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The iterative solution of the large systems of equations that result from discontinuous
Galerkin (DG) discretizations require the ability to carry out fast matrix-vector products.
DG matrices have a sparse block structure with a constant number of non-zero equal-sized
non-overlapping blocks per row. General-purpose sparse matrix-vector product algorithms
are not designed to exploit the speci�c structure of the DG matrices and, as a consequence,
result in sub-optimal performance. To address this issue, we propose a sparse matrix-vector
product for DG discretizations based on a dense tensor contraction. A GPU implementa-
tion of the proposed algorithm for a hybridizable discontinuous Galerkin (HDG) method is
tested on the NVIDIA GEFORCE GTX 285. The results show that the tensor contraction
performs at about 20 to 25 GFLOP/s in double precision with a sustained e�ciency of
more than 40% (60 GBytes/s) of the peak memory bandwidth (160 GBytes/s). Moreover,
for HDG matrices in double precision, the proposed method is 2 times faster than the gen-
eral sparse matrix-vector products provided by the GPU library CUSPARSE and about
30 times faster than MATLAB running on a CPU.

I. Introduction

The hybridizable discontinuous Galerkin (HDG) method was recently introduced in Ref. [1] and further
developed in Ref. [2{11] for a wide range of problems. The HDG method is a discontinuous Galerkin
discretization with a particular choice of the numerical 
uxes. Indeed, the main (only) di�erence between
many existing DG methods and the HDG method is the de�nition of the numerical trace of the �eld variable.
However, like many mixed �nite element methods, the HDG method can be hybridized by considering the
numerical trace of the �eld variable as an independent unknown and introducing an additional equation
which explicitly enforces the conservation property. In this way, both the approximate �eld and gradient
variables can be eliminated locally to produce a reduced system which only involves the trace of the �eld
variable. Since the numerical trace is single-valued and de�ned over the element faces, the HDG method has
signi�cantly less globally coupled degrees of freedom than other DG methods. Moreover, the HDG method is
compact in the sense that it only connects the degrees of freedom of the neighboring faces. More speci�cally,
for triangular elements, the degrees of freedom on an interior (respectively, boundary) edge are connected
to the degrees of freedom on four (respectively, two) neighboring edges; and, for tetrahedral elements, the
degrees of freedom on an interior (respectively, boundary) face are connected to the degrees of freedom on
six (respectively, three) neighboring faces. This sparse block-structure consisting of dense, non-overlapping,
equally sized blocks of the HDG matrices is similar to that of other DG methods such as the method of Bassi
and Rebai12 or the compact DG (CDG) method.13 In these DG methods however, the degrees of freedom
are associated to the elements rather than the faces and the connections are to neighboring elements rather
than faces.
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The HDG discretization of a nonlinear system of conservation laws such as the steady-state compressible
Navier-Stokes equations gives rise to a nonlinear system of algebraic equations that can be solved using
Newton’s method. For large problems, the resulting linear system at each Newton iteration needs to be
solved using iterative methods. E�cient iterative solution algorithms rely on the ability to perform fast
matrix-vector products. Developing these fast matrix-vector product algorithms implies that the following
two issues be addressed. First, the sparse matrix-vector product is a memory-bound operation limited by the
peak memory bandwidth of the selected computing platform. Second, general-purpose sparse matrix-vector
products are not designed to exploit the speci�c structure of the HDG matrices.

In this paper, we describe the development of a high-performance matrix-vector product for HDG dis-
cretizations that addresses the above two issues. To alleviate the memory bandwidth constraint, we choose
the graphic processor unit (GPU) as a computing platform. In recent years, using GPUs as a general-purpose
computing platform has received considerable attention in the scienti�c community. The GPUs have better

oating-point performance and memory bandwidth than conventional CPUs. Speci�cally, the peak mem-
ory bandwidth of a GPU is ten times greater than the one of the computer main memory. This increased
performance o�ers signi�cant potential bene�ts for memory-bound operations such as sparse matrix-vector
products. In order to exploit the structure of the HDG matrices, we develop a speci�c-purpose sparse matrix-
vector product which reduces the sparse matrix-vector product to a dense tensor contraction on the GPU.
The result is a high-performance matrix-vector product that obtains a high e�ective memory bandwidth on
the GPU by exploiting the speci�c structure of the HDG matrices.

