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Abstract

We present a general framework to compute upper and lower bounds for linear-functional outputs of the exact solutions
of the Poisson equation based on reconstructions of the field variable and flux for both the primal and adjoint problems. The
method is devised from a generalization of the complementary energy principle and the duality theory. Using duality theory, the
computation of bounds is reduced to finding independent potential and equilibrated flux reconstructions. A generalization of this
result is also introduced allowing to derive alternative guaranteed bounds from nearly-arbitrary H(div; {2) flux reconstructions
(only zero-order equilibration is required). This approach is applicable to any numerical method used to compute the solution.
In this work, the proposed approach is applied to derive bounds for the hybridizable discontinuous Galerkin (HDG) method.
An attractive feature of the proposed approach is that superconvergence on the bound gap is achieved, yielding accurate bounds
even for very coarse meshes. Numerical experiments are presented to illustrate the performance and convergence of the bounds
for the HDG method in both uniform and adaptive mesh refinements.

(© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In many applications in computational science and engineering, the numerical approximations are used to
accurately assess some target quantities or quantities of interest. That is, to provide information on specific features
of the true solution u, usually given by a linear functional s = £ (u). The approximations are computed using the
numerical solution u;,, namely s, = £°(u;). In this context, it is crucial to assess the quality of the approximated
outputs.
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Numerous advances in goal-oriented error estimation have been done in recent years. The most well-established
techniques provide approximations or bounds for the error in the computed numerical approximation £ (u)—£° (uy,)
and produce error indicators to drive goal-oriented mesh adaptivity, see for instance [1—11]. However, in practical
applications, two other parallel lines of research are worth mentioning. The first one consists of techniques
aimed at obtaining more accurate approximations of the quantities of interest [11-14]. In this case, the numerical
approximation u;, is used to either compute a new more accurate approximation i; yielding a more accurate
approximation for the quantity of interest §, = £° (ii;,) or to directly compute a better approximation for the quantity
of interest 5, = { O(uy,). The second line of research aims at the computation of certificates and guaranteed bounds
for the quantity of interest, see for instance [15-23]. Indeed, besides having an accurate approximation of the
quantity of interest (either £ (uy,), £°(ii}) or ZO(uh)) in decision-making processes, it is important to be able to
provide a guaranteed interval where the exact quantity of interest lies, that is, to guarantee that s € [s; , s; ] where
s, and s;’ should be fully computable, constant-free guaranteed upper and lower bounds. In this context, it is no
longer important to directly assess the error in the original approximation of the quantity of interest s — s, but
being able to compute a new improved approximation §; and providing a guaranteed bounding interval for the
exact output, [s,, s;’ ], containing both s and sj,. It is also desirable that the new approximation and the bound gap
s;” — s, converge faster than the original approximation.

The present work aims at addressing the computation of highly accurate approximations for the quantity of
interest and providing certificates for the exact value of the quantity of interest. In particular, although a general
framework for computing guaranteed bounds for quantities of interest is provided, accurate approximations for the
quantity of interest and associated guaranteed bounds are obtained from hybridizable discontinuous Galerkin (HDG)
approximations of the Poisson equation, where the superconvergence properties of the approximation are exploited
to obtain optimally convergent approximations and bounds for the quantity of interest. Also, goal-oriented error
indicators are provided to enhance the convergence of adaptive remeshing for non-smooth problems.

HDG methods have gained popularity in the last decade due to their reduced computational cost with respect to
classical discontinuous Galerkin methods while retaining superconvergence properties [24]. Also, a very attractive
feature is that a simple post-process of the solution yields equilibrated #(div; {2) approximations of the fluxes.
These fluxes are used to compute guaranteed bounds either for the energy norm or for quantities of interest [25,26].
In the present work, the superconvergence properties of the high-order HDG method presented in [27] are exploited
to achieve optimal convergence when approximating and certifying quantities of interest.

The paper is organized as follows: In Section 2, we introduce the model problem and notations for the quantities
of interest and adjoint problem. In Section 3, a general framework to compute guaranteed bounds for quantities of
interest by means of potential and equilibrated flux reconstructions is presented. In particular, Section 3.2 presents
an extension that allows both to compute bounds when non-polynomial data is present and to compute bounds using
simplified zero-order equilibrated reconstructions. Section 3.3 particularizes the expression for the bounds to high-
order projections of the flux reconstructions. Finally Section 3.4 presents an exact representation for the quantity
of interest allowing to enhance the bounds using lower bounds for the energy norm. In Section 4, we particularize
the results derived in Section 3 to the HDG method, providing both an accurate alternative approximation for the
quantity of interest and its associated guaranteed bounds. Section 5 shows the behavior of the proposed technique in
two numerical examples, and we present some concluding remarks in Section 6. The proofs of the most significant
results are presented in Appendices A-D.

2. Model problem

Consider the Poisson’s equation in a polygonal/polyhedral domain 2 C R? for d = 2 or 3,

-V.-wVu) = f in (2,
u = g, onlp, (1)
—vVu-n = g, only,

where the boundary 94?2 is divided into two disjoint parts Ip and I'y such that 92 = IpUIN, I'pNIy =Wand Ip
is a non-empty set. The data are assumed to be sufficiently smooth, that is, f € £>(12), 8y € LX), g, €CUDp)
and v € L>({2) is assumed to be strictly positive. Moreover, for simplicity, v is assumed to be piecewise constant
on subdomains of (2.



N. Parés, N.C. Nguyen, P. Diez et al. Computer Methods in Applied Mechanics and Engineering 386 (2021) 114088

The equivalent mixed formulation of (1) is

q = —vVu in {2,
V.- = in {2,
Z = f - 2
- gD on Ip,
qg-n = gy on I'y.

To introduce the weak form of (2), consider the test spaces W = H!(£2) and V = H(div; 2) = {v € L>(2),V v €
L£2(£2)}, and the integral inner products

(q,v)w=/q~vd(2 R (u,v)wzfuv df? and (u,v)y=/uvdF,
w w Y
o being a domain in R? and y being a domain in R?~!. The subscript e is omitted when w is the full domain 2.
Recall that for any o C (2, ¢ € H(div; {2) and w € W the following Green formula holds

(q. Vw)o +(V-q. w)y = (q -1, w)je. 3)
Then, the weak solution of (2) is (1, g) € VW x V such that

(V' 0) = @, V- 0) + (u, v -m)py = —(gp, v, YvEV,
—(g. Vw)+{q -n, w)r, = (f, w) — (g, W)ry Yw e W,

or equivalently
a(u,q; w,v) =lw,v) Y(w,v)eWxV, )
for
au, q; w,v) = (v"'q,v) = (u, V- ) + (u, v -n) g — (g, V) + (g - n, w) 5,
Lw, v) = (f, w) = (gp, V- 1)y, — (&> W)ry-
Remark 1. For any (#,g) € W x V and (w, v) € W x V it holds that
a(u,q:w,v) = (v"'q,v) + @, Vi) = (¢. Vw) + (g -1, w)r, — (v -1, u) 1y,
and in particular
a(w, v;w, v) = (v"'v, v) = v, ©)
where || - || denotes the energy norm in V.

We are interested in computing upper and lower bounds for linear functionals of the exact weak solution of (2)
of the form

s=0u, @)= uw)+g2.q-n)ry + (gl u)ry, (6)
for fO e L2(12), gl e L2(Iy) and g2 e C(Ip), namely, compute s, , s, € R such that
s, <5 =< s;r.

To compute the bounds, we introduce the corresponding adjoint problem, which in strong form reads:

¢ = —vVE& in {2,
vV.¢ = f9 in £2,

£ = g on Ip, ™
¢on = —g? on I'y.

Remark 2. The weak form of the adjoint problem is: find (£, ) € W x V such that
a(w,v; &, —8) =€%w,v) Y(w,v)eW x V. ®)
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3. Bounds for the quantity of interest from general non-orthogonal approximations

Upper and lower bounds for the quantity of interest can be computed given any equilibrated flux and potential
reconstructions of the primal and adjoint problem, usually obtained from discrete approximations (i, ;) and
G ») of (4) and (8) respectively. The complexity of computing the reconstructions and evaluating the bounds
strongly depends on: (1) the properties of the discrete approximations (i, §;) and (&, Zh), (2) the kind of data
associated with the primal and adjoint problems and (3) the desired accuracy of the bounds. This section presents
three different approaches to compute bounds for the quantity of interest s. The first approach recovers the bounds
by means of computing fully equilibrated fluxes, which in practice can only be used if the data are piecewise
polynomial functions. In the second approach, the bounds are recovered by relaxing the equilibration conditions on
the fluxes by means of introducing data oscillation errors. Finally, the third approach enhances the bounds using a
Helmbholtz decomposition.

3.1. Bounds from potential and equilibrated flux reconstructions
Let (iip, q;,) and (éh, E ) be two approximations of (4) and (8) respectively. The pairs (i, g,,) and (5;,, Z' ,) are said

to be potential and equilibrated flux reconstructions of the primal and adjoint problems if the following conditions
hold:

Potential reconstructions: iup, €W £, €W
up =gy on Ip §h=gDOOHFD

Equilibrated flux reconstructions: ¢, € V eV 9)
V.g,=fin Vg, =f%n0
g, -n =g, only Eh-n:—ggonFN

The next result shows that potential and equilibrated flux reconstructions allow computing constant-free bounds for
the quantity of interest s.

