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Abstract In this paper, we compare hybridizable discontinuous Galerkin (HDG) meth-
ods for numerically solving the velocity-pressure-gradient, velocity-pressure-stress, and
velocity-pressure-vorticity formulations of Stokes flow. Although they are defined by using
different formulations of the Stokes equations, the methods share several common features.
First, they use polynomials of degree k for all the components of the approximate solution.
Second, they have the same globally coupled variables, namely, the approximate trace of the
velocity on the faces and the mean of the pressure on the elements. Third, they give rise to a
matrix system of the same size, sparsity structure and similar condition number. As a result,
they have the same computational complexity and storage requirement. And fourth, they
can provide, by means of an element-by element postprocessing, a new approximation of
the velocity which, unlike the original velocity, is divergence-free and H (div)-conforming.
We present numerical results showing that each of the approximations provided by these
three methods converge with the optimal order of k + 1 in L2 for any k ≥ 0. We also dis-
play experiments indicating that the postprocessed velocity is a better approximation than
the original approximate velocity. It converges with an additional order than the original
velocity for the gradient-based HDG, and with the same order for the vorticity-based HDG
methods. For the stress-based HDG methods, it seems to converge with an additional order
for even polynomial degree approximations. Finally, the numerical results indicate that the
method based on the velocity-pressure-gradient formulation provides the best approxima-
tions for similar computational complexity.
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1 Introduction

In this paper, we compare three hybridizable discontinuous Galerkin (HDG) methods for
numerically solving the Stokes system

−ν�u + ∇p = f , in �,

∇ · u = 0, in �,

u = g, on ∂�,∫
�

p = 0,

(1)

where
∫

∂�
g · n = 0. Here � is a bounded domain in R

d with Lipschitz boundary ∂�.
The HDG methods we consider are a vorticity-based HDG method introduced in [6], the
gradient-based HDG method in [16] and a stress-based HDG method introduced in this
paper.

To better describe our results, let us briefly review the previous work on hybridizable
DG methods for Stokes flow. Hybridization for DG methods for Stokes flow was initially
introduced in [3] as a technique that allows for the use of globally divergence-free velocity
spaces without having to actually carry out their almost-impossible construction. A velocity-
pressure-vorticity formulation in two-space dimensions was used and polynomials of degree
k were taken for all the components of the velocity and polynomials of degree k − 1 for
the both the pressure and the vorticity. Optimal orders of convergence were proven for the
vorticity, pressure and velocity.

The technique was then further developed, with a similar intention, for a mixed method
for a velocity-pressure-vorticity formulation in two [4] and three space dimensions [5]. In-
deed, a novel, global formulation for the method was obtained solely in terms of the tangen-
tial velocity and the pressure on the borders of the elements. As a further development of
this approach, the first HDG method for the Stokes equations was introduced in [6] again
for the velocity-pressure-vorticity formulation. This vorticity-based HDG method is one of
the three HDG methods we shall compare in this paper.

Another is the HDG method based on the velocity-pressure-gradient formulation of the
Stokes system proposed in [16]. This gradient-based HDG method was analyzed in [8]
where it was proved that the approximate velocity, pressure, and gradient converge with the
optimal order k + 1 in L2-norm for any k ≥ 0. Moreover, it was shown how to obtain a new
divergence-free approximate velocity lying in H (div) by means of an element-by-element
postprocessing. The postprocessed velocity was then proven to converge with order k + 2
for k ≥ 1 and with order 1 for k = 0.

Note that there are DG methods which provide velocities that are divergence-free inside
each of the element; however, the do not lie on H (div) since their normal component has no
interelement continuity. Examples are the first DG method proposed for the Stokes system
[1] and, more recently, and the DG method proposed in [14]. Note also that there are DG
methods that do provide velocities that are divergence-free and belong to H (div). The first
family DG methods with this property were introduced in [9] (see also the particular cases
developed later in [10] and in [19]) and the DG method proposed in [3]. However, their
velocities converge with order at most k + 1 for k ≥ 1.

The last HDG method we consider is introduced in this paper for the velocity-pressure-
stress formulation of the Stokes system. This stress-based HDG method is an extension of
the above-mentioned HDG methods to the velocity-pressure-stress formulation. It can also
considered to be a variation of the HDG method proposed in [17] for compressible, linearly
elastic bodies.
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In this paper, we compare the above-mentioned vorticity-based, gradient-based, and
stress-based HDG methods. Although these HDG methods are used to discretize three dif-
ferent formulations of the Stokes equations, they share several common features. Indeed,
we show that when they use polynomials of degree k for all the components of the approxi-
mate solution, convergence with the optimal order of k + 1 in L2 for any k ≥ 0 is achieved;
this was known, as pointed out above, for the gradient-based HDG method, but was not
known for the vorticity-based and the stress-based HDG methods. Second, we show that
these three methods can have the same globally coupled variables, namely, the approximate
trace of the velocity on the faces and the mean of the pressure on the elements. Third, we
show that they give rise to a matrix system of the same size, structure and condition num-
ber. As a result, they have the same computational complexity and storage requirements,
at least for the globally coupled unknowns. And fourth, we show that their solution can
be postprocessed in an element-by element fashion [8] to yield a new approximation of
the velocity. Unlike the original velocity, the postprocessed velocity is divergence-free and
H (div)-conforming.

Our numerical experiments show that the approximations provided by the gradient-based
HDG method are more accurate than those provided by the stress-based and vorticity-based
HDG methods. Moreover, they also show that the postprocessed velocity converges with
order k + 2 for the gradient-based HDG method when k ≥ 1 and with order k + 1 for the
vorticity-based HDG method. The stress-based HDG method yields the postprocessed ve-
locity which converges with order k + 1 for k = 0,1, but tends to converge with order k + 2
for even order polynomial degrees k ≥ 2. Since the three methods have a similar compu-
tational complexity, we conclude that the gradient-based HDG method is the method of
choice.

Let us note that, compared to all known DG methods for the Stokes equations, the three
HDG methods considered here have the following advantages. First, they result in the matrix
system of smaller size and compactness since the globally coupled unknowns are defined on
the borders of the elements and connected through neighboring elements only. Second, their
numerical approximations converge with the optimal order k + 1, whereas all other methods
display the suboptimal order of convergence of k for the approximate gradient and pressure.
And third, the HDG methods are somewhat simpler to implement.

The paper is organized as follows. In Sect. 2 we introduce the HDG methods for solving
the Stokes system and define the element-by-element postprocessing to compute a new ap-
proximation of the velocity. In Sect. 3 we detail the implementation of the HDG methods.
In Sect. 4 we present numerical results to assess the performance of the methods. Finally, in
Sect. 5 we end with some concluding remarks.

2 The HDG Methods

2.1 Notation

Our notation is the one used in previous work [8, 16]. We denote by Th a collection of
disjoint regular elements K that partition � and set ∂Th := {∂K : K ∈ Th}. For an element
K of the collection Th, F = ∂K ∩ ∂� is the boundary face if the d − 1 Lebesgue measure
of F is nonzero. For two elements K+ and K− of the collection Th, F = ∂K+ ∩ ∂K− is the
interior face between K+ and K− if the d −1 Lebesgue measure of F is nonzero. We denote
by E o

h and E ∂
h the set of interior and boundary faces, respectively. We set Eh = E o

h ∪ E ∂
h .