Recently, the GPU implementation of DG methods with explicit time integration has been proposed
in Ref. 14. They show that the GPU can speed up the performance of the DG codes by more than one
order of magnitude when compared to the CPU implementation. However, explicit methods do not require
the iterative solution of linear systems and therefore no sparse matrix-vector product is required. Iterative
solvers have been developed for the CDG method15 as well as other implicit DG methods.12,16,17 To date,
these methods have only been implemented on the CPU.

The interest for generic linear algebra operations on the GPU was initially focused in dense matrices
and vectors.18{20 Nevertheless, several iterative solvers on the GPU21{24 have been proposed in the last
years. Thus, general-purpose sparse matrix-vector products for the GPU have already been developed for
non-block21,25{27 and block22,28,29 storage formats. The proposed GPU implementations exploit the high-
peak memory bandwidth of the latest GPUs and their performance is superior to that of the existent highly
optimized products for the CPU.30 However, these general-purpose GPU products are not speci�c for HDG
matrices. Here, we present the �rst sparse-matrix vector product for HDG matrices on the GPU.

The rest of the paper is organized as follows. First, we give in section II an overview of the HDG method
for the compressible Navier-Stokes equations. Second, we describe the sparsity pattern and storage format
for the HDG matrices are described in section III. Third, the implementation on the GPU of the sparse
matrix-vector product is given in section IV. Finally, we present in section V some numerical results to
demonstrate the performance and speedup of the proposed matrix-vector product.

II. Overview of the HDG Method

II.A. Governing Equations

We consider the steady-state compressible Navier-Stokes equations written in conservative form as

q �ru = 0; in 
;

r � (F (u) +G(u; q)) = 0; in 
;
(1)

where u is the m-dimensional vector of conserved quantities (namely, density, momentum and energy), and
F (u) and G(u; q), are the inviscid and viscous 
uxes of dimension m� d. The nondimensional form of the
Navier-Stokes equations as well as the de�nition of the inviscid and viscous 
uxes can be found in Ref. [31].
Of course, the Navier-Stokes equations (1) should be supplemented with appropriate boundary conditions at
the in
ow, out
ow and solid wall boundaries, as well as a source term which are omitted here for simplicity
of exposition.

To describe the HDG method for solving the Navier-Stokes equations, we introduce �rst some notation.
We denote by Th a collection of disjoint regular elements K that partition 
 and set @Th := f@K : K 2 Thg.
For an element K of the collection Th, F = @K \ @
 is the boundary face if the d � 1 measure of F is

2 of 12

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 M

IT
 L

IB
R

A
R

IE
S 

on
 A

ug
us

t 1
6,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
1-

68
7 



nonzero. For two elements K+ and K� of the collection Th, F = @K+ \ @K� is the interior face between
K+ and K� if the d� 1 measure of F is nonzero. We denote by Eoh and E@h the set of interior and boundary
faces, respectively. We set Eh = Eoh [ E@h .

Let Pk(D) denote the space of polynomials of degree at most k on a domain D and let L2(D) be the space
of square integrable functions on D. We introduce the following discontinuous �nite element approximation
spaces

W k
h = fw 2 (L2(Th))m : wjK 2 (Pk(K))m; 8 K 2 Thg;

V k
h = fv 2 (L2(Th))m�m : vjK 2 (Pk(K))m�m; 8 K 2 Thg:

In addition, we introduce a �nite element approximation space for the approximate trace of the solution

Mk
h = f� 2 (L2(Eh)m : �jF 2 (Pk(F ))m; 8 F 2 Ehg:

Note that Mh consists of functions which are continuous inside the faces (or edges) F 2 Eh and discontinuous
at their borders.

