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1 Introduction

Engineering analysis requires the prediction of selected “outputs” s relevant to ul-
timate component and system performance; typical outputs include critical stresses
or strains, flowrates or pressure drops, and various measures of temperature and
heat flux. These outputs are functions of “inputs” p that serve to identify a par-
ticular configuration of the component or system; typical inputs reflect geometry,
properties, and boundary conditions and loads.

In many cases, the input-output function is best articulated as a (say) linear
functional ¢ of a field variable u(p) that is the solution to an input-parametrized
partial differential equation (PDE); typical field variables and associated PDEs in-
clude temperature and steady/unsteady conduction, displacement and equilibrium
elasticity /Helmholtz, and velocity and steady incompressible Navier-Stokes. System
behavior is thus described by an input-output relation s(u) = ¢(u(u)) the evaluation
of which requires solution of the underlying PDE.
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Our focus is on “deployed” systems — components or processes in operation
in the field — and associated “Assess-Act” scenarios. In the Assess stage we pursue
robust parameter estimation (inverse) procedures that map measured-observable
outputs to (all) possible system-characteristic and environment-state inputs. In the
subsequent Act stage we then pursue adaptive design (optimization) procedures that
map mission-objective outputs to best control-variable inputs. The computational
requirements on the PDE-induced evaluation p — s are formidable: the response
must be real-time — we must “Assess-Act” immediately; and the outputs must be
rigorously certified — we must “Assess-Act” safely and feasibly [24].

We describe here a method for real-time certified evaluation of PDE input-
output relations; the two ingredients are reduced-basis (RB) approximation [2, 8,
10, 13, 19, 23, 25, 27] and a posteriori error estimation [19, 22, 29, 36, 37, 38]. We
first describe the approach for elliptic linear second-order PDEs — Sections 2-5; we
then consider extensions to certain nonlinear (incompressible Navier-Stokes) and
parabolic (heat) equations — Sections 6 and 7, respectively.

2 Abstract Statement: Elliptic Linear Equations

We first consider the “exact” (superscript e) problem: given y € D C R?, we
evaluate s®(u) = £(u®(w)), where u®(u) satisfies the weak form of our p-parametrized
PDE, a(u®(u),v;p) = f(v), Vv € X°. Here p and D are the input and (closed)
input domain, respectively; u®(u) is our field variable; X© is a Hilbert space with
inner product (w,v) and associated norm ||w| = \/(w,w); and a(-,-; ) and f(-),
£(-) are X°-continuous bilinear and linear functionals, respectively.

Our interest here is in second-order PDEs, and thus (H}(Q))” C X° C
(H'(2))": here Q C R? is our spatial domain; v = 1 for a scalar field variable
and v = d for a vector field variable; and H'(Q) (respectively, H}(f2)) is the
usual Hilbert space of derivative square-integrable functions (respectively, deriva-
tive square-integrable functions that vanish on the domain boundary, 92) [30]. The
associated inner product (-,-) is a p-independent continuous coercive symmetric
bilinear form over X° that perforce induces an (H*(£2))”-equivalent norm || - |.

We next introduce X (typically, X C X¢), a reference finite element approx-
imation space of finite dimension A. Our reference (or “truth”) finite element
approximation u(u) € X is then defined by a(u(u), v;u) = f(v), Vv € X: u(p) € X
is a calculable surrogate for u®(u) upon which we will build our RB approximation
and with respect to which we will evaluate the RB error; u(u) also serves as the
“classical alternative” relative to which we will assess the efficiency of our approach.
We assume that ||u®(u) —u(p)]|| is suitably small and hence that N is typically very
large; our formulation must be both stable and efficient as N — oo.

We shall make two crucial hypotheses. The first hypothesis is related to well-
posedness, and is often verified only a posteriori. We assume that the inf-sup
parameter, 3(p) = inf,,e x sup, ¢ x [a(w, v; p)/(Jwl]||v]])], is strictly positive: B(u) >
Bo > 0,V € D. The second hypothesis is related primarily to numerical efficiency,
and is typically verified a priori. We assume that a is affine in the parameter p:
a(w,v;p) = 25:1 0%(u)al(w,v), for ¢ = 1,...,Q parameter-dependent functions



0%(u) : D — R and parameter-independent continuous bilinear forms a?(w, v). The
affine assumption may in fact be relaxed [5].

3 Reduced-Basis Approximation

The reduced-basis (RB) approximation was first introduced in the late 1970s in the
context of nonlinear structural analysis [2, 23] and subsequently abstracted and an-
alyzed (8, 27] and extended [10, 13, 25] to a much larger class of parametrized
partial differential equations. We first introduce nested samples Sy = {u; €
D,...,un € D}, 1 < N < Npax, and associated nested “Lagrangian” RB spaces
Wx = span{Cu(pn) = u(pn), 1 <n < N}, 1 < N < Npax. Our RB approxi-
mation is then: given u € D, evaluate sy(p) = ¢(un(p)), where un(u) satisfies
a(un(p),v; p) = f(v), Vv € Wy. We consider here only Galerkin projection.

In essence, Wy comprises “snapshots” on the parametrically induced manifold
M ={u(p)|p € D} C X. Tt is clear that M is very low-dimensional; furthermore,
it can be shown under our hypotheses — we consider the equations for the sensitivity
derivatives and invoke stability and continuity — that M is very smooth. We thus
anticipate that uy () — u(p) very rapidly, and hence that — at least for modest P
— we may choose N < N. Many numerical examples justify this expectation (see
Sections 5, 6, and 7); and, in certain simple cases, exponential convergence can be
proven [20]. We emphasize that the deployed context requires global reduced-basis
approximations that are uniformly (rapidly) convergent over the entire parameter
domain D; proper choice of the parameter samples Sy is thus crucial (see Section 4).

We now represent un (1) as un () = 3oy un j(1)¢j, where N={1,..., N},
and Npax = {1,..., Nmax}. Our RB output may then be expressed as sy(u) =
> jen un j(1)€(¢;), where — we now invoke our affine assumption — the un ;(x),
1 < j < N, satisfy the N x N linear algebraic system

> X 0U(wat(G, G) bun (i) = (&), VieEN, (1)

JEN ¢€Q

where Q@ = {1,...,Q}. (In practice we replace the (;, 1 < j < N, with a (-,-)-
orthonormalized system; the algebraic stiffness matrix is then well-conditioned.)
It is clear from (1) that we may pursue an offline-online computational strategy
[3, 13, 19, 29] ideally suited to the deployed real-time context.