Let n+ and n− be the outward unit normal vectors on two neighboring elements K+
and K−, respectively. We use (G±,v±, q±) to denote the traces of (G,v, q) on F from the
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interior of K±, where G,v, and q are second-order tensorial, vectorial, and scalar functions,
respectively. Then, we define the jumps [[·]] as follows. For F ∈ E o

h , we set

[[Gn]] = G+n+ + G−n−,

[[v � n]] = v+ � n+ + v− � n−,

[[qn]] = q+n+ + q−n−.

Here � can be one of ·, ×, and ⊗; in this order, they denote the usual dot product, cross
product, and tensor product. For F ∈ E ∂

h , the set of boundary edges on which G, v and q are
single valued, we set

[[Gn]] = Gn,

[[v � n]] = v � n,

[[qn]] = qn,

where n is the unit outward normal to ∂�.
Let Pk(D) denote the space of polynomials of degree at most k on a domain D and

let L2(D) be the space of square integrable functions on D. We set Pk(D) = [Pk(D)]d ,
Pk(D) = [Pk(D)]d×d , L2(D) = [L2(D)]d , and L

2(D) = [L2(D)]d(d+1)/2. We introduce dis-
continuous finite element approximation spaces for the gradient, velocity, and pressure as

Gh = {G ∈ L2(Th) : G|K ∈ Pk(K), ∀ K ∈ Th},
�h = {ς ∈ Gh : ς is symmetric},
V h = {v ∈ L2(Th) : v|K ∈ Pk(K), ∀K ∈ Th},
Ph = {q ∈ L2(Th) : q|K ∈ Pk(K), ∀K ∈ Th}.

To define the approximation space for the vorticity we have to distinguish between two and
three dimensions. In the two dimensional case, w = ∂u2/∂x1 −∂u1/∂x2, we define Pk(K) :=
Pk(K) and Wh := Ph. In the three-dimensional case, w = (∂u3/∂x2 − ∂u2/∂x3, ∂u1/∂x3 −
∂u3/∂x1, ∂u2/∂x1 − ∂u1/∂x2), we define Pk(K) := Pk(K) and Wh := V h.

In addition, we introduce a finite element approximation space for the approximate trace
of the velocity

Mh = {μ ∈ L2(Eh) : μ|F ∈ Pk(F ), ∀F ∈ Eh}.
We also set

Mh(g) = {μ ∈ Mh : μ = Pg on ∂�},
where P denotes the L2-projection into the space {μ|∂� ∀ μ ∈ Mh}. Note that Mh consists
of functions which are continuous inside the faces (or edges) F ∈ Eh and discontinuous at
their borders. We further denote by �h the set of functions in L2(∂Th) that are constant on
each ∂K for all elements K

�h = {r ∈ L2(∂Th) : r ∈ P0(∂K), ∀K ∈ Th}.
The mean of our approximate pressure will belong to this space. The mean of a given func-
tion q in L2(∂Th) is denoted q and is set to be on the boundary ∂K of an element K equal
to q|∂K = 1

|∂K|
∫

∂K
q.
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Finally, we define various inner products for our finite element spaces. We write
(η, ζ )Th

:= ∑
K∈Th

(η, ζ )K, where (η, ζ )D denotes the integral of η ζ over the domain

D ⊂ R
d . We also write (η, ζ )Th

:= ∑d

i=1(ηi, ζi)Th
and (N,Z)Th

:= ∑d

i,j=1(Nij ,Zij )Th
.

Finally, we write (η, ζ )∂Th
:= ∑

K∈Th
(η, ζ )∂K and (η, ζ )∂Th

:= ∑d

i=1〈ηi, ζi〉∂Th
, where

〈η, ζ 〉D denotes the integral of η ζ over the domain D ⊂ R
d−1.

2.2 Definition of the HDG Methods

2.2.1 The Gradient-Based Formulation

We are now ready to define the HDG methods. First, we consider the velocity-pressure-
gradient formulation of the Stokes system (1):

L − ∇u = 0, in �,

∇ · (−νL + pI) = f , in �,

∇ · u = 0, in �,

u = g, on ∂�,∫
�

p = 0.

Here L is the gradient tensor and I is the second-order identity tensor. The HDG method
for the velocity-pressure-gradient formulation seeks an approximation (Lh,uh,ph, ûh) ∈
Gh × V h × Ph × Mh(g) such that

(Lh,G)Th
+ (uh,∇ · G)Th

− 〈̂uh,Gn〉∂Th
= 0,

(νLh − phI,∇v)Th
+ 〈

(−νL̂h + p̂hI)n,v
〉
∂Th

= (f ,v)Th
,

−(uh,∇q)Th
+ 〈̂uh · n, q〉∂Th

= 0,〈
(−νL̂h + p̂hI)n,μ

〉
∂Th

= 0,

(ph,1)Th
= 0,

(2a)

for all (G,v, q,μ) ∈ Gh × V h × Ph × Mh(0), where

(−νL̂h + p̂hI
)
n = (−νLh + phI)n + S(uh − ûh). (2b)

Here S is the stabilization tensor. A detailed analysis of how to choose it to obtain optimal
convergence properties of the method can be found in [8]. One such choice is to set S := ντ I,
where τ is a constant on ∂Th and independent of the diameter of the elements. It can then be
shown that the resulting HDG method is a “traditional” DG method whose numerical traces
are

ûh = 1

2
u+

h + 1

2
u−

h − 1

2ντ
[[(νLh − phI)n]],

νL̂h − p̂hI = 1

2
(νL+

h − p+
h I) + 1

2
(νL−

h − p−
h I) − ντ

2
[[uh ⊗ n]].

See in [16] the details of this computation as well as a brief comparison with the DG method
proposed in [11].
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2.2.2 The Vorticity-Based Formulation

Next, we consider the velocity-pressure-vorticity formulation of the Stokes system (1):

w − ∇ × u = 0, in �,

ν∇ × w + ∇p = f , in �,

∇ · u = 0, in �,

u = g, on ∂�,∫
�

p = 0.

The HDG method for the velocity-pressure-vorticity formulation, [6], seeks an approxima-
tion (wh,uh,ph, ûh) ∈ Wh × V h × Ph × Mh(g) that satisfies

(wh, r)Th
− (uh,∇ × r)Th

− 〈̂uh, r × n〉∂Th
= 0,

(νwh,∇ × v)Th
− (ph,∇ · v)Th

+ 〈νn × ŵh + p̂hn,v〉∂Th
= (f ,v)Th

,

−(uh,∇q)Th
+ 〈̂uh · n, q〉∂Th

= 0,

〈νn × ŵh + p̂hn,μ〉∂Th
= 0,

(ph,1)Th
= 0,

(3a)

for all (r,v, q,μ) ∈ Wh × V h × Ph × Mh(0), where

νn × ŵh + p̂hn = νn × wh + phn + S(uh − ûh). (3b)

For simplicity of presentation we have adopted here the same notation used earlier to denote
the approximate velocity, pressure and the stabilization tensor.