Finally, we de�ne various inner products for our �nite element spaces. We write (w; v)Th :=
P

K2Th(w; v)K ;

where (w; v)D denotes the integral of w v over the domain D � Rd. We also write (w;v)Th :=
Pm

i=1(wi; vi)Th
for w;v 2 W k

h and (w;v)Th :=
Pm

i=1

Pd
j=1(wij ; vij)Th for w;v 2 V k

h . We then write h�; �i@Th :=P
K2Thh�; �i@K and h�; �i@Th :=

Pm
i=1h�i; �ii@Th ; for �; � 2 Mk

h , where h�; �iD denotes the integral of

� � over the domain D � Rd�1.

II.B. Formulation of the HDG Method

The HDG method seeks an approximation (qh;uh; buh) 2 V k
h �W k

h �Mk
h to the solution of the system (1)

such that
(qh;v)Th + (uh;r � v)Th � hbuh;v � ni@Th = 0; 8v 2 V k

h ;

� (F (uh) +G(uh; qh);rw)Th +
D

(bhh � n;w
E
@Th

= 0; 8w 2W k
h ;Dbhh;�

E
@Thn@


+
Dbbh;�E

@

= 0; 8� 2Mk

h ;

(2)

where bhh = (F (buh) +G(buh; qh)) � n+ S(buh)(uh � buh): (3)

Here bhh is the interior numerical 
ux, while bbh is the boundary numerical 
ux which depends on the types
of boundary conditions applied on the domain boundary. Note also that S(buh) is a local stabilization matrix
which has an important e�ect on both the stability and accuracy of the resulting scheme. We refer to11 for
a detail discussion on how bbh can be de�ned for di�erent types of boundary conditions and how S(buh) can
be chosen to ensure stability and consistency.

By applying the Newton-Raphson procedure to solve the nonlinear system (2), we obtain at every Newton
step a matrix system of the form 264 A B E

C D L

M N P

375
0B@ q

u

û

1CA =

0B@ H

F

G

1CA ; (4)

where q, u and û are the vectors of degrees of freedom of qh, uh and buh, respectively. We note that
when the degrees of freedom for qh, uh are grouped together and ordered in an element-wise fashion, the
corresponding matrix [A B;C D] has block-diagonal structure. Therefore, we can eliminate both q and u
to obtain a reduced linear system in terms of û as

Aû = b; (5)

where

A = P �
h
M N

i " A B

C D

#�1 "
E

L

#
; b = G�

h
M N

i " A B

C D

#�1 "
H

F

#
: (6)

For large problems, the linear system (5) has to be solved using iterative methods. Any iterative solver will
require the evaluation of the matrix-vector multiplication y = Ax many times. The structure of this matrix
A is described below.
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(a) (b) (c)

Figure 1. Sparsity structure of the system matrix: (a) a mesh with six faces (nf = 6) and four nodes per face (np = 4);
(b) sparse pattern in dense blocks for a problem with one component (nc = 1); and (c) the storage in dense block
format.

III. Sparsity Pattern and Storage of the HDG Matrix

The matrix of a global system Aû = b for a hybridizable discontinuous Galerkin discretization is sparse
and its structure is determined by the numbering of the nodal unknowns within the vector û. One can think
of the components of û as depending on three indices, the face number kf , the solution component kc and
the local number kp of the node within the face kf . With this notation, the global system of equations can
be written as

nfX
kf=1

ncX
kc=1

npX
kp=1

Aipicifkpkckf
ûkpkckf

= bipicif ;

for if = 1; : : : ; nf ; ic = 1; : : : ; nc and ip = 1; : : : ; np, where nf is the number of mesh faces, nc is the number
of solution components and np is the number of nodes over a face. It seems natural to consider a numbering
that groups the unknowns of the same face and the same component contiguously. Thus, we can de�ne a
single index k0 as

k0 := k0(kp; kc; kf ) = kp + np(kc � 1) + npnc(kf � 1);

to linearly order all the unknowns within the vector û. Similarly, the rows of the matrix A can be addressed
by a single index i0, given by

i0 := i0(ip; ic; if ) = ip + np(ic � 1) + npnc(if � 1):

This numbering leads to a sparse matrix A which has the two following important properties:

- The nonzero entries are grouped into dense, non-overlapping blocks of size np � nc. The relative
position of these blocks within the global matrix, Figure 1(b), is determined by the numbering of the
mesh faces, Figure 1(a).

