Cc, and Cx are model constants (currently Cw = 0.5, Cc = 1 and Cx = 0.7386); and the
periodic Green’s function Go(· ;µ) : Ωo(µ) → IR satisfies −4Go =

{
δ(y)− 1

|Ωo(µ)|

}
,
∫
Ωo(µ)

Go = 0, where 4
is the Laplacian operator, δ(y) is the Dirac delta distribution, and |Ωo(µ)| = µ is the length of Ωo(µ). The
total energy Eo(ŵo; [Z, µ]) — our output of interest — is then given by

(4.4) Eo(ŵo; [Z, µ]) = Eo(ŵo; [Z, µ]) +
Z2

2
η,

where η is the nuclear - nuclear correction term given by η = limy→0

{
Go(y;µ)− |y|

2

}
= π2µ

12 .
Finally, the equivalent Euler-Lagrange equations for the constrained minimization problem (4.1) is given

by:

Cw∆uo i −Gouo i − φouo i + Cx

 ne∑
j=1

u2
o j

1/3

uo i = λo iuo i, 1 ≤ i ≤ ne,(4.5)

−∆φo − 4πCc

 Z

Ωo(µ)
−

ne∑
j=1

u2
o j

 = 0,(4.6)

∫
Ωo(µ)

uo iuo j = δij , 1 ≤ i < j < ne(4.7) ∫
Ωo(µ)

φo = 0.(4.8)
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Here, φo = −Cc

∫
Ωo(µ)

(∑ne

j=1 u
2
o j

)
Go(y1 − y2)dy2 is simply the Hartree potential [7] with a normalization

of
∫
Ωo(µ)

φo = 0. Note that (4.5) contains a nonlinear term similar to Section 2.3; but now we have an
eigenvalue problem for which we need to determine ne eigenfunctions (or orbitals) and eigenvalues.

4.1.2. Parameterized Abstract Formulation. From the weak form of the Euler Lagrange equations (4.5)
- (4.8), we derive the equivalent parameterized abstract formulation. We first define an affine geometric
mapping, G(µ), from Ωo(µ) to Ω ≡]− 1

2 ,
1
2 ], which can be expressed as x = G(y;µ) ≡ 1

µy. We further define
ui(µ) = uo i ◦ G−1( · ;µ), φ(µ) = 1

µφo ◦ G−1( · ;µ) and G(µ) = 1
µGo ◦ G−1( · ;µ). Then, u([Z, µ]) ≡ (û([Z, µ]),

φ([Z, µ]), λ̂([Z, µ]), τ([Z, µ])) ∈ Y ≡ ((Y )ne × Y × IRne(ne+1)/2 × IR) satisfies

(4.9) A(u([Z, µ]),v;G; [Z, µ]) = 0, ∀v ∈ Y,

where Y ≡ H1
per(Ω) is the space of 1-periodic functions in H1(IR) (more precisely, an associated “truth”

approximation subspace) with the associated inner product (w, v)Y ≡
∫
Ω
∇w · ∇v+

∫
Ω
wv and norm || · || =

(·, ·)1/2
Y ; û([Z, µ]) ≡ (ui, 1 ≤ i ≤ ne); λ̂([Z, µ]) ≡ (λij , 1 ≤ i ≤ j ≤ ne); G satisfies −∆G = δ(x)− 1,

∫
Ω
G = 0;

and A is defined as

A(w ≡ (ŵ, s, σ̂, κ),v ≡ (v̂, ς, ϕ̂,$); t; [Z, µ]) ≡
ne∑
i=1

θ1 a0(wi, vi) + θ2 a2(wi, t, vi) + θ3 a2(wi, s, vi) + θ5 a
nl(wi,

ne∑
j=1

w2
j , vi)

+ θ4 σiia1(ui, vi) + θ4

ne∑
j=1

σij a1(wj , vi)

+
ne∑
i=1

ne∑
j=i

ϕij {β1a1(wi, wj) + β2δij}+

α1a0(s, ς) + α2

ne∑
j=1

a2(wj , wj , ς) + α3l(ς) + κα4 l(ς)

+$ l(s).(4.10)