In the offline stage — performed once — we first solve for the (;, Vi € Nyax;
we then form and store f(¢;),0(¢;), Vi € Npax, and a?(¢j,G), V (4,5) € NZ .,
Vq € Q. In the online stage — performed many times, for each new p “in the field”
— we first assemble and subsequently invert the (full) N x N “stiffness” matrix
Y 4e ©4(1)a?(¢j, i) to obtain the uy j(1), 1 < j < N — at cost O(QN?)+O(N?);
we then evaluate the sum . un j(1)¢(¢;) to obtain sy (p) — at cost O(NN). The
online complexity is independent of N, and hence — given that N < N'— we shall
realize extremely rapid “deployed” response.



4 A Posteriori Error Estimation

We first “presume” 3(u), a (to-be-constructed) positive lower bound for the inf-
sup parameter, G(u): B(p) > B(u) > By > 0,V pu € D. We next introduce the
dual norm of the residual: ex(p) = sup,ex [R(v; 1) /||v]|], where R(v;p) = f(v) —
a(un(p),v;pn), Vo e X.

We may now define our error estimator, Ay (u) = en(1)/3(1), and associated
effectivity, nn (1) = [An(p)/|lu(p) — un(p)|]. We can then readily demonstrate
29, 38] that ]

L<nn(p) <v(W)/B(), YpeD, VN € Npax, (2)

where y(p) = sup,ex Sup,ex[a(w,v;p)/(||w||||v]])] is our continuity “constant.”
The left inequality states that A (i) is a rigorous upper bound for ||u(u) —un ()l
the right inequality states that Ay (u) is a (reasonably) sharp upper bound.

We may also develop bounds for the error in the output; we consider here
the special “compliance” case in which ¢ = f and a is symmetric — more general
functionals ¢ and nonsymmetric a require adjoint techniques [29]. We first define
our output error estimator, A% (u) = €% (u)/B(w), which scales as the square of
the dual norm of the residual, en (). We can then demonstrate [22, 29, 38] that
1 <AX(p)/Is(p)—sn ()|, Vi € D, VN € Npax — A% (1) is a rigorous upper bound
for |s(u) — sy (w)|; we may further prove [29] in the coercive case that A%, (1) /|s(p)—
sn ()] < v(w)/B() — A% (1) is a (reasonably) sharp upper bound.

It remains to develop appropriate constructions and associated offline-online
computational procedures for the efficient calculation of € () and 6 (). To begin,
we consider the former [19, 22, 29]: we invoke duality, our reduced-basis expansion,
the affine parametric dependence of a, and linear superposition to express

E?V(/J') = (C’C)+ E Z @q(N)UNn(M){Q(C,QJLH Z E @ql(M)UJNn’ (M)(L:?wﬁgy)},
q€Q neN q¢’eQn’eN

where C € X and £ € X, Vn € N, Vg € Q satisfy the parameter-independent

Poisson(-like) problems (C,v) = f(v), Vv € X and (L%,v) = —a%((y,v), Vv € X.

An efficient offline-online decomposition may now be identified. In the offline
stage — performed only once — we first solve for C and £, Vn € Npyax, Vg €
Q; we then form and store the associated parameter-independent inner products
(C,0),(C, L), (E%,ﬁf;,), vV (n,n') € N2, , V(q,q¢) € Q> In the online stage —
performed many times, for each new value of 1 “in the field” — we simply evaluate
the €% (1) sum in terms of ©9(u), un (1), and the precomputed inner products —
at cost O(Q?N?). The online cost is independent of N and, for Q not too large,
commensurate with the online cost to evaluate sy (u).

Finally, we turn to the development of our lower bound B(,u) for the inf-sup
“constant” f(u). For simplicity, we consider here the particular case P = 1, Q = 2,
Ol (u) =1, and ©%(u) = p, such that a(w,v; u) = a'(w,v) + pa?(w,v); we further
suppose that D is convex. The more difficult general case, in which P > 1 and the
0%(u), 1 < g < Q, are general functions of p, is considered in [22] and illustrated in
subsequent sections of the present paper. As our point of departure, we note that
B(p) = infyex /b(v,v; 1) /||v]|2, where b(w,v;u) = (THw, THv), Vw,v € X, and
we X — Trw € X is defined as (T"w,v) = a(w,v; u), Vv € X.



Next, given any i € D, we introduce t(w, v; ;1) = b(w, v; 1)+ (pu—n)[a?(w, TFv)+

a?(v, TPw)] and DF = {u € D|t(v,v; ;) > 0}. We may then define 7(u; ) =
infyex /t(v,v; u;7)/|[v]|2, ¥ i € DF. Our function 7(p; ) enjoys three properties:
(1) B(p) > 7(wsm) > 0, ¥V u € DF; (i) 7(u; ) is concave in p over the convex
domain DF; and (i) 7(u; @) is “tangent” to 8(u) at u = f. (To make property
(éi1) rigorous we must in general consider non-smooth analysis and also possibly a
continuous spectrum as N’ — 00.)

We can now develop our inf-sup lower bound 3 : D — R. We first specifiy
a constant € € ]0,1[ . We then introduce a sample E; = {fi; € D,...,n; € D}
and associated set of polytopes Cy = {P; C DF1,...,P; C DFs} that satisfy (a) a
“Positivity Condition,” 7(u;1;) > € B(f;), Vi € Pj, 1 < j < J, and (b) a “Coverage
Condition,” D C U}’lej; we may now define (and compute) our lower bound as

Al = {je{l,..r.l,lafﬂuep,-}eﬁ(ﬂj)' ®
(We can also develop piecewise linear approximations, though — as discussed fur-
ther in Section 5 — our inf-sup lower bound need not be highly accurate.) It is
readily demonstrated that 3 () has the requisite theoretical and computational at-
tributes: B(u) > B(p) > €8y > 0, ¥V u € D; and the online complexity p — ((u)
depends only on J — we need only find the maximum of the pre-tabulated ﬁ(ﬁj),
1 < j < J, and multiply by € — which in turn depends only on P and @) and not
on N. Properties (i), (i), and (774) permit us to parlay relatively few expensive
(offline) evaluations into a very inexpensive global (online) lower bound.