Note that when we take the stabilization tensor S as in the gradient-based formulation,
the HDG method becomes a DG method whose numerical traces are

ûh =1

2

(
u+

h + u−
h

) + 1

2ντ
[[νn × wh + phn]],

ŵh =1

2

(
w+

h + w−
h

) + ντ

2
[[uh × n]],

p̂h =1

2

(
p+

h + p−
h

) + ντ

2
[[uh · n]].

2.2.3 The Stress-Based Formulation

Finally, we consider the velocity-pressure-stress formulation of the Stokes system (1):

σ − (∇u + ∇uT ) = 0, in �,

∇ · (−νσ + pI ) = f , in �,

∇ · u = 0, in �,

u = g, on ∂�,∫
�

p = 0.



J Sci Comput (2010) 45: 215–237 221

The HDG method for the velocity-pressure-stress formulation seeks an approximation
(σ h,uh,ph, ûh) ∈ �h × V h × Ph × Mh(g) that satisfies

(σ h,ς)Th
+ 2(uh,∇ · ς)Th

− 2 〈̂uh,ςn〉∂Th
= 0,

(νσ h − phI,∇v)Th
+ 〈(−νσ̂ h + p̂hI)n,v〉∂Th

= (f ,v)Th
,

−(uh,∇q)Th
+ 〈̂uh · n, q〉∂Th

= 0,

〈(−νσ̂ h + p̂hI)n,μ〉∂Th
= 0,

(ph,1)Th
= 0,

(4a)

for all (ς,v, q,μ) ∈ �h × V h × Ph × Mh(0), where

(−νσ̂ h + p̂hI)n = (−νσ h + phI)n + S(uh − ûh). (4b)

This HDG method is strongly related to the HDG method proposed in [17] for linear
elasticity. The methods are not quite the same however. Indeed, the elastic materials consid-
ered in [17] cannot taken to be exactly incompressible. Moreover, here we take 
h to be a
space of symmetric matrices motivated by the fact that σ is a symmetric tensor.

Again, when the stabilization tensor is S := ντ I, where τ is a constant on ∂Th, the re-
sulting HDG method is a “traditional” DG method whose numerical traces are

ûh = 1

2
u+

h + 1

2
u−

h − 1

2ντ
[[(νσ h − phI)n]],

νσ̂ h − p̂hI = 1

2
(νσ+

h − p+
h I) + 1

2
(νσ−

h − p−
h I) − ντ

2
[[uh ⊗ n]].

2.3 Hybridization of the HDG Methods

The primary motivation for the hybridization is the reduction in the number of global degrees
of freedom achieved by the elimination of volumetric unknowns in favor of facet unknowns.
The hybridization is carried out in two steps. First, we introduce local Stokes problems
at the element level and define associated local solvers by using a DG discretization. The
local problems use the velocity trace and the pressure mean as boundary conditions and thus
parametrize the velocity, gradient, and pressure in terms these variables. Second, we impose
a conservativity condition by requiring that the numerical flues have to be conservative in
the sense that the normal component of the numerical fluxes is single-valued across the
interior faces. The conservativity condition results in a variational formulation in terms of
the approximate trace of the velocity and the mean of the pressure only.

2.3.1 Hybridization of the Gradient-Based HDG Method

We first describe how to hybridize the HDG method for the velocity-pressure-gradient for-
mulation. To begin, we introduce the local problem for all K ∈ Th,

L − ∇u = 0, in K,

∇ · (−νL + pI) = f , in K,

∇ · u = 0, in K,

u = η, on ∂K,

p = ρ, on ∂K,
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where (f ,η, ρ) ∈ L2(�) × Mh(g) × �h is the data for the local problem. We then define
the local solver LG that maps (f ,η, ρ) to the solution (Lh,uh,ph) ∈ Gh × V h × Ph of the
problem

(Lh,G)K + (uh,div G)K = 〈η,Gn〉∂K ,

(∇ · (−νLh + phI),v)K + 〈Suh,v〉∂K = (f ,v)K + 〈Sη,v〉∂K ,

−(uh,∇q)K = −〈η · n, q − q〉∂K ,

ph = ρ,

for all (G,v, q) ∈ Pk(K) × P k(K) × Pk(K) and each K ∈ Th. We then set

(Lf
h ,u

f
h ,p

f
h ) := LG(f ,0,0),

(Lη
h,u

η
h,p

η
h) := LG(0,η,0),

(Lρ

h,u
ρ

h,p
ρ

h) := LG(0,0, ρ).

We can now state the following result.

Proposition 2.1 ([16]) Suppose that (Lh,uh,ph) is the solution of (2). Let (λ, �) ∈
(Mh(g),�h) satisfy

〈
(νLλ

h − pλ
hI)n − S(uλ

h − λ),μ
〉
∂Th

− 〈�,μ · n〉∂Th
=

〈
(−νLf

h + p
f
h I)n + Su

f
h ,μ

〉
∂Th

,

− 〈
λ · n,ψ

〉
∂Th

= 0,

(5)
for all (μ,ψ) ∈ Mh(0) × �h, and

(p
f
h + pλ

h + p
�

h,1)Th
= 0.

Then Lh = Lf
h + Lλ

h, uh = u
f
h + uλ

h, ph = p
f
h + pλ

h + p
�

h , ûh = λ, and ph = �.

Moreover, it is shown in [16] that the problem for (λ, �) as determined by (5) can be
rewritten as a weak formulation giving rise to a matrix system typical of saddle point prob-
lems.

Proposition 2.2 ([16]) The pair (λ, �) ∈ (Mh(g),�h) as determined by (5) satisfies

ah(λ,μ) + bh(�,μ) = fh(μ), ∀ μ ∈ Mh(0),

bh(ψ,λ) = 0, ∀ ψ ∈ �h,
(6)

and

(p
f
h + pλ

h + p
�

h,1)Th
= 0.

Here the forms are given by

ah(η,μ) = (νLη
h,Lμ

h )Th
+ 〈

S(u
η
h − η), (u

μ
h − μ)

〉
∂Th

,

bh(ψ,μ)= − 〈
ψ,μ · n〉

∂Th
,

fh(μ) = (
f ,u

μ
h

)
Th

,

for all η ∈ Mh,μ ∈ Mh, and ψ ∈ �h.
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Let us emphasize that this result is useful for the analysis of the method and its associated
matrix equations, but not for implementation. For that purpose, Proposition 2.1 can be used.

2.3.2 Hybridization of the Vorticity-Based HDG Method

In a similar way, the hybridization of the HDG method for the velocity-pressure-vorticity
formulation can be achieved. For simplicity of presentation we adapt the same notations
used above. For the given data (f ,η, ρ) ∈ L2(�) × Mh(g) × �h we introduce the local
problem for all K ∈ Th,

w − ∇ × u = 0, in K,

∇ × w + ∇p = f , in K,

∇ · u = 0, in K,

u = η, on ∂K,

p = ρ, on ∂K.