- The maximum number of nonzero dense blocks in each row, referred as na, is �xed and always equal
to �ve for triangular meshes, and seven for tetrahedral meshes, see Figures 1(a) and 1(b). That is, for
the block row associated to a face if , there is a nonzero block for each face that shares an element
with if in addition to the diagonal block accounting for the face self in
uence. We denote by naf the
number of mesh faces that share an element with the face if . The number naf is equal to na for the
inner faces and is less than na for the boundary faces.

To take advantage of the structural properties of the matrix A, we consider a dense block format as
proposed in Ref. 15. To this end, given a system matrix A, we de�ne the entries of the dense block format
multi-array A, of dimensions (npnc)� nf � (npncna), by

Aipicifkpkcka
:=

8<:Aipicifkpkckf (ka;if ) if ka � naf ;
0 if ka > naf ;
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where kf (ka; if ) denotes the ka (1 � ka � na) mesh face that shares and element with if . Figure 1(c) shows
the dense block format for a mesh with six faces. Equivalently, given a vector of unknowns û we de�ne the
entries of the (in
ated) dense block format multi-array Û , of dimensions (npncna)� nf , by

Ûkpkckaif :=

8<:ûkpkckf (ka;if ) if ka � naf ;
0 if ka > naf :

Using these dense block formats, the global system is equivalent to

naX
ka=1

ncX
kc=1

npX
kp=1

Aipicifkpkcka
Ûkpkckaif = bipicif ;

for if = 1; : : : ; nf , ic = 1; : : : ; nc and ip = 1; : : : ; np. If we now map the multi-indices (ip; ic), (if ) and
(kp; kc; ka) to i, l and k, as follows

i = i(ip; ic) := ip + np(ic � 1);

l = l(if ) := if ;

k = k(kp; kc; ka) := kp + np(kc � 1) + npnc(ka � 1);

we can rewrite the global system as
qX

k=1

AilkÛkl = bil;

for i = 1; : : : ;m; l = 1; : : : ; r; and k = 1; : : : ; q, where m = npnc, r = nf and q = npncna. We shall refer to

Am�r�q = [Ailk] =
�
Aipicifkpkcka

�
and Ûq�r =

h
Ûkl
i

=
h
Ûkpkckaif

i
as the dense block format (DBF) of A

and û, respectively.

IV. Sparse matrix-vector product on the GPU

To perform the matrix-vector products required to solve the system Aû = b stored in dense block format,
we propose to implement the following tensor contraction:

yil = [Ax]il =

qX
k=1

AilkXkl;

for i = 1; : : : ;m and l = 1; : : : ; r, where A and X are in dense block format. Several general-purpose matrix-
vector product algorithms for GPUs have been proposed for dense18{20 and sparse21,22,25{29 matrices. Here,
we describe a speci�c algorithm for the matrix-vector product of HDG matrices, which is more e�cient than
other general-purpose algorithms.

The straightforward implementation of the proposed algorithm on the CPU when A and X are stored in
the host memory in dense block format is given by Algorithm 1.

Algorithm 1: Matrix-vector multiplication for block dense format (CPU)

Input: Am�r�q, dense block format of A in the host memory

Input: Xq�r, dense block format of x stored in the host memory

Output: ym�r = Ax

for l = 1 : r do1

for i = 1 : m do2

for k = 1 : q do3

yil  yil +AilkXkl // Compute
Pq

k=1AilkXkl for �xed i and l4

The GPU version of the proposed method is given by Algorithm 2. This algorithm assumes that the
multi-arrays AGPU and X GPU are already stored in the device memory. Also, the array X GPU is bound to
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Algorithm 2: Matrix-vector multiplication for block dense format (GPU)

Input: AGPU
m�r�q, dense block format of A stored in the GPU memory

Input: X GPU
q�r, dense block format of x stored in the GPU memory and bound to texture memory