We further elaborate on two points: verfication of the “Positivity Condition”;
and choice of €. As regards the former, the key ingredient is the concavity of 7(u; ;)
in p: we need only confirm that 7(-;7;) > €3(fi;) at the two endpoints of P; to
conclude that 7(u; ;) > €6(f;), Vi € P;. (It thus follows, since 3(u) > 7(p; 1),
Vu € Py, that B(u) > €8(fz;), Ypu € P; — this proves the lower bound, (3).) As
regards the choice of €, there is clearly a trade-off between good effectivity and
computational effort: the larger we choose €, the better our lower bound and hence
the better (lower) our effectivity, ny (1) — but at the expense of more regions and
hence larger J.

As an illustrative example of our inf-sup lower bound construction we con-
sider the Helmholtz-elasticity crack problem of the next section for y = (w? €
[2.5,5.0], z = 1.0, L = 0.2) — the crack location, z, and crack length, L, are fixed,
and only the frequency squared, w?, is permitted to vary — and material damping
coefficient d,, = 0.1. We find that a sample F;_3 suffices to satisfy our Positivity
and Coverage Conditions for € = 0.4. We present in Figure 1(a) 8(u); 7(u; f1;) for
p € DFi 1 < j < J; and our lower bound (3). We note that 8(u) is not concave (or
convex) or even quasi-concave, and hence 7(u; ) is a necessary intermediary in the
construction of our lower bound.

In conclusion, we can calculate a rigorous and sharp upper bound for |s(u) —
sn(p)], A% (u) = X (p)/B(r), with online complexity independent of N'. These
inexpensive error bounds serve most crucially in the deployed stage — to choose
optimal N, to confirm the desired accuracy, to establish strict feasibility, and to
control sub-optimality. However, the bounds may also be gainfully enlisted in the



0.25

o18f T Tl 1
---------- -+-+ €exp=0.5%
s — €exp=1%
02 M. vt €exp=5%
015§ WT(M; (2 AN ] "
Y /! SN | ]
01 N, AT ) \ el
0.05 H T (13 23)
0 . . . . 016} , . . . NP .
25 3 3.5 2 4 4.5 5 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08
w

z

Figure 1. Helmholtz-elasticity example: (a) Plots of B(u); 7(u;1;) for
weDFi,1<j<J; and B(,u) (b) Crack parameter uncertainty region R for RB
Model T with N' = 25.

pre-deployed stage — to construct optimal samples Sy [22, 38]: Given ZF, a very

fine random sample over the parameter space D of size ng > 1, and an initial
sample S7P* = uf, we [DO N = 2, ..., Npax; py = argmax, czr A% (1); St =
S U phy; END . Since the marginal cost to evaluate the error bound A% (u) is
small (online), our input sample =¥ can be large, and the maximization problem
for u% may be solved directly — by calculating A%, () for all u € ZF. (Multi-
start gradient-based search techniques can also be exploited to effectively determine
the true maximum of the (clearly oscillatory) error bound A% (u) over D.) Note
that in contrast to POD economization procedures [33], we never form the rejected
snapshots: our inexpensive bound A%, () serves as a (good) surrogate for the actual
erTor.

5 Assess-Act Example: Helmholtz-Elasticity

We apply the RB method here to a Helmholtz-elasticity equation often encountered
in solid mechanics: inverse analyses based on the Helmholtz-elasticity PDE can
gainfully serve in non-destructive evaluation (NDE) procedures for crack character-
ization [11, 16, 18] and damage assessment [14, 17]. The RB method significantly
improves the efficiency of these inverse procedures — accelerating the many evalu-
ations [15] of the PDE outputs.

We consider a two-dimensional thin plate with a horizontal crack at the (say)
interface of two lamina: the (original) domain Q°(z, L) C R? is defined as [0, 2] x
[0,1]\TQ, where 'Y, = {x1 € [z — L/2,2 4+ L/2],xo = 1/2} defines the idealized
crack. The left surface of the plate is secured; the top and bottom boundaries
are stress-free; and the right boundary is subject to a vertical oscillatory uniform
force of frequency w. We model the plate as plane-stress linear isotropic elastic
with (scaled) density unity, Young’s modulus unity, and Poisson ratio 0.25; the



latter determine the (parameter-independent) constitutive tensor E;jre. Our input
is 1= (p1), (), 13)) = (w?, z, L); our output is the (oscillatory) amplitude of the
average vertical displacement on the right edge of the plate.

The governing equation for the displacement u®(z°; u) € X°(p) is a®(u®(p), v; p)
= f°(v), Vv € X°(u), where X°(u) is a quadratic finite element truth approximation
subspace (of dimension N = 14,662) of X°(u) = {v € (H*(Q°(2,L)))? | v|s9—0 = 0 };
here a®(w, v; u) = fQo(z,L) Wi ; Eijrevi e —w2w,v; (v; ; denotes Ov; /Ox; and repeated
physical indices imply summation), and f°(v) = fm‘;:2 vo. The crack surface is
hence modeled extremely simplistically — as a stress-free boundary; note that no
crack-tip element is needed as the output of interest is far from the crack. The
output s°(u) is given by s°(u) = £(u®(n)), where £°(v) = f°(v); we are thus “in
compliance.” (For the damped example of Section 4 we suitably complexify our field
variable and space and replace E;;i, with a very simple “hysteretic” Kelvin model
[4] Eijre(1 + v/—1d,,); here d,, is a material damping constant. )

We now map Q°(z, L) via a continuous piecewise-affine transformation to a
fixed domain 2. This new problem can now be cast precisely in the desired abstract
form of Section 2, in which 2, X, and (w,v) are independent of the parameter u:
as required, all parameter dependence now enters through the bilinear and linear
forms. Furthermore, it is readily demonstrated that our affine assumption applies
for Q = 10; the ©%(u) are of the form uz(’ll)u’(’;)ug(’g) for exponents y; = 0 or 1,
ya = —1,0, or 1, and y3 = —1,0, or 1. See [22] for a detailed description of the
O0%(u), a?(w,v), 1 < ¢ <@, and the “bound conditioner” (-, ).