Here, a0(w, v) ≡
∫
Ω
∇w∇v, a1(w, v) ≡

∫
Ω
wv, a2(w, s, v) ≡

∫
Ω
wsv, anl(w, t, v) ≡

∫
Ω
wt1/3v, and l(w) ≡

∫
Ω
w

for any w ∈ Y , v ∈ Y , s ∈ Y , and non-negative t ∈ Y . For prescribed Cw, Cx, and Cc
5 θ(Z, µ) ={

Cw

µ ,−Zµ2,−µ2,−µ
2 ,−Cx

4
3µ
}

, α(Z, µ) = {1, Ccµ,−CcZ, µ} and β(Z, µ) = {µ,−1}.
The total energy E(u([Z, µ]);G; [Z, µ]) is then given by

E(w ≡ (ŵ, s, σ̂, κ);G; [Z, µ]) =
ne∑
i=1

[θ1a0(wi, wi) + θ2 a2(wi, G,wi)(4.11)

+
1
2
θ3 a2(wi, s, wi) +

3
4
θ5 a

nl
1 (wi,

ne∑
j=1

w2
j , wi)] +

Z2

2
η,

for η = π2µ
12 as defined earlier.

4.2. Reduced-Basis Formulation.
4.2.1. Reduced-Basis Spaces. Proceeding from Sections 2.2 and 3.2, it is not immediately clear how we

should construct our reduced-basis space for this multi-electron problem — there are now ne components to
the solution. A simplest (and perhaps naive) approach would be as follows: we introduce nested sample sets
Su

Nu
naive

= {µu
1 , . . . , µ

u
Nu

naive
}, 1 ≤ Nu

naive ≤ Nu
naive max; the reduced-basis space is then given by Wu,naive

ne×Nu
naive

=
span {ui([Z, µu

n]), 1 ≤ i ≤ ne, 1 ≤ n ≤ Nu
naive}, 1 ≤ Nu

naive ≤ Nu
naive max. For any µ, we now find an

approximation to ui([Z, µ]), 1 ≤ i ≤ ne, in Wu,naive
ne×Nu

naive
. The space Wu,naive

ne×Nu
naive

is sufficiently rich that
the approximation will be good, and it provides sufficient degrees of freedom to honor the orthonormality
constraints. However, the number of basis functions required is Nu

naive × ne; the size of our problem will
increase linearly with ne and, depending on Nu

naive, it can rapidly become unacceptably large. In addition,
degeneracy can also become an issue.

5For our numerical results, we have used Cw = 0.5, Cx = 0.7386 and Cc = 1.
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This bring us to the final ingredient in our method, the vector reduced-basis space. This approximation
attempts to exploit (through the reduced basis space) the inherent orthogonality properties between, and
the common smoothness of the solutions ui([Z, µ]), 1 ≤ i ≤ ne for a given µ: we introduce nested sample
sets Su

Nu = {µu
1 , . . . , µ

u
Nu}, 1 ≤ Nu ≤ Nu

max and define the associated nested reduced-basis spaces as

Wu
Nu = span {û([Z, µu

n]), 1 ≤ n ≤ Nu}, 1 ≤ Nu ≤ Nu
max,(4.12)

= span {ζ̂n, 1 ≤ n ≤ Nu}, 1 ≤ Nu ≤ Nu
max;(4.13)

where û([Z, µu
n]) ≡ (u1([Z, µu

n]), . . . , une([Z, µ
u
n])) are the solutions of (4.10) at µ = µu

n for a given Z; and ζ̂ ≡
(ζ1, . . . , ζne

) are basis functions obtained after û([Z, µu
n]), 1 ≤ n ≤ Nu are aligned and pseudo-orthogonalized;

these two preprocessing steps will lead to smaller Nu and better stability in the resulting discrete system, and
will be described in the following paragraphs. Then, an approximation of û in Wu