Input: nt, number of threads per block

Output: yGPU
m�r = Ax, stored in the GPU memory

b blockId.x1

tb  threadId.x2

t b� nt + tb3

i t (mod m) + 14

l t=m+ 15

if l � r then6

y  07

for k = 1 : q do8

x read X GPU
kl from texture memory9

y  y +AGPU
ilk x // Compute

Pq
k=1AGPU

ilkX GPU
kl for �xed i and l10

yGPU
il  y11

the texture memory. This binding allows to use the cache of the texture memory to increase the re-use of
X GPU. Before the computation starts, the total number of execution threads needs to be determined. We
adopt a standard one thread-per-output approach so that each thread is responsible for the computation of
one value of the output result yGPU

il . In principle, we would only need to launch mr threads. However, the
CUDA framework requires that threads be launched in blocks of the same size nt. Thus, we have to ensure
that we launch enough thread blocks to have a thread for each output value yGPU

il . To this end, we launch
(mr + nt � 1)=nt thread blocks with nt threads in each block. This means that, in general, we will launch
nt � mr (mod nt) more threads that required. It is easy to ensure that these additional threads do not
perform any computation.

Once the blocks and threads are determined, we can run the same code in parallel on the GPU. Since the
same code is going to be executed in all threads, we need to determine the current block (Line 1) and local
thread (Line 2) IDs. These information, allow us to obtain a global thread ID t (Line 3) that is required
to access the appropriate data. That is, the values of i and l (Lines 4 and 5) that we compute uniquely
map each thread t to an output value yGPU

il . This mapping together with column-major storage ensures that
the threads of the same block write on stride one contiguous memory addresses of the output array yGPU

il .
The check l � r (Line 6) guarantees that only those threads with an associated output value yGPU

il carry out
the multiplication. Each computing thread reads X GPU

kl (Line 9) and AGPU
ilk (Line 10) for consecutive values of

the index k, and accumulates the result of their product in y (Line 10). The accumulated value y is then
assigned to the corresponding output value yGPU

il (Line 11).
Note that the arrays AGPU

ilk , X GPU
kl , and yGPU

il are stored in GPU memory in column-major format. That is,
the left index is for the rows, the middle index for the columns and the right index for the pages. Thus, for
a �xed k, the proposed algorithm allows for several threads in the same block to read and write at the same
time (coalescing) several contiguous memory values of AGPU and yGPU

il , respectively. Since each value of AGPU

and yGPU
il have to be read (Line 10) and written (Line 11) from the device memory, it is important to use the

coalescing features of the GPU to ensure performance. Additional e�ciency is obtained by promoting re-use
of X GPU

kl within each thread block through the use of the cache in the texture memory (Line 9).

V. Results

In this section, we analyze the performance of the proposed method. We �rst pro�le and compare the
CPU and GPU implementations of the tensor contraction, the core of our speci�c sparse matrix-vector
product. Then, we compare the execution time on the GPU of the proposed sparse matrix-vector product
with the general-purpose sparse matrix-vector products of MATLAB (CPU) and the CUSPARSE (GPU)
library.
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For all the tests, we use a Mac Pro (2009) running Mac OS X 10.6.3 with two Quad-Core Intel Xeon
(CPU) at 2.93 GHz, 24 GBytes of host memory (CPU), and one NVIDIA GeForce GTX 285 (GPU) with
1 GByte of device memory. The GPU is connected to the host through a PCIE 2.0 16X bus and we use
CUDA 3.2 API to program the device code. For the host code, we use the GNU C++ compiler (g++) with

ags -O3 -msse3 (full optimization and SSE3 instructions). While for the GPU code, we use the CUDA
compiler (nvcc) with 
ags -O3 -arch=sm 13 (full optimization and double precision support).

V.A. Performance of the tensor contraction

To determine the performance of the tensor contraction operation on the CPU and on the GPU, we measure
the computational speed in GFLOP/s and the e�ective memory bandwidth as a percentage of the platform
(CPU or GPU) peak memory bandwidth (GBytes/s). In addition, we measure the speedup provided by the
GPU using the CPU implementation as the reference. To obtain reliable measurements, we perform several
tensor contractions

yil =

qX
k=1

AilkXkl;