We shall consider two different models. In Model I, relevant to the Assess

stage, we consider the parameter domain D' = [3.2,4.8] x D*L, where D*L =
[0.9,1.1] x [0.15,0.25]. Note that D' does not contain any resonances, and hence
B(u) is bounded away from zero; however, w? = 3.2 and w? = 4.8 — the two

frequency extremes of our parameter domain — are quite close to corresponding
natural frequencies, and hence the problem is distinctly non-coercive. In Model II,
relevant to the Act stage, we consider the parameter domain D = [w? = 0] x D*L,
where — as in Model I — D*L = [0.9,1.1] x [0.15,0.25]. Note that Model II is
essentially steady linear elasticity and thus the problem is coercive and relatively
easy; we shall hence focus our attention on Model I.

We first present basic numerical results. For our reduced-basis spaces we pur-
sue the optimal sampling strategy described in Section 4 for NL = 32 (Model I)
and NIL = 6 (Model II); for our inf-sup lower bound samples we choose € = 1/5
which yields J! = 84 and J = 1. We present in Table 1 AN max,rel, TIN,aves
A?V,max,rel’ and NN,ave 85 & function of N = NT for Model I. Here AN max,rel 1s the
maximum over Zrest of An (1) /]| N, (1) |lmax, 7MN,ave 1S the average over Eres of
AN )/ lulp) =un (W, AN max, el 18 the maximum over Eqesy of Al (1) /18 Nyas (1) lma
and Ny e is the average over Eqesy of Ay (1) /[s(p) —sn(p)]. Here Eqes; € (D1)343 is
a random parameter sample of size 343, ||un,,... (1) ||max = Max,ezr,, |un,.. (1)] =
2.0775, and |sn,,.. (1) |max = MaXuezre, [SNuma (1) = 0.089966. We observe that
the RB approximation converges very rapidly, and that our rigorous error bounds
are in fact quite sharp. The effectivities are not quite O(1) primarily due to the
relatively crude inf-sup lower bound. (Thanks to the rapid convergence of RB ap-




proximations, O(10) effectivities do not significantly (adversely) affect efficiency.)

s s
N AN,max,rel TIN,ave AN,maLx rel | "IN ave

10 | 6.19r-01 13.11 8.40E-01 22.50
15 | 5.76E-02 13.44 | 4.74E-03 17.22
20 | 1.58e-02 13.22 | 4.50E-04 15.44
25 | 5.69E-03 12.57 | 4.47E-05 14.50
30 | 1.32e-03 12.47 | 2.95E-06 14.27

Table 1. Numerical results for Model I.

Turning now to computational effort (again for Model I), for N = N' = 25 and
any given pu (say, (4.0,1.0,0.2)) — for which the error in the reduced-basis output
sn(p) relative to the truth (approximation) s(p) is certifiably less than A% (u)
(say, 2.38 x 1077) — the Online Time to compute both sy (p) and A% () is less
than 1/330 the Time to directly calculate s(u) = £(u(p)). Clearly, the savings will
be even larger for problems with more complex geometry and solution structure in
particular in three space dimensions. Nevertheless, even for our current very modest
example, the computational economies are very significant. (Note, however, that
this comparison does not include the RB offline effort, and is hence meaningful only
in the real-time context or in the limit of many evaluations.)

We now consider an Assess-Act scenario that illustrates the new capabilities
enabled by rapid certified input-output evaluation [1]. We first consider the Assess
stage (based on Model I): given experimental measurements in the form of intervals
[s(wF, 2%, L*)(1 — €exp)s s(wi, 2%, L*)(1 4 €exp)], 1 < k < K, we wish to determine a
region R € D> in which the true but unknown crack parameters, (z*, L*), must
reside. We first introduce s% (1) = sy (p) + A% (1), and recall that — thanks to
our bound theorem (2) — s(u) € [sy (1), 5% (1)]. We may then define

R = {(z,L) € D> |[sy(w}, 2, L), s (wi, 2, L) N [s(wf, 2*, L*)
(1 — €exp), S(Wi, 2%, L) (1 + €exp)] # 0,1 < k < K}

clearly, we have accommodated both numerical and experimental error and uncer-
tainty (within our model assumptions), and hence (z*,L*) € R.

In Figure 1(b) we present R for K = 2 and (w? = 3.2, w3 = 4.8) for €exp =
0.5%,1%,5%. (In actual practice, we first find one point in R; we then conduct a
binary chop at different angles to map out the boundary of R.) As expected, as
€exp decreases, R shrinks towards the exact (synthetic) value, z* = 1.05, L* = 0.17.
Note that in this example for our RB Model I we choose NT = 25, and it is hence
clear from Table 1 that the RB error contributes negligibly to the uncertainty region
R; we could hence achieve even faster parameter estimation response — at little
cost in precision — by decreasing NT.

Most importantly, for any finite €exp, R rigorously captures the uncertainty in
our assessment of the crack parameters without a priori regularization hypotheses



[7]. The crucial new ingredient is reliable fast evaluations that permit us to conduct
a much more extensive search over parameter space; for a given ecp, R may be
generated online in less than 51 seconds (even for N = 25) on a Pentium 1.6 GHz
laptop. Our search over possible crack parameters will certainly never be truly
exhaustive, and hence there may be small undiscovered “pockets of possibility” in
D=L however, we have clearly reduced the uncertainty relative to more conventional
approaches. (Of course, our procedure can also only characterize cracks within the
specified low-dimensional parametrization; however, more general null hypotheses
can be constructed to detect model deviation.)

Finally, we consider the Act stage (based on Model IT). We presume here that
the component must withstand an in-service steady force (normalized to unity)
such that the deflection s(0,2*, L*) in the “next mission” does not exceed a spec-
ified value spax. Of course, in practice, we will not be privy to (z*, L*). To ad-
dress this difficulty we first define s}, = max(; r)er 53 (0,2, L), where s (0,2, L) =
sn(0,2,L) + A% (0, 2, L); our corresponding “go/no-go” criterion is then given by
s;g < Smax- It is readily observed that 3;; rigorously accommodates both exper-
imental (crack) and numerical uncertainty — s(0,z*,L*) < st — and that the
associated go/no-go discriminator is hence fail-safe. Furthermore, as eqp tends to
zero and NT and N increase, sfz will tend to s(0,2*, L*); indeed, for €ex, = 1%
and N' =25 N =6, [s} — s(0,2%,L")]/|s(0,2%, L*)| = 4.73E-05. In summary, in
real-time, we can both Assess the current state of the crack and subsequently Act
to ensure the safety (or optimality) of the next “sortie.”