Theorem 1. Let (i1, q;,) and (&, ¢ ) be two potential and equilibrated flux reconstructions of the primal and adjoint
problems satisfying (9). Then

- . . - - . | N L~ ~
5 2 OG0 §) = 51+ vV IE, + VEN £ S0 @+ Vi), By - vVE) = 57 (10)
and therefore, the quantity of interest s is bounded by
_ - | = . 1 . . - ~
s > 5y = L0, §y) + 507 @, + vV, & = vVE) = SId, + vVl IZ, + vVEl
- . | - - 1 . . ~ ~
s <sy =L, §,) + E(V (@ +vVin), &, —vVE) + quh + vVl ig, +vVEll.
The proof of this result is included in Appendix A.

Remark 3. Eq. (10) should be interpreted as a shorthand expression for two equations where the & and F signs and
superscripts are linked (each equation obtained by picking all the top/bottom signs/superscripts). Namely, Eq. (10)
represents the two equations

U 1 SO - Lo - : -
+s = +0% G, §;) — Slgn + vVinlHig, + vVéll + v '@y +vVian), & —vVE) =+,

—s = =%y, §) — %Illt?h + Vil 18, + vVE Il — %(V’l(éh +oVi), &, —vVE) = =/
This notation is used throughout this paper.
Once the upper and lower bounds for the quantity of interest s are computed, one can compute the bound average
= 067 8 = 0, @) + 507 @y + vV, 8, — vV,

4
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and the bound gap
Ay =5t =5, = 1§, + vVl 1T, + vVEI. (11)

The bound average 5, is seen as an estimate of the output s. Its error with respect to s can be easily bounded since

1
[s — sl < EA}" (12)

Remark 4. Theorem 1 states that guaranteed upper and lower bounds for quantities of interest may be computed
from any potential and equilibrated flux reconstructions satisfying (9). Note that throughout this section and
Appendix A, these reconstructions (i, ;) and (&, ¢ ) are denoted using a subscript &, because they are usually
computed from discrete approximations. However, the result presented in Theorem 1 is general and therefore is
valid for any reconstructions (i, §) and (£, &) € W x V satisfying (9).

Remark 5. The use of potential and equilibrated flux reconstructions to compute bounds for quantities of interest
using Eq. (12) is not new, see for instance [7,28-31] and the references provided therein. For instance, Mallik
et al. [8] have recently presented a result similar to Eq. (12), but excluding the case of non-homogeneous Neumann
boundary conditions. The derivation of the existing results rely on the use of algebraic manipulations and reiterated
use of the Cauchy—Schwarz inequality or on Prager—Synge type equalities, instead of the reformulation of the output
of interest as a constrained minimization problem, see Appendix A. The new approach introduced here enables the
derivation of the three improvements described in the forthcoming sections and the extension of this approach to
other problems.

3.2. Bounds from potential and zero-order equilibrated flux reconstructions

For non-polynomial data, it is not possible in general to find reconstructions satisfying (9), and therefore (10)
cannot be used to compute guaranteed bounds for the output. Fortunately, we can employ the techniques described
in [20,22,23,32] to recover bounds for the energy from projected equilibrated flux reconstructions by means of
introducing data oscillation errors [33-36].

Let 7, be a collection of d-dimensional non-overlapping and non-degenerate simplices K that partition {2, such
that the intersection of a distinct pair of elements is either an empty set or their common node, edge or face (in three
dimensions). Let &, denote the set of all its facets e, and define T} : L2(K) — P?(K) and II : L2(e) — PP(e)
to be the £2(K) and L£?(e)-orthogonal projection operators onto P?(K) and P?(e), respectively. Finally, assume that
Ty is such that the data v is constant in each element K, that is v|x = vg € R.

Then, the pairs (i), (}2) and (&, 22) are said to be potential and zero-order equilibrated flux reconstructions of
the primal and adjoint problems if the following conditions hold:

Potential reconstructions: up € W £, €W
ip =g, on I'p §h=gDO on Ip
Zero-order equilibrated flux reconstructions:
it <v i "
VKeT,  (Vo@Dx=(fDk (V& Dk =(f°

~ ~0
Vee & NIN (G, n e = (8.1 (5, n 1) = (g2 1),

Note that the relaxation of the equilibrium conditions affect only fluxes, and that the conditions on the potentials are
not weaker than in (9). Assuming that the conditions on the potentials i, and £, are exact is not a strong restriction
because any approximation can be easily modified on the Dirichlet boundary to exactly satisfy the Dirichlet boundary
conditions. This simplified approach can be considered here since the potential and flux reconstructions necessary
to compute the bounds for s are completely independent, as opposed to what occurs in other existing more involved
approaches, see for instance [20].
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If the bounds for the output are computed using zero-order equilibrated fluxes, the bounding property presented
in (10) is lost in general. The next result, proved in Appendix B, introduces a workaround to replace the exactly
equilibrated fluxes reconstructions by its zero-order peers by means of introducing data oscillations errors. Indeed,
constant-free bounds for the quantity of interest s can be computed from potential and zero-order equilibrated flux
reconstructions.

Theorem 2. Let (i), (}2) and (&, Z‘g) be two potential and zero-order equilibrated flux reconstructions of the primal
and adjoint problems satisfying (13) and « € (0, 400) be an arbitrary scaling parameter. Then

i 3 ~ N .
=) > :l:(fov I/th) + (glfl)’ uh)FN + (fs gl’l) + (gN’ éh)FN + (VVuh, Véh) - 4_ Z (n(l)($)21 (14)
K KeTy
for
_ ~0 .
0 = £ @)+ vVE) — k@) + PVinlly + Crog ‘”n £ (fO=V-8) —c(f =V -aDl )
+ Y g I F GO+ E, ) — k(g — Wl 2, (15
ecI'NNOK
where || - || p2xy and || - || z2(, denote the L2(K) and L*(e) norms in R respectively, || - ||x is the restriction of the

energy norm defined in (5) to element K and the values for the constants Cy and C, are given in Appendix B,
Eq. (B.7).

Remark 6. The bounds provided in expression (14) coincide with the bounds introduced in (10) if (]2 = q, and
22 = Z‘h are exact equilibrated flux reconstructions and one considers K = kopy = |||Z'h +VVE, /Mg, + vVig]l.

Remark 7. The bounds given by (14) are less accurate than the previously introduced in (10) since they rely
on the local Poincaré inequality, a trace inequality and reiterated applications of the Cauchy—Schwarz inequality.
Therefore, if possible, the a posteriori error estimation technique should minimize the data oscillation errors included

. ~0 ~ ~0 -
in | £(f0=V-8)—c(f = Vgl and | F @0+, -n) —k(gy — @, - Wl 2)-
3.3. Bounds from potential and projected equilibrated flux reconstructions

In order to minimize the influence of the data oscillation errors and to obtain computable expressions for the
equilibrated flux reconstructions if the data for the problem are not piecewise polynomial fields, it is standard to
introduce an intermediate step between the generally uncomputable exact equilibrated fluxes given by (9) and the
zero-order equilibrated fluxes given by (13). Indeed, (i, §;,) and &n, ¢ h) are said to be potential and projected
equilibrated flux reconstructions of the primal and adjoint problems associated with the constant pair (p, p) if the
following conditions hold:

Potential reconstructions: u, € W éh ew
i =g, on Ip & = gg on Ip
Projected equilibrated flux reconstructions: é” ey E Z ey (16)
VK €T, Vegrxk=1Lf V-&ylx=1Lf°
Vee& NIy G -nl.=0lg, &, -nl.=—1'g?

In this case, bounds for the quantity of interest are obtained from (14) where now the local elementary contributions
read

ngr =+ &) +vVE) — k@) + vVl + Crvg I £ (f0 = I £O) — k(f — T Pl ok
+ Y O P F S - 11780) — k(gy — 178 2o (17
ecI'NNOK

and moreover, if p and p are greater or equal than degree{&,} then

(O i) £ (g0 itn) ry £ (f. &) F (8- En) ryy F WVl VE) = €0y, §7) F @) + vViin, VE)
6
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yielding the alternative form of the bounds

~ o~ ~ T ~ = 1
5 2 £00 G, ) F @) + Vi, VE) = - 3 05 (18)
KeTy

Remark 8. Finding the optimal value of x minimizing the bounds given in (14) either for the expression of the local
estimate ng given (17) or (15) is not trivial. Therefore, it is usual to use the value k = |||l:';r +vVELN/NG, + vVl
or k = || nt V&I / |||¢§2 + vVii, || that optimizes the bounds assuming that no data oscillation errors are present.

Remark 9. Computing bounds for quantities of interest from zero-order or projected equilibrated flux recon-
structions is useful when non-polynomial data are present in the problem. Being able to choose the interpolation
degrees p and p associated to the flux reconstructions can help reduce the cost of computing the bounds, see for
instance [34,35,37].

3.4. Exact representation for the quantity of interest — enhancement of the bounds using lower bounds for the
energy

To improve the quality of the bounds given in the previous sections, the following result providing an exact
representation for the quantity of interest can be used, see Appendix C for its proof.