(7)

Then we define the local solver as an operator LV that maps (f ,η, ρ) to the solution
(wh,uh,ph) ∈ Wh × V h × Ph of the problem,

(wh, r)K − (uh,∇ × r)K = 〈η, r × n〉∂K ,

(ν∇ × wh + ∇phI),v)K + 〈Suh,v〉∂K = (f ,v)K + 〈Sη,v〉∂K ,

−(uh,∇q)K = −〈η · n, q − q〉∂K ,

ph = ρ,

for all (r,v, q) ∈ Pk(K) × P k(K) × Pk(K) and each K ∈ Th. We then set

(wf
h ,u

f
h ,p

f
h ) := LV(f ,0,0),

(wη
h,u

η
h,p

η
h) := LV(0,η,0),

(wρ

h,u
ρ

h,p
ρ

h) := LV(0,0, ρ).

We can now state the following results.

Proposition 2.3 ([6]) Suppose that (wh,uh,ph) is the solution of (3). Let (λ, �) ∈
(Mh(g),�h) be such that

− 〈
νn × wλ

h + pλ
hn − S(uλ

h − λ),μ
〉
∂Th

− 〈�,μ · n〉∂Th
=

〈
νn × wf

h + p
f
h n + Su

f
h ,μ

〉
∂Th

,

− 〈
λ · n,ψ

〉
∂Th

= 0,

(8)
for all (μ,ψ) ∈ Mh(0) × �h, and

(p
f
h + pλ

h + p
�

h,1)Th
= 0.

Then wh = wf
h + wλ

h, uh = u
f
h + uλ

h, ph = p
f
h + pλ

h + p
�

h , ûh = λ, and ph = �.

Proposition 2.4 ([6]) The pair (λ, �) ∈ (Mh(g),�h) as determined by (8) satisfies

ch(λ,μ) + dh(�,μ) = gh(μ), ∀μ ∈ Mh(0),

dh(ψ,λ) = 0, ∀ψ ∈ �h,
(9)
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and

(p
f
h + pλ

h + p
�

h,1)Th
= 0.

Here the forms are given by

ch(η,μ) = (νwη
h,wμ

h )Th
+ 〈

S(u
η
h − η), (u

μ
h − μ)

〉
∂Th

,

dh(ψ,μ) = − 〈
ψ,μ · n〉

∂Th
,

gh(μ) = (
f ,u

μ
h

)
Th

,

for all η ∈ Mh,μ ∈ Mh, and ψ ∈ �h.

2.3.3 Hybridization of the Stress-Based HDG Method

As the hybridization of the stress-based HDG method can be carried out in the same fash-
ion as the gradient-based HDG method, we do not provide the detailed procedure to save
space. Instead we make two observations. First, the system of equations (8) is similar to the
system (5) associated with the HDG method for the velocity-pressure-gradient formulation.
In fact, the only difference between the two systems lies in the second equation due to the
definition of the numerical fluxes. Second, the weak formulation (9) is also similar to the
previous formulation (6). The difference between the two formulations lies in the first term
of their first bilinear form.

Finally, we emphasize that the weak formulations (6) and (9) have significantly less glob-
ally coupled degrees of freedom than the original formulations (2) and (3), since the approx-
imate trace of the velocity is defined on the element faces and the mean of the pressure is
piecewise-constant. This huge advantage comes with the additional cost of solving the local
problems on all elements of the triangulation. However, this additional cost is negligible as
compared to the cost of solving the global system; see Sect. 3 for a detailed discussion.

2.4 Local Postprocessing

We use the element-by-element postprocessing proposed in [8] to obtain a new approximate
velocity which is exactly divergence-free and H (div)-conforming. This postprocessing is a
modification of the BDM projection [2] which uses the numerical trace of the velocity and
the optimally convergent approximate gradient.

We first consider the HDG solution of the velocity-pressure-gradient formulation. We
define the new approximate velocity u�

h as the element of Pk+1(K) such that for all K ∈ Th,

〈(u�
h − ûh) · n,μ〉F = 0, ∀μ ∈ Pk(F ), (10a)

〈(n × ∇)(u�
h · n) − n × ( {{LT

h }}n), (n × ∇)μ〉F = 0 ∀μ ∈ Pk+1(F )⊥, (10b)

for all faces F of K , and such that

(u�
h − uh,∇w)K = 0, ∀w ∈ Pk(K), (10c)

(∇ × u�
h − ωh,∇ × (v BK))K = 0, ∀v ∈ Sk(K). (10d)
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Here {{LT
h }} is the single-valued function on Eh equal to ((LT

h )+ + (LT
h )−)/2 on the set

Eh \ ∂� and equal to LT
h on ∂�. We also have that

Pk(F )⊥ := {w ∈ Pk(F ) : 〈w,ζ 〉F = 0, ∀ζ ∈ Pk−1(F )}.

Moreover, ωh := (L32h −L23h,L13h −L31h,L21h −L12h) is the approximation to the vorticity
and BK is the so-called symmetric bubble matrix introduced in [7], namely,

BK :=
3∑

�=0

λ�−3λ�−2λ�−1∇λ� ⊗ ∇λ�,

where λi are the barycentric coordinates associated with the tetrahedron K , the subindices
being computed mod 4. The set Sk(K) is the space of vector-valued homogeneous polyno-
mials v of degree k such that v · x = 0 [15].

In the two dimensional case, the postprocessing is defined by the above equations if
∇ × u is replaced by ∇ × u := ∂1u2 − ∂2u1, and if (10d) is replaced by

(∇ × u�
h − ωh,wbK)K = 0, ∀w ∈ Pk−1(K),

where bK := λ0λ1λ2 and ωh := L21h − L12h.
We use the same postprocessing for the HDG solution of the velocity-pressure-vorticity

formulation and of the velocity-pressure-stress formulation. To this end, we only need to
define an approximate gradient Lh. On each simplex K ∈ Th, we take Lh to be the element
of Pk(K) defined by

(Lh,G)K = −(uh,∇ · G)K + 〈̂uh,Gn〉∂K , for all G ∈ Pk(K). (11)

Here the approximate velocity uh and its numerical trace ûh are computed by using the
vorticity-based HDG method or the stress-based HDG method.

For the three methods, the postprocessed velocity u�
h is well defined, belongs to

H (div,�), and is divergence-free; see [8].

3 Practical Implementation of the HDG Methods

In this section, we describe in detail how to implement the HDG methods via the augmented
Lagrangian approach; see [12] and the references therein. The augmented Lagrangian ap-
proach renders the implementation of the HDG methods simple and efficient. The main ad-
vantage of this approach is that it eliminates the mean of pressure. However, this advantage
comes with solving iteratively for the degrees of freedom of the velocity.

We shall focus our attention on the HDG method for the velocity-pressure-vorticity for-
mulation. The implementation procedure for the other HDG methods can be carried out in
a similar way; see [16] for additional details.