N is given by ûN,M (µ) =∑Nu

n=1 ψn(µ)ζ̂n — the ith component of ûN,M (µ) is given by uN,M i(µ) =
∑Nu

n=1 ψn(µ)(ζi)n, 1 ≤ i ≤ ne.
We shall now describe the preprocessing steps alluded to earlier. First, we observe that the solutions û

obtained based on a numerical algorithm such as the Arnoldi Method [32] are usually presented in ascending
order of their respective eigenvalues, λii, and not according to any particular structure of the orbitals
identified by the form of the solutions ui([Z, µ]), 1 ≤ i ≤ ne. This, in addition to fact that the orbitals are
only equivalent up to a sign, leads to discontinuities in ui([Z, µ]), 1 ≤ i ≤ ne in the parameter space, as
shown in Figure 8. Referring to Figure 8, we can identify three types of discontinuities: (1) sign switching
(as demonstrated by u1, u4, and u5); (2) mode crossing, where u2 at µ = 4.5 and 5.5 are a smooth transition
of u3 at µ = 1.5, 2.5 and 3.5, and vice versa; and (3) mode entering, where there are more than ne forms of
orbitals appearing in our solutions as µ varies (not exhibited by the solutions in Figure 8).

The alignment process seeks to remove the first two discontinuities by employing the following greedy
algorithm: given a pre-sorted space Wu

Nu ≡ span {ζ̂s
n, 1 ≤ n ≤ Nu} where ζ̂s

n, 1 ≤ n ≤ Nu are the sorted
basis functions of ûn, 1 ≤ n ≤ Nu, we wish to add û([Z, µu

Nu+1]) to Wu
Nu to form Wu

Nu+1. We first select
a ζ̂s

n ∈ Wu
Nu such that µu

n ∈ Su
Nu is closest to µu

Nu+1. We compute e+w,j = ||(ζs
1)n + uj(µu

Nu+1)||Y and
e−w,j = ||(ζs

1)n − uj(µu
Nu+1)||Y for 1 ≤ j ≤ ne; we then determine j∗ ≡ arg minj,1≤j≤ne

{e+w,j , e
−
w,j}. If

e−w,j∗ > e+w,j∗ , then (ζs
1)Nu+1 = −uj∗(µu

Nu+1); otherwise (ζs
1)Nu+1 = uj∗(µu

Nu+1). This is then repeated
for all (ζs

i )Nu+1, for i = 2, . . . , ne. First part of the algorithm associates uj(µ) to the correct orbital and
the second part of the algorithm remove the sign variation in ζs

i . The results are sets of orbitals that vary
smoothly with µ, as shown in Figure 9.6

The sorted bases are then pseudo-orthogonalized: given a space Wu
Nu = span {ζ̂n, 1 ≤ n ≤ Nu} where

ζ̂n are the pseudo-orthogonalized basis functions of ζ̂s
n, 1 ≤ n ≤ Nu, and the next member of the space,

ζ̂s([Z, µu
n+1]), we first compute b̂ = ζ̂s −

∑Nu

n=1 νnζ̂n, where ν = arg minν∈IRNu
∑ne

i=1 ||ζs
i −

∑Nu

n=1 νn(ζi)n||2Y ;
the new basis, pseudo-orthogonalized, is then given by ζ̂Nu+1 = b̂/( 1

ne

∑ne

i=1 ||bi||2Y )1/2 and Wu
Nu+1 = Wu

Nu +
ζ̂Nu+1.

We may similarly define for φ the nested sample sets Sφ
Nφ = {µφ

1 , . . . , µ
φ
Nφ} and the associated reduced-

basis space Wφ
Nφ = span {φ([Z, µφ

n]), 1 ≤ n ≤ Nφ} = span {χn, 1 ≤ n ≤ Nφ}, 1 ≤ Nφ ≤ Nφ
max. The χn,

1 ≤ n ≤ Nφ are obtained by orthonormalizing φ([Z, µφ
n]), 1 ≤ n ≤ Nφ relative to the (·; ·)Y inner product.

Finally (although in actual practice, initially), we construct the Su
Nu and Sφ

Nφ based on the greedy se-
lection process. As described in Section 2.2.1, we may employ different forms of error measures. Here, we
first construct Sφ

Nφ (and correspondingly Wφ
Nφ) based on the greedy selection process using the projection

error as defined by (2.12); we wish to isolate the behavior of the space Wu
Nu . The Su

Nu (and correspond-
ingly Wu

Nu) is then constructed based on the greedy selection process using the reduced-basis error defined

as (
Pne

i=1 ||ui([Z,µ])−uN,M i([Z,µ])||2Y )1/2

(
Pne

i=1 ||ui([Z,µ])||2Y )1/2 . The approximations by which ûN,M ([Z, µ]) are obtained will now be
elaborated.