6 Incompressible Navier-Stokes Equations

To illustrate the difficulties that arise in the treatment of nonlinear problems we con-
sider a particular example [36]: the steady incompressible Navier-Stokes equations
— Pr(andtl) = 0 natural convection in an enclosure [31, 34].

Our formulation of Section 2 is still applicable (except a is no longer bilinear):
w = Gr = Grashof number; D = [1.0,1.0E5]; u®(p) = (u§ (1), u§(u)) is the velocity
field; Q = [0,4] x [0,1]; X = {(H{(2))*|V -v = 0}; (w,v) = [, w; jvij; a(w,v) =
ag(w,v) + a1 (w, w,v), where ag(w,v) = [, w; jv;i; and aq(w,z,v) = — [, (wiz; +
w;z;) v;; are the viscous and convective terms, respectively; f(v;p) = pfo(v) =
1 fo (1 = $21) v2 is the buoyancy contribution; and £(v) = 2 fFo vy (z)dzy (for Ty =
{z1 = 2,25 € [0.5;1]}) measures the flowrate. (Note that the pressure does not
appear explicitly since we pose the problem over divergence-free velocity fields.)

We next introduce X, a reference finite element approximation space. Our
reference (or “truth”) finite element approximation u(p) € X is then defined by
a(u(p),v) = f(v;u), Vo € X. As before, u(u) is a surrogate for u®(u) upon which
we build our RB approximation, and relative to which we measure our RB error.
Here X is the space (of dimension N = 2,786) of discretely divergence-free functions
associated with a classical Taylor-Hood Py — Py finite element approximation [10].
(For future reference, we also define X , the full Taylor-Hood velocity space.)

The derivative of a plays a central role: here da(w,v; z) = ag(w,v)+a1(w, z,v)
satisfies a(z+w,v) = a(z,v)+da(w, v; 2)+ 3a1 (w, w,v). It is readily shown [36] that



da(w,v; z) < y(z)|[w|l|v] for y(2) =1+ p?||z]}; here p = V2sup, 5 [[vllLa(e)/|lv]l
is a Sobolev embedding constant [35], and ||v||zs(q) = ([, (wiw;)P/?)1/P. We shall
further assume [36] — and verify a posteriori — that {u(u)|u € D} is a non-
singular (isolated) solution branch: G(u(p)) > By > 0, ¥V u € D, where ((z) =
infex sup,ex da(w,v;z)/||w||||v] is the inf-sup parameter relevant to our non-
linear problem. Numerical simulations [31, 34] demonstrate that the flow smoothly
evolves from a single-cell structure for the lower Gr in D to an inertia-dominated
three-cell structure for the higher Gr in D.

We may directly apply the RB formulation of Section 3 to the incompressible
Navier-Stokes equations [13, 25, 36]. The most significant new issue is (eflicient)
calculation of the nonlinear terms. We consider the inner Newton update: given a
current iterate Uy (p) = Zf:[:l UN n (1) Cn, we must find an increment duy € Wy
such that da(dun,v;un) = R(v; ), Yv € Wy here R(v; u) = f(v; ) —a(un (i), v),
Vv € X is the residual. The associated algebraic equations are thus

N N
Zl {aO(Cja Cz) =+ Zl aNTL(U)al(Cﬁ Cm Ci)}(suNj
Jj= n=

it

N
= pfo(G) — '21 {ao(& ) + 5 > unn()a1 (G Gnr G) Jan (), Vi €N,
]:

where we recall that f(v;u) = pfo(v) and p = Gr.

We can directly apply the offline-online procedure described in Section 3 for
linear problems, except now we must perform summations both over the affine
parameter dependence (rather trivial here) and over the reduced-basis coefficients
(of the current Newton iterate, Ty (1)). In the online stage — for given new p — at
each Newton iteration uy () — dupy we first assemble the right-hand side (residual)
— at cost O(N?); we then form and invert the left-hand side (Jacobian) — at cost
O(N?). The complexity of the online stage is independent of A; furthermore,
for our quadratic nonlinearity, there is little increased cost relative to the linear
case. Unfortunately, for a p*"-order nonlinearity, the online cost for the residual
assembly and Jacobian formation will scale as O(NP*1), and thus standard Galerkin
projections are viable only for p = 2 or at most p = 3 [38]. Fortunately, for larger p
and non-polynomial nonlinearities — and for non-affine parameter dependence [5]
— quite effective collocation-like alternatives are available.

Turning now to a posteriori error estimation, we first “presume” 8 N (1), a (to-
be-constructed) positive lower bound for the inf-sup parameter By (1) = B(un (1))
Bn(p) > Bn(pn) > 0, Vu € D. We next recall the dual norm of the residual,
en(p) = supyex R(v;p)/|[v, and introduce 7n (1) = 2p%en (1)/ 5% (1), where p is
our L*(Q)-X embedding constant. Finally, we define N*(u) such that 7y (u) < 1
for N > N*(p); we require N*(11) < Npax, ¥V p € D. (The latter is a condition
on Npax that reflects both the convergence rate of the RB approximation and the
quality of our inf-sup lower bound.) .

We may now define our error estimator: for N > N*(u), An(p) = (By(1)/p?)
(1 — /1 —7n(u)); note that, as en(u) — 0, Ay(p) tends to the “linear case”
en(p)/Bn (). Our main result is then: Given any p € D, for all N > N*(u), there



exists a unique (truth approximation) solution u(u) € X in the ball B(un (u), G (1)/
) = {2 € X | |12 — un ()| < An()/p}; furthermore, u() — ux ()| < An (1).
The proof [36, 37] is a slight specialization of the abstract “Brezzi-Rappaz-Raviart”
result [6, 12]; we can further provide several corollaries related to (i) the well-
posedness of the truth approximation, and (ii) the effectivity of our error bound
[36]. (We may also develop bounds for the output of interest [36].)