3.1 Augmented Lagrangian Approach

The augmented Lagrangian [12] is widely used for solving the steady incompressible
Navier-Stokes equations. In this method the steady solution is computed as the asymptotic
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limit of a time-dependent solution of an evolution problem as time goes to infinity. We first
introduce an artificial time derivative to the continuity equation as follows

∂p(t)

∂t
+ ∇ · u(t) = 0, in � × (0,∞),

p(t = 0) = 0, in �,

where u(t) is a function of p(t) and defined as the solution of

w − ∇ × u = 0, in �

ν∇ × w + ∇p = f , in �,

u = g, on ∂�.

Note that, since ∈∂� g · n = 0, the mean of p(t) over � is equal to 0 at all times t ≥ 0.
Next, given a constant time step �t and a pressure pn−1

h for n ≥ 1 with p0
h = 0, we define

the iterate (wn
h,u

n
h,p

n
h, û

n
h) ∈ Wh × V h × Ph × Mh(g) as the solution of

(wn
h, r)Th

− (un
h,∇ × r)Th

− 〈̂
un

h, r × n
〉
∂Th

= 0,

(νwn
h,∇ × v)Th

− (pn
h,∇ · v)Th

+ 〈
νn × ŵn

h + p̂n
hn,v

〉
∂Th

= (f ,v)Th
,

1

�t
(pn

h, q)Th
− (un

h,∇q)Th
+ 〈̂

un
h · n, q

〉
∂Th

= 1

�t
(pn−1

h , q)Th
,〈

νn × ŵn
h + p̂n

hn,μ
〉
∂Th

= 0,

(12a)

for all (r,v, q,μ) ∈ Wh × V h × Ph × Mh(0), where

νn × ŵn
h + p̂n

hn = νn × wn
h + pn

hn + S(un
h − ûn

h), on ∂Th. (12b)

We stop the iterations when the relative error of the pressure is less than a prescribed toler-
ance εtol, that is, when

‖pn
h − pn−1

h ‖Th

‖pn
h‖Th

< εtol. (13)

It is easy to show, see [16], that the sequence (wn
h,u

n
h,p

n
h, û

n
h) converges exponentially in

time to the original HDG approximation (wh,uh,ph, ûh) introduced in Sect. 2. It remains
to describe how to solve the above system (12).

3.2 Implementation Considerations

Here, we show how the only globally coupled variable needed to solve for (wn
h,u

n
h,p

n
h, û

n
h) is

ûn
h. We proceed as in Sect. 2.3. For any given positive number �t , we define the local solver

L�t as the operator that maps (f ,η, θ) ∈ L2(�) × Mh(g) × Ph to (w�,�t
h ,u�,�t

h ,p
�,�t
h ) ∈

Wh × V h × Ph, solution of

(w�,�t
h , r)K − (u�,�t

h ,∇ × r)K = 〈η, r × n〉∂K ,

(ν∇ × w�,�t
h + ∇p

�,�t
h I),v)K

+
〈
Su�,�t

h ,v
〉
∂K

= (f ,v)K + 〈Sη,v〉∂K ,

1

�t
(p

�,�t
h , q)K − (u�,�t

h ,∇q)K = 1

�t
(θ, q)Th

− 〈η · n, q〉∂K ,

(14)
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for all (r,v, q) ∈ Pk(K) × Pk(K) × Pk(K) and each K ∈ Th. We then set

(wf ,�t

h ,u
f ,�t

h ,p
f ,�t

h ) := L�t (f ,0,0),

(wη,�t

h ,u
η,�t

h ,p
η,�t

h ) := L�t (0,η,0),

(wθ,�t
h ,uθ,�t

h ,p
θ,�t
h ) := L�t (0,0, θ).

We then have, see Sect. 2.3, the following result.

Proposition 3.1 Let (wn
h,u

n
h,p

n
h, û

n
h) be the solution of (12). Then we have that

wn
h = wf ,�t

h + w
pn−1

h
,�t

h + wλn,�t
h ,

un
h = u

f ,�t

h + u
pn−1

h
,�t

h + uλn,�t
h ,

pn
h = p

f ,�t

h + p
pn−1

h
,�t

h + p
λn,�t
h ,

ûn
h = λn,

(15)

where λn is the only function in Mh(g) satisfying

c�t
h (λn,μ) = g�t

h (μ;pn−1
h ), ∀μ ∈ Mh(0), (16a)

where

c�t
h (η,μ) =

(
νwη,�t

h ,wμ,�t

h

)
Th

+
〈
S(u

η,�t

h − η), (u
μ,�t

h − μ)
〉
∂Th

+ 1

�t

(
p

η,�t

h ,p
μ,�t

h

)
Th

,

g�t
h (μ;pn−1

h ) =
(
f ,u

μ,�t

h

)
Th

− 1

�t

(
pn−1

h ,p
μ,�t

h

)
Th

,

(16b)

for all η,μ ∈ Mh.

The weak formulation (16) gives rise to a system of equations of the form

A�n = Rn,

where �n represents the degrees of freedom for λn. To form A and Rn, we compute the
elemental matrices and vectors for all elements K ∈ Th as follows

A
K
ij = (νwμi ,�t

K ,w
μj ,�t

K )K + 1

�t
(p

μi ,�t

K ,p
μj ,�t

K )K

+
〈
S(u

μi ,�t

K − μi ), (u
μj ,�t

K − μj )
〉
∂K

, 1 ≤ i, j ≤ N,

R
K,n
i = (f ,u

μi ,�t

K )K − 1

�t
(pn−1

h ,p
μi ,�t

K )K, 1 ≤ i ≤ N,

(17)

where (wμi ,�t

K ,u
μi ,�t

K ,p
μi ,�t

K ) := L�t (0,μi ,0) and N = (1 + d)n, where n := (k + d −
1)!/(k!(d − 1)!). Here, {μi}nm+n

i=1+nm is a basis of Pk(Fm) where Fm is the m − th face of K ,
for m = 1, . . . , d + 1. The solution procedure is summarized Table 1.
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Table 1 Implementation of the HDG method for the velocity-pressure-vorticity formulation

Implementation Steps

Step 1. Given εtol, pick �t and set n := 1.

Step 2. For every element K of Th, solve the local solver (14)

(w
f ,�t
K

,u
f ,�t
K

,p
f ,�t
K

) := L�t (f ,0,0),

(w
μi
K

,u
μi
K

,p
μi
K

) := L�t (0,η,0) for η := μi , 1 ≤ i ≤ (d + 1)dimPk(F ),

(w
ϕj

K
,u

ϕj

K
,p

ϕj

K
) := L�t (0,0, θ) for θ := ϕj ∈ Pk(K), 1 ≤ j ≤ dim Pk(K).

Step 3. Calculate A
K from (17) for every K ∈ Th to assemble the matrix A.

Step 4. Calculate RK,n from (17) for every K ∈ Th to assemble the vector Rn.

Step 5. Solve A	n = Rn, where 	n is the vector of degrees of freedom of λn.

Step 6. Compute (wn
h
,un

h
,pn

h
) according to (15) .

Step 7. If (13) does not hold, set n := n + 1 and go to Step 4.