6The 3rd type of the discountinuities — mode entering — has to be handled differently. We may allow this discontinu-
ity to exist although the resulting approximation is sub-optimal. Alternatively, one could expand the number of orbitals

taken into account, i.e. we may wish to construct a reduced-basis space given by W u,augment
Nu ≡ span {û([Z, µu

n]) ≡
(u1([Z, µu

n]), . . . , une,augment ([Z, µu
n])), 1 ≤ n ≤ Nu}, where ne,augment > ne and ne,augment is sufficiently large such that

the discontinuity resulting from mode entering does not appear within our parameter space of interest. Thanks to the vectorial

nature of W u,augment
Nu , this will not lead to significant increase in the Nu required.
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Figure 8. Solutions of û(µ) at µ = 1.5, 2.5, 3.5, 4.5 and 5.5, before the alignment process.

-0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

x

ζ
s 1

µ = 2.5

µ = 1.5

µ = 3.5

µ = 5.5

µ = 4.5

-0.5 0 0.5
-1.5

-1

-0.5

0

0.5

1

1.5

ζ
s 2

x
-0.5 0 0.5

-1.5

-1

-0.5

0

0.5

1

1.5

ζ
s 3

x

-0.5 0 0.5
-1.5

-1

-0.5

0

0.5

1

1.5

ζ
s 4

x
-0.5 0 0.5

-1.5

-1

-0.5

0

0.5

1

1.5

x

ζ
s 5

Figure 9. ζ̂s at µ = 1.5, 2.5, 3.5, 4.5 and 5.5, after the alignment process.

4.2.2. The Approximations. In our reduced-basis approximation, the equilibrium ground state of the re-
sulting neutral structure for a particular Z (= ne) is given by ûN,M ([Z, µ]) ≡ (uN,M 1([Z, µ]), . . . , uN,M ne([Z, µ])),
where

ûN,M ([Z, µ]) = arg inf
ŵ

{
EN,M (ŵ ≡ (w1, . . . , wne

); [Z, µ]), wi ∈Wu
N ,(4.14)

µ

∫
Ω

w2
i = 1, 1 ≤ i ≤ ne

}
,

µ∗(Z) = arg inf
µ
{EN,M (ûN,M ([Z, µ]); [Z, µ]);µ > 0}.(4.15)
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Here, ûN,M ([Z, µ]) is obtained by solving the following Euler Lagrange equations: find uN,M ([Z, µ]) ≡
(ûN,M ([Z, µ]), φN,M ([Z, µ]), λ̂N,M ([Z, µ]), τN,M ([Z, µ])) ∈ YN ≡ (Wu

Nu ×Wφ
N × IRne × IR) such that

(4.16) AM (uN,M ([Z, µ]),v;G; [Z, µ]) = 0, ∀v ≡ (v̂, ς, ϕ̂,$) ∈ YN ,

where λ̂N,M ([Z, µ]) ≡ ((λN,M )ii, 1 ≤ i ≤ ne) and

AM (w ≡ (ŵ, s, σ̂, κ),v ≡ (v̂, ς, ϕ̂,$); t; [Z, µ]) ≡
ne∑
i=1

θ1 a0(wi, vi) + θ2 a2(wi, t, vi) + θ3 a2(wi, s, vi) + θ5 a
nl,M(wi,

ne∑
j=1

w2
j , vi)

+ 2θ4 σiia1(wi, vi)] +
ne∑
i=1

ϕii {β1a1(wi, wi) + β2δii}+α1a0(s, ς) + α2

ne∑
j=1

a2(wj , wj , ς) + α3l(ς) + κα4 l(ς)

+$ l(s).