The real challenge is computational: how can we compute ex(n), p, and
Bn(p)? (Note that, armed with these quantities, we can evaluate 7 (1) and hence
verify N > N*(p1).) The reduced-basis context is in fact a rare opportunity to render
the Brezzi-Rappaz-Raviart theory completely quantitative. To begin, we consider
en(p): as for the linear case, we invoke duality, our reduced-basis expansion, the
affine parameter dependence of a (and f), and linear superposition to express

ex(p) = p*(C,C)+ Z]::I UunN n(,u){Q,u(C, L)+ ZXVD unN n/(ﬂ){Zﬂ(cy Qnn )+ (L, Lnr)

n’/=1

N N
+ Zl un n”(u) {Z(E'ru Qn’n”) + Z . un n”’(/J/) (an’; Qn”n”’)}}} )
n''= n''’'=
where (C,v) = f(v), Vv € X, (Ln,v) = —ao(Cp,v), Vv € X, Vn € N, and
(Qnn,v) = —2a1(Cn, G v), VU € X V (n,n’) € N?; the latter are again simple
(vector) Poisson problems.

We can now readily adapt the offline-online procedure developed in the linear
case [36, 37]. In the online stage — for each new pu — we perform the sum (4) in
terms of the pre-formed and stored inner products (for example, (Q ./, Qnrrpr), 1 <
n,n/,n” ,n" < N) and the RB coefficients un (1), 1 <n < N — at cost O(N?).
Although the N* scaling, which arises due to the trilinear term in the residual, is
certainly unpleasant, the error bound is calculated only once: in actual practice, the
additional online cost attributable to the dual norm of the residual is not too large.
Unfortunately, for a pt"-order nonlinearity, the online evaluation of €y (u) scales as
O(N?P), and our approach is thus viable only for p = 2. Fortunately, for larger p
and non-polynomial nonlinearities — and for non-affine parameter dependence [5]
— collocation-like alternatives are available; however, in general, there will be some
loss of Tigor in our error estimation.

We next turn to the calculation of p. The critical observation is that p is the
supremum of a “Rayleigh-quotient.” Thus p is related to the smallest multiplier
of an associated Buler-Lagrange nonlinear eigenproblem [35]: (A, 4) € (Ry,X)
satisfies (¢, v) = QS\QIQ%'JJJ‘@U“ Vv e X, for Hi&Hi%Q) = 1; the ground state is

denoted (S\mm,zﬁmin) and p = /\mm In practice, it may be difficult to isolate the
ground state, and we thus consider a homotopy procedure.

Towards that end, we first introduce a parametrized generalization of the
Euler- Lagrange equation' given o € [0 1], ()\(a)7@/1( )) (R, X) satisfies (¢(a), v)
= 2X%(a)[af g (a)p;(a)i(a)v + (1 — @) [ i(@)v], Y v € X, for normalization
ally(a )||L4(Q)—|—(1 a)||w )||L2(Q = 1 thegroundstatelsdenoted( min (@), Ymin (@),

and p = )\mm(l). We may now apply standard Newton continuation methods to
proceed from the known ground state at & = 0 — (Amin(0), ¥min(0)) is the lowest



eigenpair of a simple (vector) “Laplacian” linear eigenproblem — to the ground
state of interest at o = 1; for sufficiently small increments in «, we will remain
on the desired (lowest-energy) branch. For our particular domain, we find (offline)
p = 0.4416; since p is p-independent, no online computation is required.

Finally, as regards the inf-sup lower bound, Sy (1), we may directly apply ap-
propriate extensions [22, 36] of the procedure developed in Section 5. The nonlinear
case does present a new difficulty: the parameter dependence of the (linearized) op-
erator is now induced by the reduced-basis solution uy(p) — in our case, through
the a;(w,un(p),v) term — and hence is not known a priori. Fortunately, since
un(p) — u(p) we may develop a “universal” lower bound for sufficiently large N;
the complications are thus largely practical in nature. (For our particular problem,
J = 34 — the sample is relatively small despite the rather large range in Grashof.)

We conclude with a brief discussion of the adaptive sampling procedure intro-
duced in Section 4. In the nonlinear case a similar procedure may be pursued, but
with two important differences. First, as already indicated, S (1) and hence Oy (1)
will now depend on the reduced-basis solution uy (u); furthermore, By (p) will only
be meaningful for larger N. Thus in the sample construction stage we must replace
BN([I,) in Ay (u) with a simple but relevant surrogate — for example, a piecewise-
constant (over D) approximation to S(u(u)). Second, in the nonlinear context our
error bound is conditional — a small solution to the error equation is only assured
if 73 (u) < 1. Thus the greedy procedure must first select on arg max,,czr 7n (1) —
until 7y () < 1,V € EF — and only subsequently select on arg max,,c=r Ay (1);
the resulting sample will ensure rapid convergence to a certifiably accurate solution.

In Table 2 we present Ay, re1(it) = An(p)/lJun,,,. (@)]| and ny(u) = An(p)/
lu(p) — un(p)]| as a function of N for p = Gr = 1.0E1 (single-roll) and p =
Gr = 8.5E4 (three-roll). The “*” indicates that N < N*(u) — 7n(p) > 1: no
error bound is available. For Gr = 1.0El, we find N*(u) = 1, and hence we
obtain error bounds for all N; the error bound tends to zero very rapidly; and the
effectivity is O(1) [22, 36]. For Gr = 8.5E4, we find N*(u) = 9, and hence we
obtain error bounds only for rather accurate approximations; however, the error
bound still tends to zero rapidly with N — our samples S’Jo\})t are constructed to
provide uniform convergence; and the effectivity is still quite good. It is perhaps
surprising that the Brezzi-Rappaz-Raviart theory, which is not really designed for
quantitative service, indeed yields such sharp results; in fact, as ey (u) — 0, the
cruder bounds — in particular, p — no longer play a role.

Finally, we note that the online cost (on a Pentium® M 1.6GHz processor)
to predict sy (1) and An(p) (and a bound for the error in the output, A% (1) [36])
is typically 10ms and 90ms, respectively — compared to order minutes for direct
finite element calculation of s(u) = £(u(u)).