Theorem 3. For any (i, q;) and & p) in W x 'V and k € (0, +00) the following exact representation for the
quantity of interest holds

] > . i
ts = £+ lleg —vVelllT + @, £(f7 =V &) —x(f =V 4y)

i _ (19)
- <M, :‘F(gg + ;h : n) - K(gN - qh 'n) 'n)FN - (q -n, :F(gg - Eh) _K(g[) - ﬁh))FD7

where
A P e ” a 1 ¢ £ q 7
x5, = 205, —&,) + Ly, q;,) — @III (&, +vVE) —k(q, — vVuh)|||2,
and e = F(§ — &) — k(u — iiy) and e, =+ — &) — k(g — )

Remark 10. In the case where (iip, g;,) and (&, Z ») In W x 'V are potential and equilibrated flux reconstructions
of the primal and adjoint problems, §,; coincides with 5,7, expressed in two different forms in Eqgs. (B.1) and (B.2).

Many a posteriori error estimation techniques can be derived from this exact representation of the quantity of
interest. For instance, it is possible to devise error estimators incorporating possible errors in the Dirichlet boundary
conditions, error estimators incorporating the data oscillation errors outside §;7 in contrast to the strategy described
in Section 3.2, or error estimators incorporating the term |||e;,F — vVe;le2 in the final bounds.

Here, this expression is only used to introduce two enhancements of the bounds. The first error estimation
technique derived from Theorem 3 is summarized in Remark 11. This technique mimics the standard expression
used in a posteriori error estimation to compute bounds for quantities of interest for standard Galerkin orthogonal
finite element approximations. That is, it allows obtaining bounds for the quantity of interest by means of computing
upper and lower bounds for the energy norm.

Remark 11. Let i, and &, be two potential reconstructions of u and & respectively and consider g n=q=—vVu
and ¢, = { = —vVE&. Noting that in this case §;7 = s;7, so that §; can be rewritten as shown in Eq. (B.2), the
exact representation for the quantity of interest (19) yields after some rearrangements to

ds =(fOidn) £ (0, i) ry £ (f &) F (8x» &) ry F WV, VE)
1 ~ 1 -
~ 7 IWVE =& F @ - G+ — vV E — & £ — @)l
K 4k
7

(20)
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and therefore bounds for the quantity of interest may be recovered computing upper and lower bounds for the energy
norm of the adequate combined primal/adjoint problems as

+s > T(fo, in) £ (g2, iin) ry = (f, En) :|:1<ng &) ry F WVitn, VE)
— vV — & F i — in)llos + TV — & i - i)t .

In fact, expanding the norms appearing in Eq. (20) allows obtaining the following exact expression for the quantity
of interest

s = (O i)+ (82, iin)ry + (f+ &n) — (8x» En) iy — WViin, VE) + WV (E — &), V(u — i) (22)

from where Eq. (20) is recovered back using the standard parallelogram identity applied to the last scalar product.

ey

The second technique devised from Theorem 3 incorporates the error in the term |[lej — vVe;f|||2 in the final
expression of the bounds. For simplicity of presentation, this technique is only described assuming that no data
oscillation errors are present, that is, assuming it is possible to compute (i, g,) and (§;, ¢,) being potential and
equilibrated flux reconstructions of the primal and adjoint problems satisfying (9). In this case, the quantity of
interest is rewritten using Eq. (19) as

1 2 1 2
+s =57 + @Hlej — vVe;cHl > 457 + Emej — vVe;leLB, (23)
and therefore, the bounds can be improved by introducing a lower bound of the energy norm of e} — vVe;F. These
lower bounds are incorporated using the result detailed in Appendix D. Indeed, the following representation holds
1 LT (wF, ¥F))? 1 LT (wTF, ¥F))?
b —aFr osp L GETVR L 1 G@RDP
wrenl@y A VT + Vxy | 4 lvVw + Vx| (24)

yFe[H(2)2d-3
for any wF € Hj(2), yF € [H'(2)]*'—3, where
G, ¥F) = F07'C, +vVE), vV + Vi F) — k(v (@, + vVin), vVwT — VxyT)

and V x denotes the standard curl operator, see [38].

4. Bounds for the quantity of interest using the hybridizable discontinuous Galerkin method

This section details how to compute bounds for a quantity of interest using the HDG method introduced in [27]
as a means to obtain the approximations (i, q,) and (§h, Z‘ ») In W x 'V of the primal and adjoint problems. For
simplicity, only the construction of the potential and equilibrated flux reconstructions for the primal problem are
described. The constructions for the adjoint problem are analogous.

4.1. Notations and HDG approximation

To introduce the HDG approximation of (4), some notations have to be introduced, see [27].

Let 7, be a disjoint partition of {2, see Section 3.2, and consider the set of all its facets &, = £, U E,? , where
&} consists of the facets lying on the boundary 92, and £ are the remaining interior facets. Also denote by 37},
the mesh skeleton {0K : K € 7,}.

Given two elements Kt and K~ of 7, sharing a common facet e = K™ N3dK~ € &7, let n™ and n~ be the
outward unit normals to K and K, respectively, and let (g%, u™) be the traces of (g, ) on e from the interior
of K*, that is g% = q|g+ and ut = u|g+. Then, we define the mean values {{-}} and jumps [-] as follows. For
e=0KTNAK~ €&, we set

figh =@ " +q97)/2 ful =@t +u")/2
g - rl=q" -nt+q -n~ [unl=utnt+un",

whereas for e € E}l’, the set of boundary facets on which ¢ and u are single valued, we set

lab=q . {ul=u , lg-nl=q-n , [un] =un,
8
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where n is the outward normal to df2. Note that the jump in u is a vector, but the jump in ¢ is a scalar which only
involves the normal component of ¢. Furthermore, the jump will be zero for a continuous function.
The discontinuous finite dimensional spaces W/ and V! are defined by

WP ={w e L2(2): wlx € PP(K) VK € Tp},
V), ={v e LD : vk € [PP(K)) VK € Ta),
My = {p € L2(E) : pl, € PP(e) Ve € &},
M} (g,) = {n € My : pl, = I g, Ve € ) N I},
where PP(D) denotes the set of polynomials of degree at most p > 0 on D and II/ denotes the £> projection

defined in Section 3.2.
Finally, let

W vy =Y Woox . (&= D &Pk + (Vg =D (. v)e
KeTh KeTy, ec&),

for scalar or vector functions w, v defined on 7, ¢, p defined on 87, and wu, v on &,.
The HDG method seeks an approximation (u;, q,) € W;:’ X V,’l7 to the exact solution (u, g) € YW x V such that
for all K € 7},

v lg,, vk — up, V- )k + (@, v -n)yx =0 Yo e [PP(K)]

Py 25
—(@y. VW) + (@) - 1. W)k = (f. w)k v e PP(K), 22)
where the numerical traces are defined as

- Tt N - _ 1

_ + up + ] on .
Up s +_T_Mh ‘L’“‘—i;‘r_ h 7:4_;’_1;__“% 1 h
—~ _ + - 0
fl\h Sy T+ e L#xn1 on &, (26)
wy=1g, ., qy-n=q, n+tw,—I g,) on& NIp,
—~ - 1
q, n=1I"g, , uhzuh+;(qh~n—HePgN) on & N Iy,

and t is the strictly positive stabilization parameter which plays a crucial role on the stability, accuracy and
convergence properties of the HDG method, see for instance [27,39]. The stabilization function t is defined for each
element K € 7T so that T+ and T~ denote its restriction to elements K+ and K ~ respectively, namely 1% = 7|g=.
Note that for each facet e = KT NIK~ € &7, in general, r+|e =~ r’|e so that the stabilization parameter is
double-valued on &5.

As shown in [27], the distinctive feature of the HDG method is that both u;, and g, converge with the optimal
order p + 1 in the £2-norm. Moreover, it is shown that u;, and 7}, superconverge with order p + 2 to some L2-like
projections of the exact variable u. As a consequence, a post-processing of the approximate solution provides an
approximation of the potential converging with order p 4+ 2. We can see from (26) that the HDG method belongs
to a family of DG methods whose numerical traces are of the form

up = funl} — Crollupnll + C2llgy, - nll  on &7,
q, =g, + Ciallg), - nl + Cii[lupnll  on &,

where the penalization parameters are such that |C ;| is finite, C}; > 0, and Cy; > 0. This family of DG methods
were studied first in [32] and more thoroughly in [40,41], wherein it was shown that if one chooses Cy» ~ 1/Cyy,
then both u;, and g, converge in £?-norm with the optimal order p + 1. Since the HDG method satisfies this
condition for any value of T such that T+ = 7~ > 0, the method possesses the optimal and superconvergence
properties as mentioned above. Note that, for some other DG methods such as the LDG method [32] with Cy, = 0,
the approximate flux g, converges with order p in £2-norm, which is suboptimal. Furthermore, one can show that
the HDG method is consistent, adjoint consistent, and locally and globally conservative by following the analysis
given in [42,43].

Remark 12. The weak problem given by (25) and (26) is equivalent to the following alternative weak formulation:
find (uy, g,) € W} x V¥ such that
andg(tn, g3 W, V) = Lhag(w, V) Y(w,v) € W x V) 27
9
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where
ahdg(ua q;w, 'I)) = (Vﬁlq’ 0)771 - (ll, V. 1))771 - (Q» VLU)771 + (ﬁ’ v- n>37—h\FD + (iI\ n, w>37—h\FN
ehdg(wv v) = (fv w)'Th - (gDﬂ v- n)FD - (ng w)FN-

Moreover, if (u, q) is the solution of (4) and (w, v) € W x V then,

1
andg(u, g; w, v) = a(u, ¢; w, v) + ;(gN —Ilgy,v-n)py+7(g, — g, w)r,

and £nge(w, v) = €(w, v), and since W/ ¢ W, VI ¢ V, the approximation (u;, g,) € W/ x V) can be seen as a
non-conforming approximation of the exact solution (1, g) € WW x V such that

1
angg(U, ¢; w, V) = hgg(w, v) — ;(gN —lg.,v-n)pr,—ti{g, — g, wr, Y(w,v) e W x V.