Step 8. If it does, then stop.

3.3 Computational Complexity and Storage Requirement

Let us discuss the computational complexity and memory storage required by the HDG
method. The cost of the local solver per element is O(N3

u ), where Nu = dimPk(K). Hence,
the total cost of the local solver is O(NKN3

u ), where NK is the number of elements of the
triangulation.

Next, let us compute the number of degrees of freedom and describe the sparsity struc-
ture of the linear system (3.2), restricting our attention to the case of a conforming triangu-
lation Th (no hanging nodes). It is clear that the matrix A has a block structure with square
blocks of order equal to the dimension of Pk(F ) for each face F . The number of block
rows and block columns is equal to NF , where NF is the number of interior faces of the
triangulation. Furthermore, on each block row, there are at most (2d + 1) blocks that are
not equal to zero. Hence, the size of A is Ndof × Ndof and the number of nonzero entries of
K is NF (2d + 1)dimPk(F ), where Ndof = NF (d + 1)dimPk(F ). In general, the solution
of the linear system (3.2) will cost O(N

γ

dof) with γ ∼ 2 typically. Therefore, the computa-
tional complexity of the HDG method will be dominated by the cost of solving the linear
system (3.2) since the operation count of the local solver scales linearly with Ndof.

We end this section by noting that the gradient-based and stress-based HDG methods
produce a global matrix which has the same structure and size as the matrix of the vorticity-
based HDG method. Therefore, the three HDG methods have the same computational com-
plexity and storage requirement.

4 Numerical Results

4.1 Example with Smooth Solution

We consider the Stokes problem whose exact solution coincides with the analytical solution
of the incompressible Navier-Stokes equations obtained by Kovasznay in [13], namely,
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u1 = 1 − exp(λx1) cos(2πx2),

u2 = λ

2π
exp(λx1) sin(2πx2),

p = 1

2
exp(2λx1),

where λ = Re
2 −

√
Re2

4 + 4π2 and Re = 1
ν

is the Reynolds number. We take Dirichlet bound-
ary conditions for the velocity as the restriction of the exact solution to the domain boundary.
Here the computational domain is � = (−0.5,1.5)× (0,2) and ν = 0.1 so that the Reynolds
number is Re = 10.

In our experiments, we consider meshes that are refinements of a uniform mesh of 32
(h = 1/2) congruent triangles. Each refinement is obtained by subdividing each triangle into
four congruent triangles. We say that the mesh has level � (h = 1/2�+1) if it is obtained from
the original mesh by � of these refinements. On these meshes, we consider polynomials of
degree k to represent all the approximate variables using a nodal basis within each element,
with the nodes uniformly distributed. In all cases, the stabilization tensor S is chosen as

S = ν

(
τ 0
0 τ

)
,

where τ is some positive constant defined on Eh. Here we choose ντ = 1. Below we compare
the convergence and accuracy properties of the HDG methods. We use superscripts G, S, and
V to indicate the approximate solution computed by the gradient-based, stress-based, and
vorticity-based HDG methods, respectively.

We present a history of convergence of the HDG methods in Tables 2 to 4. We observe
from Tables 2 and 3 that all the approximate variables converge with the optimal order k + 1
for all the methods. However, the gradient-based HDG method is superior since it yields
smaller errors than the other two methods. Moreover, as shown in Table 4, the postprocessed
velocity of the gradient-based HDG method converges with order k + 2 for k ≥ 1, while that
of the vorticity HDG method converges with order k + 1 only. It is interesting to note from
Table 4 that the postprocessed velocity of the stress-based HDG method converges with
order k + 1 for k = 0, 1, 3, but tends to converge with order k + 2 for k = 2, 4.

To visualize the effect of the local postprocessing, we show in Fig. 1 the original and
postprocessed horizontal velocities of the three HDG methods for k = 2 on the same mesh.
Figures 2–4 display the original, postprocessed, and exact horizontal velocities along the
line x = −0.4. We observe that our local postprocessing is not effective for the vorticity-
based HDG method since it does not really improve the approximation of the velocity
in this case. However, our local postprocessing is very effective for the stress-based and
gradient-based HDG methods since the postprocessed velocity is clearly superior to the
original velocity. We should also note that the postprocessed velocity is divergence-free and
H (div)-conforming, whereas the original velocity is not.

Finally, we look at the effect of the artificial time step �t on the condition number of the
stiffness matrix and the number of iterations required to reach the error tolerance εtol = 10−8.
We define the condition number ratio R as

R := C

(1 + �t/ν)(k + 1)h−2
, (18)

where C denotes the condition number of the stiffness matrix, which is the ratio of the
largest singular value of the matrix to the smallest singular value. We report in Table 5 the
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Table 2 History of convergence of the approximate velocity and pressure for the Stokes problem with
smooth solution

Degree Mesh ‖u − uG
h

‖Th
‖p − pG

h
‖Th

‖u − uS
h
‖Th

‖p − pS
h
‖Th

‖u − uV
h

‖Th
‖p − pV

h
‖Th

k h−1 error order error order error order error order error order error order

0 2 2.06e-0 – 1.35e-0 – 1.94e-0 – 1.46e-0 – 2.43e-0 – 1.14e-0 –

4 1.56e-0 0.40 5.75e-1 1.23 1.43e-0 0.44 8.42e-1 0.79 2.03e-0 0.26 3.79e-1 1.59

8 7.19e-1 1.12 4.82e-1 0.25 6.57e-1 1.12 7.33e-1 0.20 1.10e-0 0.88 2.17e-1 0.81

16 3.34e-1 1.10 2.66e-1 0.86 3.17e-1 1.05 3.90e-1 0.91 5.71e-1 0.95 1.21e-1 0.84

32 1.58e-1 1.08 1.44e-1 0.89 1.54e-1 1.04 1.97e-1 0.98 2.89e-1 0.98 7.17e-2 0.76

1 2 9.55e-1 – 9.36e-1 – 9.61e-1 – 1.08e-0 – 1.08e-0 – 1.04e-0 –

4 2.51e-1 1.93 2.87e-1 1.71 2.46e-1 1.97 3.28e-1 1.72 4.81e-1 1.16 4.14e-1 1.33

8 6.61e-2 1.93 7.85e-2 1.87 6.54e-2 1.91 9.14e-2 1.85 1.36e-1 1.82 1.28e-1 1.70

16 1.62e-2 2.03 2.01e-2 1.97 1.62e-2 2.01 2.42e-2 1.92 3.55e-2 1.94 3.67e-2 1.80

32 3.98e-3 2.02 5.04e-3 1.99 4.03e-3 2.01 6.24e-3 1.95 9.07e-3 1.97 1.02e-2 1.85

2 2 2.31e-1 – 2.27e-1 – 2.32e-1 – 2.54e-1 – 4.46e-1 – 4.22e-1 –

4 3.47e-2 2.74 3.77e-2 2.59 3.46e-2 2.74 4.34e-2 2.55 4.69e-2 3.25 4.33e-2 3.28

8 4.21e-3 3.04 5.10e-3 2.89 4.21e-3 3.04 6.24e-3 2.80 5.56e-3 3.08 6.02e-3 2.85

16 5.26e-4 3.00 6.50e-4 2.97 5.26e-4 3.00 8.35e-4 2.90 6.92e-4 3.01 7.72e-4 2.96

32 6.54e-5 3.01 8.14e-5 3.00 6.54e-5 3.01 1.08e-4 2.95 8.72e-5 2.99 9.67e-5 3.00

Table 3 History of convergence of the approximate stress and vorticity for the Stokes problem with smooth
solution. Note for the gradient-based HDG method that σG