7 Parabolic Equations

We consider here the extension of the RB methods and associated a posteriori er-
ror estimators described in Sections 1-4 to parabolic PDEs — in particular, the
heat equation; we shall “simply” treat time as an additional, albeit special, param-



Gr = 1.0E1 Gr = 8.5E4
N ™~ AN, vel | NN ™ AN, vel | N
31| 20E-2]| 5.0E-2 1.0 00 * *
6| 12E-2 | 3.0E-2 1.0 || 2.8 E+1 * *
91| 44E-3 1| 1.1E-2 1.0 5.2E-1 | 1.5E—4 | 14.1
12 || 2.7E—6 || 6.8 E—6 1.0 || 5.8E—-1 || 1.7TE—4 | 20.5
15| 30E-7 || 76E-7| 1.0 1.9E-2 || 4.6 E—6 | 17.6

Table 2. Error bounds and effectivities for Gr = 1.0E1 and Gr = 8.5E4.

eter [32]. For further details, we refer the reader to [9]. (There are many approaches
to model reduction for initial-value problems: POD methods [33]; balanced-truncation
techniques [21]; and even reduced-basis approaches [28]. However, in general, these
frameworks do not accommodate parametric variation (or, typically, rigorous a
posteriori error estimation).) For simplicity, we directly consider a K-level time-
discrete framework (corresponding to Euler Backward discretization, although we
can also readily treat higher-order schemes such as Crank-Nicolson) associated to
the time interval [0,%¢]: we define T = {t°,...,¢t&}, where t* = kAt, 0 < k < K,
and At = t;/K; for notational convenience, we also introduce K = {1,...,K}.
(Clearly, our results must be stable as At — 0, K — 00.)

Given 1 € D C R? | we evaluate the (here, single) output s(p, t*) = £(u(u, t*)),
V k € K, where u(u,t*) € X, Vk € K, satisfies

At m(u(p, 1) = u(p 7, 0) + a(ulp, ), 030) = b(E*) f(v), YveX, (5)

with initial condition (say) u(p,t") = 0. Here y and D are the input and input
domain; u(u,t*), Vk € K, is our field variable; X C X is our truth approximation
subspace for X¢ (and (-,-), || - ||) defined in Section 2; a(-,-; x) and m(-,-) are X°-
continuous and L?(£2)-continuous symmetric bilinear forms, respectively; f(-), £(-)
are L?(f2)-continuous linear forms; and b(t*) is the (here, single) “control” input at
time ¢¥.

We shall make the following assumptions. First, we require that a and m are
independent of time — the system is thus linear time-invariant (LTT). Second, we
assume that a and m are coercive: 0 < ag < a(u) = inf,ex[a(v,v; p)/||v]|?] and 0 <
oo < inf,er2 () [m(v,v)/||v||2Lz(Q)]. Third, we assume that a depends affinely on p:

a(lw,v;u) = Equl ) a?(w,v) for ¢ = 1,...,Q parameter-dependent functions
©%(p) : D — R and parameter-independent continuous bilinear forms a4(w, v). (For
simplicity, we also assume that m, f, and ¢ are parameter-independent.)

To ensure rapid convergence of the reduced-basis output approximation we
shall need a dual (or adjoint) problem which shall evolve backward in time. Invoking
the LTI property, we can express the adjoint for the output at time t*, 1 < L < K,
as P (u, t*) = U(p, tK=LT%) 1 < k < L; here U(u,tF) € X, Vk € K, satisfies
At~ m(v, O (p, t7) = U (p, t511)) +a(v, U(p, t*); p) = 0, Vo € X, with final condition
m(v, U (u, t¥+1)) = £(v), Vv € X. In essence, thanks to the primal LTI property
and the linearity of the output functional, the dual system is invariant to a shift in



time of the final condition; thus, to obtain % (u,t*), 1 < k < L, VL € K, we need
only solve once for W(u,t*), Vk € K, and then appropriately translate the result —
we do not need to solve K separate dual problems [9)].

We now introduce the nested samples SR,YPI_ = {@f",... ,ﬂI]’\fpr}, 1 < Np <

]ypr,max, and SR = {af, ..., 4%}, 1 < Nau < Naymax, Where i = (u,tNk) C
D =D x T. Note the samples must now reside in the parameter-time space D; we
also introduce separate (and different) samples for the primal and dual problems.

We then define the associated nested RB spaces WJI\)’L = span{¢P* = wu(gd =
(ttny t52)P7), 1 <1 < Nywd, 1< Nop < Npma, and WS = span{¢d = w(dt =
(i, tF )49, 1 < n < Ngu}, 1 < Nauw < Ngumax- Note that for the primal basis
we choose — as justified by the LTI hypothesis — an impulse input: b(t¥) = 1 for
k=1, and b(tk) =0 for 2 <k < K.

Our RB approximation is then: given u € D, evaluate sy (i1, t*) = £(un (p, t*))
+ Z:,zl RO (W (p, 5 =R R #%) AL, V k€ K, where (pr) un(u, t*) € W}\),;,
V k € K, satisfies At~ m(upn (1, %) —un (1, tF 1), 0)+alun (i, t%), v; 1) = b(t*) f(v),
Yo € WIP\’,;, with initial condition uy(p,t%) = 0, and (du) U (u,t*) € WI‘\i,‘iu,
Vk € K, satisfies At ~tm(v, Uy (1, t*) — U (1, t51)) + av, U (p, t%); 1) = 0, Vo €
Wﬁ,‘;u, with final condition m (v, ¥ (i, t5+1)) = 4(v), Vv € WI%‘;‘ Here, Vk € K,
RO (0;41,89) = b{E*) £(0) — (At (1, #) — un g, 1), 0) + (s £4), 03 12),
Vv € X, is the primal residual. Note that we include a residual correction term
(the inner product of the primal residual with the dual RB solution) in sy (u, %)
to improve the accuracy of our output prediction [26] and to obtain the “square”
effect in the convergence of the output bound. We could, of course, also increase
the accuracy of sy (u,t*) by improving the primal RB solution uy (i, t*) (i.e., by
increasing Ny, ); however, in the case of a single or relatively few outputs, the dual
formulation is computationally advantageous.

The offline-online computational procedure is similar to the elliptic case of
Section 3 but with the added complexity of the dual problem and the time depen-
dence [9]. In the online stage, we first assemble the requisite RB “stiffness” matrices
— at cost O((N2Z, + N2, + Npr Naw)@Q); we then solve the primal and dual problems
— at cost O(N}, + N3, + K(NZ, + N3,)); and finally we evaluate the RB output
approximation sy (u;t*), Vk € K — at cost O(K (K + 1)Np;Nay). The online com-
plexity is thus independent of A/, and in fact not too sensitive (for our LTI system)
to K.