Remark 13. The numerical traces %, and g, defined in (26) are single-valued functions for each edge e € &7 and
verify @, -n| = S gy Unlry, = 11 g,,. Moreover, from Eq. (25) it holds that for all K € 7,

(’q\h - n, l>0K = (f7 1)K (28)
4.2. HDG projected equilibrated flux reconstruction

As described in [27], thanks to the single-valuedness of the normal component of the numerical trace g, and
using (28) it is possible to recover a projected equilibrated flux reconstruction g, € V using an element-by-element
procedure and converging in an optimal fashion. Indeed, let RT?(K) = [PP(K )]¢ +x PP(K) be the Raviart—-Thomas
finite element space of order p, see [44—46], and let §; € V be the post-processed flux defined in [27], namely for
each element K € 7Tj,, &Z|K € RT? is such that

(@, —q,)  n,u)e=0 VYuePP(e) , Veedk,

@ —qnvxk=0  YoelP (K1 . ifp>l (29

Then, the projected conditions (16) are satisfied for p = p = p. This is proven by letting w € PP(K) and u € P?(e).
Since Vw e [PP~1(K)]? and w|, € P”(e), using Eq. (3) with @ = K, and Eqs. (29), (25) and (26) it holds that

(Vg wk =(q, -n whak — (@, Vwk
= (g, -n, whk — (q,, Vwx = (f, wk = (1§ f, w)k
and

@y e =@, n pwe= g me foreedknly,
which concludes the proof using that V - §; € PP(K) and G, - n € P (e).

4.3. HDG potential reconstruction

A potential reconstruction i, is computed taking into account the single-valuedness of the numerical trace i,
or alternatively, by simply averaging u,. However, the equilibrated projected flux reconstruction §; converges
with order p + 1, and therefore optimal convergence for the quantity of interest is only achieved if the potential
reconstruction i, superconverges with order p+2. Luckily, the post-processed scalar variable u} € W/ *1 introduced
in Section 4.2 of [27] can be used to achieve this desired superconvergence, namely

(Vul, Vg = (V- g7, wix — (@7 -n,whx  Ywe WS,
Wi, Dg = (up, Di.

It is shown in [40,47,48] that the post-processed solution u} converges with order p 4 2 owing to the fact that ¢,
converges optimally with order p + 1 and that the cell average of u; converges with order p + 2. Note that since
uj is discontinuous, it is not suitable for computing bounds.

Then the continuous potential reconstruction i, € W/ AW is recovered using a simple averaging of uj, at
the element interfaces and exactly enforcing the Dirichlet boundary conditions. Recall that the condition regarding

(30)

10
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the values of i, on Ip is exact, namely i, = g, on Ip (16). Therefore, on the edges e € E;;’ N I'p for which
& |€ € PP*1(e), the nodal values of it lying on I'p are modified to match gp- Otherwise, local extension operators
are used to exactly enforce the boundary conditions.

4.4. Local optimization of the bounds

The quality of the bounds for the quantity of interest is measured using the bound gap introduced in (11).
Therefore, the optimal reconstructions are the ones minimizing ||, + vVii,||. Thanks to the single-valuedness of
the numerical traces %y, and g, one could recover i, € W and §, € W verifying (16) by first averaging uy, at the
mesh vertices and then using a constrained local optimization procedure in each element. This strategy, however,
does not provide optimal convergence for the quantity of interest because it does not recover a superconvergent
potential reconstruction i,.

However, once the flux and potential reconstructions are obtained using the strategies described in Sections 4.2
and 4.3, an extra local minimization procedure can be performed in each element to improve the bounds. Indeed, let
ip € YW and c]Z € V be the reconstructions defined in the aforementioned subsections. Then for each element of the
mesh, the improved value for the reconstructions is computed as: find i |, € PPHI(K) and (§7)* | « € [PPH(K)?
minimizing [|(g;)* + vV, such that

V@) =I1gf inkK
@) -n=gq; -n ondkK
Uy =iy on 0K.
It is worth noting that this improvement is only relevant for large values of p where the degrees of freedom are not

concentrated on the boundaries. Also, the local interpolation degree of i} and (g )*|, could be increased but no
gain on the global convergence would be obtained.

&k

4.5. Bounds for the quantity of interest

A summary of the procedure devised above to determine the bounds for s from HDG approximations of the
primal and adjoint problems is shown in Fig. 1.

Following this procedure, since the data oscillation errors are of high order, the convergence of the half bound
gap is governed by

Ay =5 =5, ~ &, +vVEINIGE + vViill, 31)

and therefore the convergence of the strategy is directly related to the convergence of both ||g, + vVii,|| and
e Tt vVE,||. For smooth problems, the error in the HDG reconstructions converges as p + 1, and therefore the
bound gap is expected to converge with order 2(p + 1). It is worth mentioning that the strategies introduced in
Section 3 yielding a convergence of the bound gap driven by the errors in the reconstructions, like (31), can also
be used in other contexts to yield fast-converging bounds for quantities of interest. For instance, in a standard finite
element setting, it is standard to use a finer discretization for the adjoint problem, aiming to decrease the term
|||Z' n+ vV§h|||. This strategy could also be easily used in the present context where the convergence of the bound
gap would be p+ p+2, p being the interpolation order of the adjoint problem. Another existing strategy to increase
the accuracy of the adjoint problem is the use of handbook functions, see [13,29,49-51]. Finally, any technique able
to compute better reconstructed approximations would also improve the order of convergence, see for instance [12].
The cost of the overall error estimation procedure for quantities of interest is basically twice the cost of computing
the HDG approximation since both the primal and adjoint solutions have to be computed. Indeed, the element-by-
element computation of the post-processed solutions associated to the initial HDG approximations necessary to
compute the bounds for the quantities of interest is a standard step included in most HDG solvers, see [52,53] for
specific details on CPU costs for the HDG solvers. The only specific computations required to compute the bounds
are: (1) the smoothing of u}, and & € W,f' 1 and (2) the cost of computing the local indicators 7%~ and r;’,T(Jr which
require an extra loop on the edges of the mesh and an extra loop on the elements of the mesh respectively. In the
case of non-piecewise polynomial data, data oscillation terms are included in %~ and n%". These terms are not
standard in HDG solvers but are commonly computed in an posteriori error estimation setting, see [34,35,54,55].

11
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0.- Compute the HDG approximations of the primal and adjoint problems (uy,q,)
and (&, ¢,) € Wy x V¥ such that V(w,v) € Wi x V7

ahdg(uha qp;w, 1)) = fhdg(wa U) and ahdg(fh, Ch? w, U) = égdg(wv ’U)
where (£, (w,v) = (f9,w)7, — (99,v - n)ry, + (99, w)ry-

1.- Compute the potential and pIOJected equilibrated flux reconstructions @y, fh ew
and gy, Ch € V such that, G|y, Ch x € RTP verify

(@ —@) nu)e=0 and {(C,—C,) np)e=0 YuePr(e) , VYeedK
(@ — g, v)k =0 and ({ — o)k =0 Yoe [PPYK)Y | ifp>1,

and 7, and §, are continuous averages (exactly verifying the Dirichlet boundary

Computer Methods in Applied Mechanics and Engineering 386 (2021) 114088

conditions) of uj, and & € WP satisfying
(Vu, V) = (V- @, w)g — (@ -n,w)ox Yw € WP
(V&L V) = (V- Cpow)g — (Cp - myw)oxe Y € WP
(uh, D = (un,w)x and  (§, D = (&, 0)k-

2.- For each element of the mesh compute & = [|C; + vV E||/I|GF + Vi and

= lICk +vV& = w(@; + vV an)ll + Crvg 11 = W f© = £(f = T )l ez

+ > C 198 = 1262 + k(g — T2, |2
eeI'NnNOK

= ISy + vVE + K@ + vVl + Crvg 11 £O = T fO + K(f — T ) 2
+ > Cw gl — 11299 — k(g — g )| 2(e)

eeTNNOK

3.- Compute the approximation of s

gh = (f07 ﬁh) + <.91?7 /&h>FN + (f/ éh) - <gN7 éh)FN - (VV{L}N Vgh)

and the bounds for the quantity of interest s and s,

o -
5;=Sh*@2(7h{)2 and ;—sth ZnK

KeTy, AeTh

Fig. 1. Bounds for the quantity of interest from the HDG approximations.

5. Numerical examples

The behavior of the bounding procedure described above is analyzed in two numerical examples. Four estimates
of s are considered: the upper and lower bounds (s;” and s, respectively), their average 5, = (s;” + s, )/2 and the
quantity of interest given by the HDG finite element approximation, denoted by s, = £°(u;, q,,). The stabilization
parameter is set to T = 1 in all the cases.

A measure of the accuracy of the bounds is the half bound gap A, /2 = (s;” —s; )/2 since it is an upper bound for
the error between the approximation §; and the exact output, see Eq. (12). The bound gap also provides local error
information which is used as an indicator for mesh adaptivity. Indeed, the bound gap associated with the bounding
strategy described in Fig. 1 is split using the local elemental contributions

1
Ay=sy—sy = D ORDP+H0RH =) A

KeTy,

KeTy,
12
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The elemental contributions AX are informative mesh adaptivity indicators for controlling the error in the quantity
of interest. Note that these indicators take into account the error in both the primal and adjoint problems and also
the data oscillation errors, and therefore, the mesh is refined both in the areas most contributing to the error and in
the areas where the data cannot be properly represented using its projection.