h
= LG

h
+ (LG

h
)T and wG

h
= LG

h
− (LG

h
)T

Degree Mesh ‖w − wG
h

‖Th
‖σ − σG

h
‖Th

‖σ − σS
h
‖Th

‖w − wV
h

‖Th

k h−1 error order error order error order error order

0 2 1.15e-9 – 1.71e-9 – 1.68e-9 – 1.11e-9 –

4 7.12e-0 0.70 1.16e-9 0.56 1.26e-9 0.41 7.64e-0 0.54

8 3.28e-0 1.12 7.92e-0 0.55 7.77e-0 0.70 3.60e-0 1.08

16 1.97e-0 0.74 4.82e-0 0.72 4.47e-0 0.80 1.89e-0 0.93

32 1.23e-0 0.68 2.79e-0 0.79 2.43e-0 0.88 9.76e-1 0.95

1 2 4.95e-0 – 8.02e-0 – 8.81e-0 – 5.21e-0 –

4 1.51e-0 1.72 2.68e-0 1.58 2.93e-0 1.59 2.7e-0 0.95

8 4.90e-1 1.62 8.39e-1 1.67 8.88e-1 1.72 8.74e-1 1.63

16 1.35e-1 1.86 2.32e-1 1.85 2.44e-1 1.87 2.44e-1 1.84

32 3.53e-2 1.93 6.11e-2 1.92 6.42e-2 1.92 6.56e-2 1.90

2 2 1.72e-0 – 2.24e-0 – 2.93e-0 – 3.3e-0 –

4 2.62e-1 2.72 3.73e-1 2.58 4.56e-1 2.69 4.33e-1 2.93

8 3.59e-2 2.87 5.33e-2 2.81 6.48e-2 2.82 4.79e-2 3.18

16 4.76e-3 2.91 7.20e-3 2.89 8.73e-3 2.89 6.13e-3 2.96

32 6.14e-4 2.96 9.35e-4 2.94 1.14e-3 2.94 7.71e-4 2.99
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Table 4 History of convergence of the approximate gradient and the postprocessed velocity for the Stokes
problem with smooth solution. Note that LS

h
and LV

h
are computed from (11)

Degree Mesh ‖L − LG
h ‖Th

‖u − uG,�
h ‖Th

‖L − LS
h‖Th

‖u − uS,�
h ‖Th

‖L − LV
h ‖Th

u − uV,�
h ‖Th

k h−1 error order error order error order error order error order error order

0 2 1.47e-9 – 2.25e-0 – 1.47e-9 – 2.26e-0 – 1.66e-9 – 2.49e-0 –
4 1.05e-9 0.48 1.23e-0 0.87 9.31e-0 0.66 1.14e-0 0.98 1.72e-9 −0.05 1.73e-0 0.52

8 6.75e-0 0.64 4.61e-1 1.42 6.32e-0 0.56 4.21e-1 1.44 1.81e-9 −0.07 9.14e-1 0.92

16 4.14e-0 0.71 2.00e-1 1.20 4.78e-0 0.40 1.98e-1 1.09 1.85e-9 −0.03 4.74e-1 0.95

32 2.45e-0 0.76 9.38e-2 1.09 4.10e-0 0.22 9.84e-2 1.01 1.86e-9 −0.01 2.40e-1 0.98

64 1.45e-0 0.75 4.59e-2 1.03 3.81e-0 0.11 4.95e-2 0.99 1.86e-9 0.00 1.21e-1 0.99

1 2 6.97e-0 – 5.25e-1 – 7.10e-0 – 5.46e-1 – 1.16e-9 – 8.07e-1 –

4 2.34e-0 1.57 1.01e-1 2.38 2.58e-0 1.46 1.10e-1 2.31 6.81e-0 0.77 4.43e-1 0.87

8 7.48e-1 1.65 1.68e-2 2.59 8.95e-1 1.53 1.98e-2 2.48 3.33e-0 1.03 1.19e-1 1.89

16 2.08e-1 1.85 2.39e-3 2.81 3.60e-1 1.31 3.91e-3 2.34 1.72e-0 0.95 3.08e-2 1.95

32 5.51e-2 1.92 3.21e-4 2.89 1.71e-1 1.07 9.04e-4 2.11 8.98e-1 0.94 7.84e-3 1.98

64 1.42e-2 1.96 4.18e-5 2.94 8.66e-2 0.98 2.24e-4 2.01 4.62e-1 0.96 1.98e-3 1.99

2 2 2.12e-0 – 1.03e-1 – 2.41e-0 – 1.15e-1 – 4.94e-0 – 4.38e-1 –

4 3.50e-1 2.60 1.19e-2 3.11 3.87e-1 2.64 1.23e-2 3.22 1.23e-0 2.01 4.24e-2 3.37

8 4.89e-2 2.84 8.20e-4 3.86 6.26e-2 2.63 9.44e-4 3.71 3.00e-1 2.03 4.91e-3 3.11

16 6.56e-3 2.90 5.56e-5 3.88 8.95e-3 2.80 6.69e-5 3.82 7.23e-2 2.05 5.89e-4 3.06

32 8.49e-4 2.95 3.62e-6 3.94 1.22e-3 2.87 4.51e-6 3.89 1.80e-2 2.00 7.37e-5 3.00

64 1.08e-4 2.97 2.31e-7 3.97 1.67e-4 2.87 3.03e-7 3.90 4.56e-3 1.98 9.35e-6 2.98

3 1 4.05e-0 – 3.16e-1 – 4.54e-0 – 3.43e-1 – 7.48e-0 – 9.78e-1 –

2 4.32e-1 3.23 1.78e-2 4.15 4.72e-1 3.27 1.89e-2 4.18 9.23e-1 3.02 4.46e-2 4.45

4 3.37e-2 3.68 8.39e-4 4.41 4.17e-2 3.50 9.74e-4 4.28 1.41e-1 2.71 3.92e-3 3.51

8 2.48e-3 3.77 3.24e-5 4.69 3.54e-3 3.56 4.35e-5 4.48 1.99e-2 2.83 2.78e-4 3.82

16 1.64e-4 3.91 1.09e-6 4.89 3.32e-4 3.42 2.19e-6 4.31 2.69e-3 2.89 1.82e-5 3.93

32 1.06e-5 3.96 3.53e-8 4.95 3.74e-5 3.15 1.29e-7 4.09 3.51e-4 2.94 1.16e-6 3.97

4 1 1.38e-0 – 1.09e-1 – 1.51e-0 – 1.14e-1 – 2.29e-0 – 2.31e-1 –

2 7.23e-2 4.26 2.53e-3 5.43 8.45e-2 4.16 2.89e-3 5.31 2.02e-1 3.50 1.15e-2 4.33

4 2.93e-3 4.63 6.45e-5 5.30 3.71e-3 4.51 7.25e-5 5.32 1.36e-2 3.89 3.28e-4 5.13

8 9.98e-5 4.87 1.10e-6 5.87 1.38e-4 4.75 1.33e-6 5.77 8.81e-4 3.95 1.00e-5 5.03

16 3.25e-6 4.94 1.81e-8 5.93 4.79e-6 4.85 2.30e-8 5.85 5.57e-5 3.98 3.17e-7 4.99

32 1.04e-7 4.97 2.9e-10 5.97 1.59e-7 4.91 3.82e-10 5.91 3.54e-6 3.98 1.01e-8 4.97