We now turn to a posteriori error estimation. We stress that the devel-
opment of the error bounds is in no way limited to the RB approximation de-
scribed here: we may consider “any” stable ODE or PDE system and any reduced-
order model. To begin, we assume that we are given a(u) : D — Ry, a pos-
itive lower bound for the coercivity constant, a(p) : «a(p) > a(p) > o >
0, Vu € D. In our symmetric case a(u) = [(p) and thus &(p) can be con-
structed according to Section 4; in fact, thanks to coercivity, much simpler pro-
cedures typically suffice [29]. We next recall the dual norm of the primal and
dual residuals: Vk € K, E%W (11, t7) = sup,e x [RP"(v; 1, t%) /||v||] and 5}1\}3‘1 (u, t*) =
sup,e x [RY(v; i, t%) /||v]|], where V k € K, R (v;pu,t*) = —(At" m(v, Uy (u, t*)



— Un(p, ) + a(v, Un(p, t5); 1)), Vv € X. Finally, we introduce the “spatio-
temporal” energy norm, |||v(u, t*)|||? = m(v(u, t*), v(u, t*)) + ZZ,:l At a(v(p, tF),
o(p,t* )i p), Vo e X,

We may now define our error estimators: vy € D, Yk € K, Af (, t*)

GE () (ALY g R ()2 E AR () = 673 () (At gy e (7)) F;
and

vl

A (o) = AR (s t") AR (st 7F). (6)

We can then readily demonstrate that |||u(iu,t*) — un(u, t%)||| < A%pr(u,tk) and
15, 1) — sx (1, #)] < A%(, %), VE € K, ¥ u € D, 1< Ny < Nprmaws 1 < Naw <
Nau,max [9] — we obtain rigorous (and, as we shall see, rather sharp) upper bounds
for the primal error, dual error, and output error. (Note that our particular form
(6) assumes that W(u,t*+1) — here, p-independent — is a member of W ; this
requirement is readily relaxed.)

The offline-online procedure for the computation of A*(u,t*), Vk € K — in
particular, for the calculation of the requisite primal and dual residual norms —
is similar to the elliptic case of Section 4 but with the added complexity of the
dual problem and the time dependence [9]. In particular, in the online stage —
for any given new y — we evaluate the i (u, t%)? and e (u,t*)? sums in terms

of ©9(1), unn(p,t*), Uy (1, t*) and the precomputed inner products — at cost
O(K(N2 + N3,)Q?). Thus, all online calculations are indeed independent of N.

We now turn to a particular numerical example. We consider the design of
a heat shield (one cell of which is shown in Figure 2): the left boundary 9Qqyt is
exposed to a temperature unity and Biot number Bigy “source” for t € [0,s]; the
right boundary as well as the top and bottom (symmetry) boundaries are insulated;
and the internal boundaries 9€);, — corresponding to three square cooling channels
— are exposed to a temperature zero and Biot number Bij, “sink.” Our input
parameter is hence p = (p1(1y, fi(2)) = (Biout, Biin) € D = [0.01,0.5] x[0.001, 0.1]; our
output is the average temperature of the structure — a surrogate for the maximum
temperature of the (to-be-protected) right boundary for ¢ € [0, 00] .

The underlying PDE is the heat equation. The (appropriately non-dimensional-
ized) governing equation for the temperature u(u,t*) € X is thus (5), where X is a
linear finite element truth approximation subspace (of dimension (exploiting sym-
metry) N = 1,396) of X° = H'(Q); a(w,v;p) = [, Vw - Vo + puay oo wo+
(2) faﬂinwv; m(w,v) = [qwv; floip) = pey faQoutU’ which is now (affinely)
parameter-dependent; b(t") = 1, Vk € K; and (w,v) = [, Vw-Vv+0.01 faﬂm wu+
0.001 faﬁ;n wv — hence we may choose &(u) = 1. The output is given by s(u, t¥) =
O(u(p, t¥)), where £(v) = Q|7 [ v.

We now present numerical results. Our “optimal” primal and dual samples
are constructed (separately) by procedures similar to the greedy approach described
for the elliptic case in Section 4 [9]: at each step (say, for the primal) we se-
lect the parameter value p* for which A?\fpr (u,t%) is maximized; we then select

the time t** for which 5?}; (u*,t*) is maximized. In Table 3 we present, as a
function of Ny, (= Nay), A Pro A and 7°: AP

max,rels '] ax.rel 15 the max-

s
max,rel?



0 (10,4)

(3,3)
(()Qout

(1,1) (4,1) oy,

(0,0)

%

Figure 2. One “cell” of the heat shield.

Npr Apmrax rel ﬁpr Afnawc,lrcl ﬁs
41 1.6E-00| 544 | 1.6 E-00 | 95.63

81 63E-02|1.55|6.7E-03 | 30.92
12 | 1.0E-02 | 1.03 | 26 E-04 | 8.43
16 || 3.2E-03 | 1.02 | 1.5 E-05 | 11.45

20 || 8.8E-04 | 1.01 | 1.1E-06 | 17.43

Table 3. Convergence results for the heat equation.

imum over Ereg of Alf\;pr(ﬂvtK)/H\UN(Mth)HL 7P is the average over Sreg X
T of Aﬂ)\;pr(u,tk)/ﬂm(u,tk) —un (p, tF)]|], A} xrel 18 the maximum over Ereg of

A% (1, t5) /| sn (s, t7)], and 77° is the average over Erest of A% (4, £y (1)) /|8y ty (1))
— sn(p,ty(p))]. Here Eqesy € (D)* is a random input sample of size 400; p,, =
AT AN 2 [t (13 ) [ s = ATE Mz [ (11, E)] (mte the out-
put grows with time), and t,(u) = argmaxcr [s(p, t*) — sn(u, t*)]. The output
converges rapidly, and the effectivities are reasonably good.

Finally, we note that the calculation of sx(u,t*) and A% (u, %), Vk € K, is
(say, for Ny, = Ngu = 12) roughly 120 times faster than direct calculation of the
truth approximation output s(u,t*) = £(u(i,t*)), Vk € K. We may thus work
with sy (1, %) + A% (11, %) as a certifiably conservative (upper bound) and accurate
surrogate for the average temperature s(u,t*) in truly interactive design exercises.
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