Two remeshing strategies are considered, see for instance [17,56]. In the first strategy, given a target bound
gap A, a uniform error distribution assumption is used and, at each level of refinement, the elements with
A{f > (Aw1)/ne are refined where n, = |7,| denotes the number of triangles of the mesh. The second strategy
refines the elements according to a bulk criterion, that is, given a prescribed scalar parameter © € (0, 1], selects a
subset M of Ty, such that O() o7 A%) < Xxen Ak -

Finally, in the numerical experiments we monitor the convergence of the estimates via the computational order
of convergence calculated as follows. We denote by e(n.)) and e(7i¢;) any error-like quantity for two consecutive
triangulations with 7. and 7,y number of triangles. Then, the computational ratio of convergence is given by

log(nel/ﬁel)

5.1. Example 1 — Smooth solution

First, we investigate the order of convergence of the bounds for smooth solutions. Consider the Poisson equation
in the square plate 2 = (0, 1)> with homogeneous Dirichlet boundary conditions and empty Neumann boundary,
namely 02 = Ip,v =1 and g, = 0 in Eq. (1). The right-hand side f is chosen such that the exact solution is
given by

u(x, y) = sin(wx) sin(wy).

Two quantities of interest are considered. The first one, sy, is an average of the solution over the whole domain, and
the second one, s, is a weighted average of the normal flux in the Dirichlet boundary. These quantities of interest
are given by Eq. (6) for

e Data for s;: g9 =g =0and fO(x,y) =1, where s; = 4/7* for

x(1—x) 4 sin(km x)(sinh(kmy) 4 sinh(kz (1 — y)))
e ="5—-5) k3 sinh(kx) '
odd k
e Data for sp: f¢ = g¢ = 0 and g7 = Zsin(wy) on x = 1 and g7 = 0 elsewhere, where £(x, y) =

7 sin(mry) sinh(;rx)/(2 sinh(;r)) and s, = 712/4.

The HDG approximations of both the primal and adjoint problems associated with s, have an optimal convergence
and both [|g, + vVii,|| and 13 n+ vVE, superconverge with order p + 1, and therefore the bound gap is expected
to converge with order 2(p + 1) or O(n;(”Jrl)). However, the adjoint solution associated with s; verifies £ € H3({2)
and therefore we expect that ||, + VVE,|| converges with order 2 for p > 1, see [11,57], yielding an expected
convergence of the bound gap of order p + 3 or O(n;(” )

The numerical results for the first quantity of interest s; for a uniform mesh refinement are shown in Table 1
and Fig. 2, where the stopping criteria are set to achieve A;, < 1078. The initial structured mesh consists of 16
triangles and at each refinement, every triangle is divided into four similar triangles. For all the values of p, the
optimal order of convergence p + 3 predicted by the theory is achieved. It is also worth noting that for high order
polynomials, the required precision is achieved with very coarse meshes. Since the number of degrees of freedom
of the global system of HDG computations is 7egge ~ 3(p + 1)ne1/2 and taking into account that the manipulation of
the mesh takes up a significant amount of computational effort both in the HDG computation and in the a posteriori
error estimation procedure, working with high-order polynomials seems to be advantageous. For this problem and
with this particular quantity of interest, using adaptive mesh refinement strategies does not provide significantly
more accurate bounds, since the error is uniformly distributed both for the primal and adjoint problems. Fig. 2
also shows the effect of the choice of the stabilization parameter 7 in the quality and convergence of the bounds.
Even though the presented a posteriori error estimation techniques are independent of the stabilization parameter,
the quality and convergence of the bounds are strongly dependent on the quality and approximation properties

13



N. Parés, N.C. Nguyen, P. Diez et al.

Computer Methods in Applied Mechanics and Engineering 386 (2021) 114088

p=1
p=2
—p=3
107 --p=4
o, —2
< T
) -5/2
=l
: o
=10 ny
2 —7/2
o 4 Ny
<
jun
o N\ |
10? 108 10t 10? 103 10
Number of elements Number of elements
Fig. 2. Example 1: s; — Convergence of the half bound gap for a uniform mesh refinement (optimal convergence

O(n;(p +3)/ 2)) (z =1 on the left and influence of the selection of t on the right).

Table 1

Example 1: s; — Uniform mesh refinement: Effect of the polynomial degree p.

Nel Nedge Sp £ Ap/2 Order [s = snl Is — 5nl
p=1

16 56 0.406021554922 + 5.47e—03 - 1.90e—03 7.37e—04
64 208 0.405317075580 + 3.19e—04 4.10 3.64e—04 3.23e—05
256 800 0.405286596697 £ 1.97e—05 4.02 5.01e—05 1.86e—06
1024 3136 0.405284843586 + 1.27e—06 3.96 6.52e—06 1.09e—07
4096 12416 0.405284741107 + 8.28e—08 3.93 8.32e—07 6.54e—09
16384 49408 0.405284734968 + 5.45¢—09 3.93 1.05e—07 3.99¢e—10
65536 197120 0.405284734592 + 3.58e—10 3.93 1.20e—08 2.24e—11
p=2

16 84 0.405275669432 + 1.26e—04 - 6.64e—05 9.07e—06
64 312 0.405284783569 + 3.02e—06 5.38 1.10e—06 4.90e—08
256 1200 0.405284735937 + 8.33e—08 5.18 2.14e—08 1.37e—09
1024 4704 0.405284734592 + 2.46e—09 5.08 4.86e—10 2.26e—11
p=3

16 112 0.405284626142 + 4.25e—06 - 8.77e—08 1.08e—07
64 416 0.405284735218 + 5.04e—08 6.40 7.91e—09 1.05e—08
256 1600 0.405284734574 £ 6.73e—10 6.23 3.37e—11 4.53e—12
p=4

16 140 0.405284734710 £ 1.43e—07 - 4.17e—08 1.41e—10
64 520 0.405284734520 + 7.95e—10 7.49 1.71e—10 4.96e—11

of order p + 3 or

of the potential and flux reconstructions, and therefore the stabilization parameter has to be carefully selected to

yield optimal convergence. It is well known that if the stabilization parameter is taken to be of order one, the

HDG reconstructions are superconvergent, see [40,41,47,52], which is confirmed by the optimal convergence rates

achieved in the half bound gap using T = 1. As can be seen in Fig. 2 the results obtained with 7 = 1072, 107!
and T = hg are also optimal and nearly indistinguishable from the results for r = 1. However, for larger values
of the stabilization parameter, ¢ = 10,100 and t = 1/ hg, the quality of the reconstructions deteriorates and worst

results are obtained. It is worth mentioning that as concluded in [52], if the stabilization parameter is taken to be

of order 1/hg the method looses optimal convergence in the locally post-processed approximations, which can be
appreciated in the loss of optimal convergence in the half bound gap.
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T = Tband

Fig. 3. Example 1: so — Exact enforcement of the Dirichlet boundary conditions: band for p =3 (left) and §g (right).

To compute the bounds for the second quantity of interest, it is worth noting that in this case, a simple averaging of
the post-processed HDG approximation & € W, 1 does not yield a potential reconstruction since it does not exactly
verify the Dirichlet boundary conditions &, = gDO = 7% sin(ry) on the right edge (x = 1). In this case, even though
more elaborate extensions operators could be used, see for instance [27,58], since the bounding procedure is valid
for any potential reconstruction &, the exact Dirichlet boundary conditions are enforced via an easy modification
of & in a small band around x = 1. Specifically, &, is obtained as

1. the post-processed scalar variable & is averaged to obtain a continuous reconstruction &,
2. the maximum value xpq,qg € [0, 1) such that the straight line x = x;4,4 does not intersect any element interior
is computed
3. introducing the following extension of the Dirichlet boundary conditions
~O — Xband

T, X
8 =% sm(:‘ry)1

5 for x € [xpana, 1] and §DO = 0 otherwise,

— Xband

and its global nodal interpolant Z/ + (§DO), the value of &, is modified on the edge x = 1, §h|{x:1} =

7 (80) lp=ny i
4. for each element inside the band [xp4,4, 1] X [0, 1], the final value of &, |k is set adding the interpolation error

pd A 1 /A
Exlk + 800k — I (89) 1k

Fig. 3 shows the band where the solution is modified and the shape of ngO for a particular mesh while Fig. 4 shows
the magnitude of the modifications given by the functions (g?g —I,f *+ (§3). It can be seen that the proposed procedure
only introduces relevant modifications to the adjoint approximation for small values of p and coarse meshes. In
these cases, more involved strategies could be considered if no adaptive procedures alleviating the influence of the
boundary conditions are available.

Fig. 5 shows the convergence of the half bound gap for the second quantity of interest s, and for a final tolerance
limit A;, = 1073 The convergence is shown both for a uniform mesh refinement and the adaptive strategy following
the bulk criterion for & = 0.5. For the adaptive procedure, both the bounds associated with the reconstructions
shown in Sections 4.3 and 4.2 and the bounds obtained adding the extra local optimization procedure detailed in
Section 4.4 are shown. As can be seen both in this figure and in Table 2, the extra local optimization procedure
provides an improvement of the value for the half bound gap that becomes more relevant as p increases.