Then, EN,M (uN,M ([Z, µ]);G; [Z, µ]), the reduced-basis approximation for the electronic energy E(u([Z, µ]);
G; [Z, µ]), is given by

EN,M (w ≡ (ŵ, s, σ̂, κ);G; [Z, µ]) =
ne∑
i=1

[θ1a0(wi, wi) + θ2 a2(wi, G,wi) +
1
2
θ3 a2(wi, s, wi)

+
3
4
θ5 a

nl,M(wi,

ne∑
j=1

w2
j , wi)].(4.17)

and EN,M (uN,M ([Z, µ]);G; [Z, µ]), the reduced-basis approximation to the total energy E(u([Z, µ]); G; [Z, µ]),
is given by EN,M (uN,M ([Z, µ]);G; [Z, µ]) + Z2

2 η(µ).
When compared to (4.1) and (4.10), we have made two approximations. First, we approximate anl(wi,∑ne

j=1 w
2
j ,vi) by anl,M(wi,

∑ne

j=1 w
2
j , vi) ≡

∫
Ω
gw

M i v, where gu
M i is an empirical interpolation approximation

to gi(û) ≡ ui(
∑ne

j=1 u
2
j )

1/3. Thus, we require ne empirical interpolation approximations. Secondly, we only
impose the constraints µ

∫
Ω
u2

N,M i = 1, 1 ≤ i ≤ ne. Note that in the original minimization problem (4.9),
the constraints are µ

∫
Ω
uiuj = δij , 1 ≤ i < j ≤ ne; we have thus assumed that the orthogonality of the

components in ûN,M will be approximately satisfied by construction (implicit to our space Wu
Nu) in (4.16).

We note that
∫
Ω
uN,M i uN,M j , 1 ≤ i < j ≤ ne can be bounded: let (w, v)L2 = a1(w, v) =

∫
Ω
wv and

|| · ||L2 =
√

(·, ·)L2 ; then

(uN,M i, uN,M j)L2 = (uN,M i − ui, uN,M j)L2 + (ui, uN,M j − uj)L2 + (ui, uj)L2

≤ ||uN,M i − ui||L2 + ||uN,M j − uj ||L2 ,(4.18)

since ||ui||L2 = ||uN,M j ||L2 = 1 and (ui, uj)L2 = 0, for all 1 ≤ i < j ≤ ne. Therefore,

(4.19) (uN,M i, uN,M j)L2 ≤
ne∑

n=1

||un − uN,M n||L2 .

From above, we can conclude that as ûN,M → û,
∫
Ω
uN,M i uN,M j → 0, for 1 ≤ i < j ≤ ne.

However, note that for Nu sufficiently large, we can represent any member of our (finite-dimensional)
truth approximation space, presuming the linear indepedence of the snapshots. But, clearly (4.14) is not
equivalent to (4.1) due to the absence of the orthogonality constraints. Hence, to be consistent, as Nu

increases, we should also systematically add in orthogonality constraints, for example by adding one orthog-
onality constraint for every two additional basis functions. This will be considered in future work.

Finally, since
∫
Ω
χn = 0, 1 ≤ n ≤ N ,

∫
Ω
φN,M is perforce zero; our discrete (nonlinear) algebraic system

will thus have an actual dimension of Nu +Nφ + ne.
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4.2.3. Solution Method. Our truth approximations are obtained based on the finite element formulation
with N = 400. The resulting discrete equation is solve through self-consistent field procedure [6, 4]: the
nonlinearity is tackled based on a fixed point method in which a diagonalization of the algebraic system
for (4.10) is performed within each iteration. As shown in Figure 9, the solutions in û exhibit considerable
variation with respect to µ.

However, the fixed point method is not suited for our reduced-basis approximation given by (4.16).
We thus resort to Newton’s method as described in Section 2.2.2, and, to assist convergence, we exploit a
homotopy procedure in ε ∈ [0, 1] and µk = µi + ε(µ−µi), where µk is the µ at k intermediate homotopy step
and µi is the initial µk=0 at start of the homotopy procedure — usually chosen to be the closest µu ∈ Su

Nu

to µ. The online complexity is then O((Nφ)3 + neN
φ(Nu)2 + (Nu)2 + neN

uM) per Newton iteration.