condition number ratio and in Table 6 the number of iterations for convergence as a function
of h, k, and �t for the gradient-based and vorticity-based HDG methods. We observe that
the matrix of the vorticity-based HDG method has a slightly smaller condition number than
that of the gradient-based HDG method. We also see that the condition number ratio is close
to 2 for most cases. As a consequence, we have that the condition numbers are close to

2(1 + �t/ν)(k + 1)h−2.

Moreover, both the HDG methods the number of iterations for convergence is quite similar,
relatively small, and independent of the mesh size h and polynomial degree k. We note that
the results obtained for the stress-based HDG method are similar to those obtained for the
gradient-based HDG method.
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Fig. 1 The horizontal component of the approximate velocity (left) and postprocessed velocity (right) ob-

tained using k = 2 on the same mesh: uV
h

(top left) and u
V,∗
h

(top right), uS
h

(middle left) and u
S,∗
h

(middle

right), and uG
h

(bottom left) and u
G,∗
h

(bottom right)
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Fig. 2 Comparison of the original horizontal velocity and postprocessed horizontal velocity along the line
x = −0.4 for the vorticity-based HDG method

Table 5 The condition number ratio R, see (18), as a function of h, k, and �t

Degree Mesh Gradient-based HDG method Vorticity-based HDG method

k h �t = 1 �t = 2 �t = 4 �t = 8 �t = 16 �t = 1 �t = 2 �t = 4 �t = 8 �t = 16

1 2 2.16 2.08 2.00 2.00 1.96 1.30 1.29 1.29 1.29 1.29

4 2.04 2.00 2.00 2.00 2.00 1.48 1.53 1.55 1.56 1.57

8 1.92 1.88 1.88 1.88 1.88 1.54 1.60 1.63 1.64 1.65

16 1.88 1.84 1.84 1.84 1.84 1.60 1.66 1.70 1.72 1.73

32 1.84 1.84 1.84 1.84 1.84 1.64 1.71 1.74 1.76 1.77

2 2 2.28 2.16 2.12 2.08 2.08 1.36 1.36 1.36 1.36 1.35

4 2.08 2.00 1.96 1.96 1.92 1.49 1.51 1.52 1.53 1.53

8 1.96 1.92 1.88 1.88 1.88 1.59 1.62 1.64 1.65 1.65

16 1.96 1.88 1.88 1.84 1.84 1.66 1.70 1.72 1.73 1.73

32 1.92 1.88 1.88 1.84 1.84 1.70 1.74 1.76 1.77 1.78

4.2 Example with Singular Solution

To study the limitations imposed by singularities of the geometry, we consider the L-shaped
domain � = �0\�1, where �0 ≡ (−1,1)×(−1,1) and �1 ≡ (0,1)×(−1,0) are the square
domains. Since � has a reentrant corner at the point (0,0), the exact solution is singular at
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Fig. 3 Comparison of the original horizontal velocity and postprocessed horizontal velocity along the line
x = −0.4 for the stress-based HDG method

Table 6 The number of iterations required for convergence as a function of h, k, and �t

Degree Mesh Gradient-based HDG method Vorticity-based HDG method

k h �t = 1 �t = 2 �t = 4 �t = 8 �t = 16 �t = 1 �t = 2 �t = 4 �t = 8 �t = 16

2 16 12 9 7 6 14 11 8 7 6

4 16 12 9 7 6 14 10 8 7 6

1 8 16 12 9 7 6 14 10 8 7 6

16 16 12 9 8 6 14 11 8 7 6

32 17 12 9 8 6 14 11 8 7 6

2 16 12 9 7 6 14 10 8 7 6

4 16 12 9 7 6 14 10 8 7 6

2 8 16 12 9 8 6 14 11 8 7 6

16 17 12 9 8 6 15 11 9 7 6

32 17 12 9 8 6 15 11 9 7 6

the origin. This example proposed in [18] has the exact solution

u1 = rλ
(
(1 + λ) sin(θ)�(θ) + cos(θ)�′(θ)

)
,

u2 = rλ
(−(1 + λ) cos(θ)�(θ) + sin(θ)�′(θ)

)
,

p = −rλ−1
(
(1 + λ)2�′(θ) + �′′′(θ)

)
/(1 − λ),



J Sci Comput (2010) 45: 215–237 235

Fig. 4 Comparison of the original horizontal velocity and postprocessed horizontal velocity along the line
x = −0.4 for the gradient-based HDG method

where

�(θ) = sin((1 + λ)θ) cos(ωλ)/(1 + λ) − cos((1 + λ)θ)

− sin((1 − λ)θ) cos(ωλ)/(1 − λ) + cos((1 − λ)θ),

with ω = 3π/2 and λ = 0.54448373678246. Here (r, θ) are the polar coordinates. Note that
the velocity gradient ∇u and the pressure p blow up at the re-entrant corner.

We present in Table 7 the history of convergence of the original and postprocessed ve-
locities for the three HDG methods. We observe that both the original and postprocessed
velocities converge with order at most 1 due to the singularity at the re-entrant corner. Com-
paring the results of the three methods we see that the gradient-based method yields the
smallest errors, while the vorticity-based method has the largest errors. These results con-
firm the superiority of the gradient-based HDG method for numerically solving the Stokes
system.

5 Conclusions

We have compared three different HDG methods for numerically solving the velocity-
pressure-gradient, velocity-pressure-stress, and velocity-pressure-vorticity formulations of
Stokes flow. All the present methods yield optimal convergence for the approximate vari-
ables. Moreover, they have the same global degrees of freedom and thus the same compu-
tational cost and memory storage. In terms of accuracy, our numerical experiments show
that the gradient-based HDG method is the best method since it provides the most accurate
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results and a postprocessed velocity which converges with order k + 2 for k ≥ 1. The stress-
based HDG method performs better than the vorticity-based HDG method and it yields a
postprocessed velocity converging with order k + 1 for k = 0,1, but tends to converge with
order k + 2 for k = 2,4. For the vorticity-based HDG method, the postprocessed velocity
converges with order k + 1 only.

The extension of this work to the numerical solution of the incompressible Navier-Stokes
equations will be presented in a forthcoming paper.
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