Also note that for p = 1 and p = 2 optimal convergence is only reached when adaptive procedures are used,
due to the simple procedure used to exactly impose the Dirichlet boundary conditions in the adjoint problem. If
no adaptive procedures are available, more involved techniques could be used to achieve optimal convergence,
see [27,58]. Finally, Fig. 6 shows the final meshes obtained in the adaptive procedures. As can be seen, using the
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%107

[N

Fig. 4. Example 1: 5, — Plots of g’g —I: + (g}g’ ) for p =1, 2,3 (exact enforcement of the Dirichlet boundary conditions).

Table 2
Example 1: s, — Bounds for the final meshes of the adaptive procedure.
Rel Sp £ Ap/2 s — 5l
p=1
61310 2.467401099996 + 3.56e—09 2.76e—10
Optimized 59762 2.467401100185 + 3.40e—09 8.71e—11
p=2
1004 2.467401100039 + 3.92e—09 2.33e—10
Optimized 952 2.467401100554 + 4.22e—09 2.81e—10
p=3
130 2.467401100099 + 3.13e—09 1.73e—10
Optimized 138 2.467401100343 + 1.98e—09 7.02e—11
p=4
34 2.467401100022 + 3.34e—09 2.50e—10
Optimized 36 2467401100173 + 2.46e—09 9.88e—11

extra local optimization procedure does not significantly introduce changes in the final meshes while providing
slightly better results with a small extra computational cost.

5.2. Example 2 — L-shaped domain

Consider the Poisson equation, v = 1, in the L-shaped domain 2 = [—1, 1]*\(0, 1) x (—1, 0) with right-hand
side f =1 and all homogeneous Dirichlet boundary conditions, that is, {2 = I'p and g, = 0. The exact solution
is unknown, but its energy norm is [[vVu||> = 0.2140758036140825, see [59]. The solution has a typical corner
singularity at the origin and a theoretical convergence rate of the error in the energy norm is Oh*3) = (’)(ne_ll/ 3).

Two quantities of interest are considered. The first quantity of interest is associated with gé’ = gg = 0 and
fO(x,y)= f(x,y) = 1. In this case, the primal and adjoint problems coincide yielding s; = ||vVu||*>. The second

quantity of interest, s, is taken from [20,60] and is associated with the data gg = gl\? =0 and
o,y =- 10+ Cy 21) s
+ (—2x +0.5)* + 2y — 1)?)

Fig. 7 shows the source term of the adjoint problem associated with s, and the initial mesh for all the computations.

The behavior of the proposed strategy is first shown for the energy quantity of interest, s; = [|vVu||?, using
both a uniform mesh refinement (where in each step each triangle is bisected splitting its longest edge) and three
different criteria for the adaptive procedure. The three adaptive procedures are all associated with a final bound gap
of Ay = 107> (or an equivalence target for the half bound gap of 0.5 - 107°): the first adaptive strategy assumes
a uniform error distribution while the two others use a bulk criterion with © = 0.5 and © = 0.25. Fig. 8 shows
the convergence of the half bound gap obtained from the HDG approximations of order p = 1,2 and 3. As can
be seen, using a uniform mesh refinement the expected convergence rate of O(nj/ 3) is achieved, since the HDG
method in this case converges as O(ngl/ 3) regardless of the value of p, see [57]. The adaptive strategies using both
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Number of elements

Fig. 5. Example 1: s, — Convergence of the half bound gap for both uniform and adaptive mesh refinements.

Fig. 6. Example 1: s, — Final meshes of the adaptive procedure for p = 1,2,3 and 4 from left to right with ne; = 61310, 1004, 130 and
34 respectively (top) and final meshes with extra optimization procedure with ne] = 59762, 952, 138 and 36 respectively (bottom).
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Fig. 7. Example 2: Source term f(x, y) associated with the second quantity of interest (left) and initial mesh.
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NP I T I
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Number of elements
Fig. 8. Example 2: s; = JvVu[|> — Convergence of the half bound gap for both uniform and adaptive mesh refinements.

bulk criteria asymptotically converge as O(ne_lz’7 ). On the other hand, the adaptive strategy based on a uniform error
distribution assumption reaches the same accuracy with a similar number of elements, but with a very different
convergence behavior. In the initial steps of the adaptive procedure, the meshes are uniformly refined resulting in
a slow convergence, and once the adaptive strategy starts refining the elements around the singularity, convergence
is reached in few iterations.

The final meshes of the adaptive procedures are shown in Fig. 9. As can be seen, all the adaptive strategies provide
similar final meshes (although the intermediate meshes vary significantly in the first steps of the adaptive procedures
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Fig. 9. Example 2: 51 = lvVul*> — Final meshes of the adaptive procedure (A = 10~ -5 top, © = 0.5 middle ©® = 0.25 bottom) for
p=1,2,3 from left to right.

when using a uniform error distribution strategy than when using a bulk criterion). Also, since the adaptive strategies
converge like O(n;ZP ), there is a clear difference between the final meshes associated with p =1 and p > 1.

Table 3 summarizes the results associated with the initial mesh, the intermediate iterations associated with a
half bound gap lower than 0.5 - 1073, 0.5 - 10~* and for the final mesh where A;/2 < 0.5 - 1073, The results for
© = 0.25 are omitted since they are similar to the ones associated with © = 0.5.

It is worth noting that as expected, the half bound gap A, /2 provides indeed an upper bound for the error in
the quantity of interest associated with §j,, namely, s — §,. In fact, even though the bounding procedure is devised
to minimize the bound gap and not to produce accurate upper bounds for s — s, the effectivities measuring the
quality of the half bound gap as an upper bound of s — §), are quite good in most cases.

The results associated with the second quantity of interest are shown in Fig. 10 for Ay = 107*. Two adaptive
strategies are used: the uniform error distribution assumption and the bulk criterion for © = 0.5. It can be seen
that in the first iterations of both the uniform and adaptive refinements, the estimators are governed by the large
data oscillation errors associated with the adjoint problem yielding to pessimistic bounds. However, since the data
oscillation errors are of high order, after few iterations the half bound gaps converge as expected. It is again clear
that using higher order elements is advantageous, because for about the same accuracy high order elements result
in meshes with fewer triangles and fewer global edge degrees of freedom. Also, the order of convergence of the
adaptive procedures for larger values of p makes a difference in the computational effort required to achieve a
desired prescribed tolerance.
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Table 3
Example 2: s; = lvVul|> — Bounds for both uniform and adaptive mesh refinements for p = 1,2 and 3.

= T = -
Nel s s ShEt Ap/2 |s — 5l |s — spl

6 0.1740651 0.2392014 0.2066332 £ 3.26e—02 7.44e—03 2.62e—03

768 0.2136240 0.2143344 0.2139792 £ 3.55e—04 9.66e—05 2.64e—04
24576 0.2140310 0.2141012 0.2140661 £ 3.50e—05 9.69e—06 2.86e—05
393216 0.2140687 0.2140798 0.2140743 £ 5.52e—06 1.53e—06 4.54e—06

6 0.1740651 0.2392014 0.2066332 £ 3.26e—02 7.44e—03 2.62e—03
p=1 608 0.2136232 0.2143347 0.2139789 =+ 3.56e—04 9.69¢—05 2.53e—04

Uniform

—10-5
Awl =10 1086 0.2140289 0.2141023 0.2140656 & 3.66e—05 1.02e—05 7.50e—06
1224 0.2140708 0.2140786 0.2140747 £ 3.85e—06 1.14e—06 1.83e—05
6 0.1740651 0.2392014 0.2066332 £ 3.26e—02 7.44e—03 2.62e—03
005 90 0.2134465 0.2143698 0.2139081 =+ 4.62e—04 1.68e—04 9.74e—04
e 272 0.2140174 0.2141062 0.2140618 £ 4.43e—05 1.40e—05 1.51e—-04
984 0.2140714 0.2140781 0.2140748 + 3.31e—06 1.04e—06 2.48e—05
6 0.2084763 0.2169298 0.2127031 £ 4.23e—03 1.37e—03 2.52e—03
Uniform 192 0.2136675 0.2143265 0.2139970 £ 3.29e—04 7.88e—05 2.89e—04

6144 0.2140352 0.2141007 0.2140680 £ 3.27e—05 7.84e—06 2.90e—05
98304 0.2140694 0.2140802 0.2140748 £ 5.35e—06 1.03e—06 4.57e—06

6 0.2084763 0.2169298 0.2127031 £ 4.23e—03 1.37e—03 2.52e—03
104 0.2136664 0.2143269 0.2139966 £ 3.30e—04 7.92e—05 2.87e—04
206 0.2140344 0.2141011 0.2140677 £ 3.33e—05 8.07e—06 2.85e—05
238 0.2140709 0.2140787 0.2140748 £ 3.84e—06 1.03e—06 2.48e—06

6 0.2084763 0.2169298 0.2127031 £ 4.23e—03 1.37e—03 2.52e—03
40 0.2135426 0.2144586 0.2140006 & 4.58e—04 7.52e—05 3.61e—04

p= 2 Atol = 10_5

©=05 88 0.2140251 0.2141104 0.2140678 £ 4.26e—05 8.03e—06 3.39e—05
152 0.2140700 0.2140790 0.2140745 & 4.47e—06 1.30e—06 6.65e—07