4.3. Numerical Results. We consider µ in the interval [1.5, 5.5]. We introduce a parameter test
sample ΞTest of size 161 and choose M , the dimension of the empirical interpolation space, such that εM is
less than 10−10. We then define the following

εu
N,M = max

µ∈ΞTest

(
∑ne

i=1 ||ui([Z, µ])− uN,M i([Z, µ])||2Y )1/2

(
∑ne

i=1 ||ui([Z, µ])||2Y )1/2
,(4.20)

εφ
N,M = max

µ∈ΞTest

||φ([Z, µ])− φN,M ([Z, µ])||Y
||φ([Z, µ])||Y

,(4.21)

εEN,M = max
µ∈ΞTest

|EN ([Z, µ])− E([Z, µ])|/|E([Z, µ])|(4.22)

εortho
N,M = max

µ∈ΞTest
max

1≤i<j≤ne

(uN,M i([Z, µ]), uN,M j([Z, µ]))L2 .(4.23)

where εu
N,M , εφ

N,M and εEN,M are respectively the maximum error in the reduced-basis approximation of û,
φ and E within a given sample ΞTest; εortho

N,M is a measure of non-compliance in the orthogonality constraints;
and (w, v)L2 = a1(w, v) =

∫
Ω
wv. We present the results for the above quantities with increasing Nu for

ne = 5 in Table 3. Here, Nφ is 5 and M is 12. We observe a monotonic decrease in εu
N,M , εφ

N,M and εEN,M .
We only require Nu = 10 to reduce εu

N,M and εEN,M to 9.76×10−6 and 3.05×10−10 respectively. In addition,
εEN,M is approximately the square of εu

N,M (and εφ
N,M ), indicating that E can in fact be approximated very

accurately with very few basis functions by EN,M ; there is virtually no noticeable distinction between the
two as shown in figure 10.

From Table 3, we also observe that εortho
N,M converges very rapidly with Nu. This is perhaps not surprising.

From (4.19), we obtain

(4.24) εortho
N,M ≤ max

µ∈ΞTest

ne∑
n=1

||un([Z, µ])− uN,M n([Z, µ])||L2 .

This implies that as ûN,M ([Z, µ]) → û([Z, µ]), εortho
N,M → 0 and since εu

N,M decreases with increasing Nu, so
does εortho

N,M
7. The error εortho

N,M can certainly be reduced further by the systematic inclusion of orthogonality
constraints, as argued in Section 4.2.2.

The above results can be extended to other cases of ne > 1. In Figure 11, we show that the convergence
results of the error εu

N,M with respect to Nu for 3 ≤ ne ≤ 8. We observe that the error decreases monotoni-
cally with increasing Nu and with just 12 basis functions in Wu

Nu , an error of εu
N,M < 10−5 can be obtained

for the ne = 8 case. In addition, the number of basis functions required for each case is only slightly higher
than ne; Nu scales approximately as ne + C, where C is a small integer. The naive approach which does
not exploit the vectorial nature of the reduced basis space (as described at beginning of Section 4.2.1) will
require Nu

naive × ne basis functions, and hence is much more sensitive to the number of electrons.

7At N = ne, the apparent “good orthogonality” is deceiving — the size of N is too small and the reduced-basis solution
gravitates towards a single basis, of which the orthogonality is obviously satisfied.
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Nu εu
N,M εEN,M εφ

N,M εortho
N,M

5 7.9044E – 2 4.6557E – 04 1.4647E + 0 5.1756E – 14
6 4.5693E – 2 3.5279E – 05 1.2839E – 1 3.6342E – 3
7 2.1383E – 4 1.3947E – 09 1.0334E – 3 2.1783E – 5
8 9.8819E – 5 8.8168E – 10 3.7635E – 4 1.0686E – 5
9 9.7602E – 6 3.0509E – 10 3.8463E – 5 8.9840E – 7

Table 3. Variations of the reduced-basis errors εu
N,M , εEN,M , εφ

N,M and εortho
N,M with Nu.

Here, ne = 5 and 1.5 ≤ µ ≤ 5.5.
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Figure 10. Comparison between E and EN,M for ne = 5, 1.5 < µ < 5.5; there is no
discernable difference between the two.
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Figure 11. Convergence of the reduced basis error εu
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