6 0.2120143 0.2153474 0.2136809 £ 1.67e—03 3.95e—04 1.49e—03

Uniform 48 0.2135839 0.2143962 0.2139901 & 4.06e—04 8.57e—05 3.72e—04

1536 0.2140275 0.2141076 0.2140676 + 4.00e—05 8.23e—06 3.72e—05
49152 0.2140709 0.2140793 0.2140751 & 4.13e—06 7.19e—07 3.70e—06

6 0.2120143 0.2153474 0.2136809 + 1.67e—03 3.95e—-04 1.49e—03
40 0.2135838 0.2143962 0.2139900 £ 4.06e—04 8.58e—05 3.72e—04
80 0.2140266 0.2141079 0.2140672 £+ 4.06e—05 8.59e—06 3.76e—05

120 0.2140706 0.2140791 0.2140749 £ 4.20e—06 9.09e—07 3.86e—06

6 0.2120143 0.2153474 0.2136809 £ 1.67e—03 3.95e—04 1.49e—03
24 0.2135489 0.2144235 0.2139862 =+ 4.37e—04 8.96e—05 3.99e—04
66 0.2140296 0.2141068 0.2140682 £ 3.85e—05 7.60e—06 3.71e—05

112 0.2140713 0.2140790 0.2140752 £ 3.79e—06 6.38¢—07 3.95e—-06

p= 3 Alol = 1075

The final meshes obtained in the adaptive procedures are shown in Fig. 11. As can be appreciated the adaptive
procedure refines both in the corner singularity and in the area where the source term of the adjoint problem presents
a large gradient and large data oscillation errors appear. It can also be seen that in this case, the bulk criterion yields
coarser meshes for the same accuracy.

6. Concluding remarks

A general framework to compute guaranteed lower and upper bounds for quantities of interest from potential and
equilibrated (or zero-order equilibrated) flux reconstructions is presented. The bounds are guaranteed regardless of
the size of the underlying finite element mesh and regardless of the kind of data (the source term and the Neumann
boundary conditions are not required to be piecewise polynomial functions).

In particular, bounds for quantities of interest from HDG approximations of both the primal and adjoint problems
are obtained. Properly exploiting the superconvergence properties of local post-processed HDG approximations
yields optimal convergence curves for the bound gap in the quantity of interest, both using uniform and adaptive
mesh refinements.
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uniform p = 1 n;Z
uniform p = 2 ngt |3
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Fig. 10. Example 2: s, — Convergence of the half bound gap for both uniform and adaptive mesh refinements.

Two numerical examples are presented to demonstrate the accuracy of the proposed technique when using HDG
approximations. The obtained results seem to confirm the superconvergent properties of the bounds and show that
using high-order HDG approximations yields very accurate bounds for the quantity of interest, even for very coarse
meshes.

The present work concerns the scalar Poisson equation. However, future research could fruitfully explore the
extension to linear elasticity using the results presented in [13,31,61-63]. Also, it would be interesting that future
research investigates the extension of the present work to the scalar convection—reaction—diffusion equation and to
parabolic time-dependent problems, see [16,19,27,64,65].
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Fig. 11. Example 2: s, — Final meshes of the adaptive procedure associated with p = 1,2 and 3 from left to right and © = 0.5 (top)
with meshes with 5119, 614 and 282 triangles respectively and a uniform error distribution with A = 10~* (bottom) where the meshes
have 9882, 1086 and 422 triangles respectively.

Appendix A. Output bounds from potential and equilibrated flux reconstructions — Proof of Theorem 1

The key ingredient to prove Theorem 1 is the reformulation of the output of interest as a constrained minimiza-
tion. This reasoning is similar to the approaches introduced for conforming non-mixed approximations [1,15-17,66].
We begin by writing the quantity of interest s = £°(u, ) as a constrained minimization problem

+s = inf _£0%w,v) +Kk(a(w, v; w,v) — L(w, v))
(w,v)eWxV (A.1)
st. a(w,v;¢,9) =, 9) V(@) eWXV,
where k € (0, 400) is an arbitrary parameter. The above statement is easily verified by noting that, from (4), the
constraint a(w, v; ¢, @) = £(¢p, @), V(p, ) € W x V is only satisfied when (w, v) = (u, q) due to the uniqueness
of the solution and clearly a(u, q; ¢, ) = £(¢, ¢). Now, the Lagrangian associated with the above constrained
minimization problem is given by

L¥(w, v; ¢, @) = ££°(w, v) + k(a(w, v; w, v) — L(w, V) + a(w, v; p, @) — £(¢, P),
and problem (A.1) becomes

+s5s= inf su L¥(w, v; ¢, @). (A.2)
(w,v)eEWxXY (¢,¢)€£jxv

Bounds for the output s can be easily found using the strong duality of the convex optimization problem and the
saddle point property of the Lagrange multipliers as

+s=su inf LT (w,v; ¢, @) > inf  LT(w,v:¢7,07)=+sF V@F, @) eW xV,
(¢,¢)evpi;xv(wxv)€W><V ( ) L S ( by @) o Y, o)

(A3)
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where in order to obtain sharp bounds, it is important to use a good approximation ((ﬁ,T, @) of the Lagrange
multipliers. Note that the explicit dependence of s, on « is omitted here for simplicity of presentation.

The explicit expression for the bounds s;” associated with a particular choice of (&,T @) is found imposing the
stationary conditions, that is, requiring the variations of L¥(w, v; ¢~>}T, @T) with respect to w and v vanish. From
the definition of LT (w, v; q;h; @) and taking into account (5) it is easy to see that

LT (w 4+ 8w, v + 8v; (;SZF o5 — LT (w, v; &,T o)
= 19w, 8§v) — kl(Sw, 8v) + a(Sw, 8v; ¢, @) + 2kc(v™'v, 8v) + k(v 180, Sv)
=(f% —kf =V @ 6w)+ (£ + kg + @ - n. dw)
+ Qv v +v71I9T — VOF, sv) + (:l:gg +kgy + &F, 8v - n)py + k(v 180, 8v),

(A4)

and therefore, denoting by (w™, v¥) the minimizers of L¥(w, v; @T, (o;T), the stationary conditions require the
conditions given in Eq. (A.5) to hold.

Combined o eW

primal/adjoint potential reconstruction: J)ff = :FgDO — kg, on Ip

Combined o eV

primal/adjoint equilibrated flux reconstruction: V-@ = £f% —«f in 2 (A.5)
@i -n=7g? — gy on Iy

Minimizer condition: wT free
vF = % (—@,T + uVJs,j)

It is worth noting that the combined primal/adjoint potential and equilibrated flux reconstructions can be computed
introducing the potential and equilibrated flux reconstructions of the primal and adjoint problems (i, q,) and

G ) satisfying (9) as

oF = FE&u — kil , @i ==£8, — x4,
Now, the expression for the bounds s;” can be rewritten by first noting that the stationary condition (A.4) for the
optimal values (wF, vT) € W x V implies that

+0°2 8w, 8v) — kl(Sw, 8v) + a(dw, 8v; §F, @) + 2 v T, 8v) =0  V(w,8v) e W x V,

which in particular holds for (w, §v) = (w¥, vF), and using Eq. (5) for v = v¥. Inserting these expressions into
the definition of LT (w¥, vF; ¢, (ﬁ;f) yields, after some algebraic manipulations, to

I 1 . ) ~ L
+sf =LT(wT, v 9], 0)) = —Klllq)f — VoI — Uy, @F). (A.6)

Also, using Eq. (3), it is easy to see that the primal and adjoint equilibrated flux reconstructions satisfying (9) verify
that forall (w,v) e W x V

e(ws v) = _(éhv VU)) + (éh - n, w)FD - (g])’ v n)FD$ (A7a)
O, v) ==&, Vw) + (&, - n,w)r, + (87, v n) (A.7b)

and therefore taking (w, v) = (¢, @F) = (F&, — Kiiy, &, — kq,) into (A.7a) and (w, v) = (il, §,) into (A.7b)
yields, after some simplifications,

UPF, o) = FLO(in, G,) F (&5, Viin) £ @y, VE) + k(@ Viig).

Finally, expanding [|@;7 — quBffmz and rearranging terms yields

. - - ~ 1 . ~ - o2
+s;7 =L, §,) F (G, + vViiy, VE) — 4—KIII(C;, +vVE) F (g, +vVup)ll AS)

o 1 . -~ 2 K. - | L= ~
= L%y, q,) — @m{h +vVE&Il — quh + vViiy||* £ E(V "Gy +vViy). &, —vVE),
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and substituting the optimal value of Koy = e n+ A /g, + vVii,|| concludes the proof. Indeed, joining all
the obtained expressions provides

L [ . - 1 . L= -
+5 > £55 (kopr) = £ n, ) — 5|||¢Ih oVl ig, +vVéll £ E(V @), +vViin). T, — vVE).

Appendix B. Output bounds from potential and zero-order equilibrated flux reconstructions — proof of
Theorem 2

Eq. (A.8) shows that for any potential and equilibrated flux reconstructions of the primal and adjoint problems
(ufh qh) and (gfh ;h) then

. - - ~ 1 . ~ - L2
+5 > ds7 = 0%y, §,) F (G, + vViip, VE,) — @III(C;. +vVE) Fr(g, +vVup)ll . (B.1)

Moreover, the first two terms in (B.1) can be rewritten to yield
s> dsf = i(fo in) (80 in) ry £ (f2 ) F (8x- &) g F WViln, VE;)

SO (B.2)
_Em(;h +vVE) F (@, + vVl
which in particular holds for §, = ¢ = —vVu and ¢, = { = —vVE yielding
+s > j:(fo in) x (80, i) ry £ (f, éh)ﬂF (8x-&n) s F WVity, VE,) B3)

—4—|||vV(E — & F e —anll’.
K

Therefore, to compute bounds for the quantity of interest it is sufficient to be able to compute upper bounds for

1 ~ 1 -
T IVE — & F e - il = L &I’

where ¢ = £&, — «iij and ¢pF = ££ — kcu satisfies
—V.-VeH) = Xf%—kf=f* in 2,
¢t = +gf —«g, on Ip, (B.4)
—vVo*.n = Fgl—kgy=g; onln.
Upper bounds for the energy norm |||1)V(<;5i ¢~Sh )|||2 are computed introducing the zero-order equilibrated flux
reconstruction of ¢=, namely (¢;)° = :t; » — k@5 €V such that
(V- @) ) =UR(EfC —«kf). D) = (f% 1 in 2.
(@D - n, 1) =(1)(Fe? —rgy), 1) = (g5, 1) on I.
Indeed, let w € W be such that w|p, =0, that is, w € HOI(Q). Using Eq. (3) for w = {2 and ¢ = (q)h )Y, namely
(V- @D w) = (@)D" - n, w) g + (@), Vw) =0
and Eq. (B.4) yields after some rearrangements
WV (@* = i), Vw) = —(gt = (@D - n,wiry + (f* = V- @), w) = (@)’ + vV, Vw)
=Y [ur=-v- @, Wk — (@7 + vV, Y - > (eE- @D | (B0

KeTy eeI'NNOK

(B.5)

In order to bound the three terms in the previous summation, we need to introduce the following Poincaré and trace
inequalities
0 —1/2
lw = Mgwll c2x) < CillVwll z2x) = Cvi vk Vwllk
lw — 1wl 22, < ColIVwll 22y = Cavie Pllve Vol

where, recall that, || - |2, denotes the L?(K) norm both in R and RY, | - || £2(e) denotes the L?(e) norm in R,
Il - lx is the restriction of the energy norm defined in (5) to element K and
|€| hK dhK
Ci=hg/m , C?= 2max|x —x.|+ —— |, B.7
1 x/ 2= UK 7 na> | | - (B.7)
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where x, denotes the vertex of element K opposite to the facet e, |x — x| denotes the R? Euclidean norm of the
vector x — x., |e| is the measure of the facet e and iy = max, ,ex |x — y| and |K| are the diameter and measure of
element K respectively. Note that max,c, |x — x,| can be replaced by i g and the inequalities still hold. The proof

of these results can be found in [33-36].
Then, since ((ph )0 satisfies (B.5) it holds that

/ (5= V- @5 )w O f (F* = V- @5 w — T0w) d2

<If* 1zv @D 200 llw — W]l 22k
< Coog P fE = V- @Dl 2o v Vwll

an
/ (& — @D -mw dI' = / (8* — @D mw — M°w) dT"
= ||8;E_(‘Ph ‘"||L2(e)||w H w||£2(e)
< Covg Pl — @D - nll 20 vk Vwll ¢
Finally, it also holds that
WVGE+ (@D, Vwk = 0 (@D + vVEH), vVw)k < @)D" + vVl v Vwllk,

which introduced in (B.6) along with the previous inequalities yields

V@ =G Vw) = 3 [ NG + vVl + Crog PIrE = V- @l

KeTy
~1/2 ~
+ Y enPlgt - @D nlloe | IvVwlle
ecI'NNOK
=Y aFIvVulix < [ G [ IvVwli = [ G vVwl.
KeT), KeTy KeTy, KeTy,

Finally, since ¢* — q~5hi| rp, = 0, we can substitute w = ¢* — Js,j: in the previous inequality to yield

V@ — DI = V@ —FD. V" — G < | D @& PIvV@* — o
KeTy

and therefore

~ 2
V@™ =Dl < Y ()
KeTy
yielding the desired bound
- _ - - L 1
5 2 £(F ) & (87 iy & (f ) F (o By F 0V, VE) — = 0 (0)?
KeTy

Finally, the estimator n?f can be rewritten explicitly in terms of the primal and adjoint problems as

_ ~0 ~
W =N+ &)+ vVE) — k(@ + WVl + Crvg 1/2|| £(fO=V-E)—k(f =V -@Dl i
+ Y O I F G T, ) — k(g — YWl 2
eeI'NNOK

Appendix C. Exact representation for the quantity of interest — Proof of Theorem 3

(B.8)

(B.9)

(B.10)

The bounds given by (A.3) are exact if (d;ff, @7 = (9T, ¢F) = (F& —ku, £¢ —kq) since the infimum is reached
imposing (w¥, vT) in (A.5) to be (wF, vT) = (u, ¢) for all values of k. Moreover, in this case, from Eq. (A.6) it

holds that
1
5= LT 07197, 9T) = ——llo7 — VT |I® — 67, 9T).
K
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It is worth noting that this exact representation can also be algebraically derived by substituting (¢T, ¢T) =
(F&€ — ku, £¢ — kq) into the nght hand side of (C.1) and simplifying the terms appearing therein.
Let now (i, q;,) and (&, ¢ ) be two pairs of approximations both in WW x V but not necessarily satisfying (9),
and define the errors in the approximations as
M=ﬁh+€h,€=§~h+8h, ¢3F=¢~’;,F+€f;,
q :éh—i_eh? C Z;]1+€h1 ‘PszﬁbIT"'eg
Then, it holds that
1. w2 e
Elllfﬁ —vVoFIl" + Uof. o)
1 2
= 0T —vVGT — el FIVES I + LT 9T) — bief . €)
= Fs 4 llef —vVelll’ + . V- e) = (. ef -m)ry — (g - ey
1 2 ~ -
=Fs+ lleg — vVelll” + u, £(f° = V- &) —k(f = V-§,)
—(u, F(G0+ 8y - n) —k(gy — Gy m) - n)py — (g -0, F(g0 — &) — k(g — itn)) 1y
where we have used that 97 — vVV¢T = —2«q, Eq. (4) with (w, v) = (e;f, e;F) and the fact that
ef = F(g) — &) — (g, — itn) on I,
V-ej::l:(fo—V~;h)—x(f—V-cjh) in {2,
e(:,f‘”=:F(8NO+§h'n)_K(gN_qh'n) on I\.

Finally, the Theorem is proved by noting that F5,7 coincides with

| - . 2 oy . 1 ~ ~ - 2 ~ ~ - .
Elllfﬁ — VoIl + Lot 0) = EIII £ (&), +vVE) —k(q, —vVup)ll F€&n, —&)) — «l(itn, q,).

Appendix D. Lower bounds for the energy norm of |||e3,: - vVe:; |||2 — Proof of Eq. (24)

Let (i, q,) and (&, ¢ ») be potential and equilibrated flux reconstructions of the primal and adjoint problems
satisfying (9), and consider e;f = F(¢ — §h) — «k(u — uy,) and ej =+ — Z’h) — «(q — q4). Then, in two and
three dimensions, a lower bound for [lej — vVe;f|||2 can be computed using a Helmholtz decomposition of eJ,
see [26,38]. Indeed, since ef € Hy({2), the error ef — vVeS € V C [L*(2)]? can be rewritten in the form

e; — vVe;F =vV(x, — eqf) + Vxy S where xJ € H(92) satisfies

VxS, Vw) = (€. Vw) Yw € Hj(f2)
and yF € Hg, (2) = {y € [H'(DI*7, Vxy - n =0 on Iy} satisfies
WTIVxyS, Vg = (v e, Vxy ),

where V x is the standard curl operator, see [38, Sec 2.3]. Now, for any w¥ € HJ(£2) and yF e [H'(2)]**3,
consider

GwT, yF) =@ (ef —vVel), vVuT 4+ Vxy™),
and the associated scalar parameter AT = —¢F (w™, ¥ F)/[lvVwT + waﬂ”z. Then,

lef —vVel + AFVwT + Vxy )|’
= lle} — vVeFI* + GFPIv VT + Vxy Tl + 2277 (] — vVe]), vWwT + Vi)
= lle} — vVe I + GFPIvVu™ + Vxy I + 227 ™, y)

(T, y)?

2
= lle3 — vVeIIl — -
IWVwT + Vxy 7|

26
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which yields to

L wF, yF))>
Iy VwF + Vxyr ||

lef —vVelll* = llef — vVel +ATWVwT + Vxy DI’ +

CEW¥, yT))?
T lvVwF 4+ Vxy )P

Moreover, for wF = Xj—e;f and YT = ¢ J, since vVVwT+Va) T = ef/f—vVe;f then £3 (wTF, ¥F) = lley — vVeIle
and the previous inequality becomes an equality yielding to

. v — (€ (W™, y)>
lleg —vVelll = sup .
wFerdy  WVWF + VxyrF]|
yFerH!(2)24=3

Eq. (24) is finally proved by noting that if /i, and &, are potential reconstructions of the primal and adjoint problems,
since

(Vu,Vxy)=0  Vve Hy,y¥ € Hy,.
then

T, yF) =T 1E, +vVE), vVuT + VxyT)
+ 1 (2(f, wF) = 2(gy, wF) ry + (@), — vViip, V) + 07HG), + vViiy), VxyT)).

Moreover, if §, and £, are equilibrated flux reconstructions, £¥(w™, ¥F) reduces to
G yF) = FOE, +vVE), VVWT + Vi) — k(0™ (@, +1Vil), vWuT — Vxy),

proving the desired result.
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