where yil, Ailk, and Xkl have sizes m�r, m�r�q, and q�r determined by varying the solution interpolation
degree in the HDG method p = 1; : : : ; 10, the number of spatial dimensions d = 2; 3 and the amount of used
memory (MBytes). Thus, we have m = npnc, r = nf , and q = npncna, where np is the number of nodes
per face, nc is the number of solution components, nf is the number of mesh faces and na is the maximum
number of coupled faces na. In the 2D case, np = (p + 1), nc = 4 and na = 5, whereas in the 3D case
np = (p + 1)(p + 2)=2, nc = 5 and na = 7. The results are presented as a function of the total memory
(Mbytes) that, for a given problem, is determined by the number of faces. Note that the amount of memory
in double precision (8 bytes per real value) is twice the amount of memory in single precision (4 bytes per
real value). The total memory usage considered in our tests ranges from 5 MBytes (10 MBytes) to 250
MBytes (500 MBytes) for single (double) precision. To simplify the plots, we do not include a curve for
each interpolation degree p. Speci�cally, for a �xed amount of memory, we show only the minimum and
maximum measured values for all the p. This means that the results obtained for all values of p are between
the two curves shown.

In the presented results, the computational performance in GFLOP/s is calculated as the total number
of GFLOP which is calculated as,

2�m� r � q=109 = 2� (npnc)� nf � (npncna)=109;

divided by the execution time in seconds. The e�ective memory bandwidth in GBytes/s is obtained as the
amount of GBytes divided by the execution time in seconds. Speci�cally, the number of GBytes required for
yil, Ailk and Xkl is given by,

m� r +m� r � q + q � r = (npnc)� nf + (npnc)� nf � (npncna) + (npncna)� nf ;

times 4=230 (8=230) for single (double) precision. Combining the above expressions, we can calculate a ratio
of memory to 
oating point operations,

(m� r +m� r � q + q � r)=(2�m� r � q) = 1=(2q) + 1=2 + 1=(2m);

which is always greater than 1=2 and hence bounded from below independently of the problem size. This
shows that the tensor contraction operation considered is a memory demanding operation and we expect
the performance to be bounded by the memory bandwidth of the device. This observation is important to
understand the behavior of the implemented tensor contraction on the CPU and the GPU.

In Figure 2, we present the computational speed (GFLOP/s) as a function of the amount of used memory
(MBytes) for single and double precision tensor contractions performed on the CPU and the GPU. As
mentioned above, the operation considered is a memory-bound operation in which the amount of read and
written memory is twice bigger in double precision than in single precision. This is re
ected in the results
which clearly show a higher computational performance for single precision than for double precision both in
the CPU and the GPU. For big enough problems, the single-threaded implementation on the CPU performs
between 0.25 and 1.75 GFLOP/s for single precision, and between 0.2 and 1.25 GFLOP/s for double precision.
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Figure 2. Minimum and maximum computational performance (GFLOP/s) as a function of the required memory
(MBytes) for 2D and 3D problems and p = 1; : : : ; 10: on the CPU for (a) single and (b) double precision; and on the
GPU for (c) single and (d) double precision.

The GPU implementation performs between 30 and 55 GFLOP/s for single precision, and between 20 and
25 GFLOP/s for double precision.

Although the e�ective memory bandwidth is not a direct computational performance metric, it shows how
e�ective is the memory access and how close to peak performance is the current algorithm implementation.
In Figure 3, we present the e�ective memory bandwidth as a percentage of the platform (CPU and GPU)
peak memory bandwidth (16 GBytes/s and 159.7 GBytes/s) as a function of the amount of used memory
(MBytes), for single and double precision. For big enough problems, the CPU implementation obtains an
e�ciency between 2.5% and 20% of the peak memory bandwidth in single precision, and between 5% and
30% for double precision. The GPU implementation obtains an e�ciency between 30% and 65% of the peak
memory bandwidth in single precision, and between 40% and 65% for double precision.

The results presented in Figs. 2 and 3 show a signi�cant di�erence between the minimum and maximum
performance curves on the CPU. While the maximum performance curves are approximately constant, the
minimum performance curves show that the performance suddenly drops at a speci�c value of the used
memory. The minimum performance curves correspond to the low order interpolation degrees, p = 1; 2,
where each value Xkl is re-used for less values of Ailk. Thus, the fast drop of the minimum performance
curves can be traced to the low re-use of Xkl for low p together with the fact that Xkl does not �t in the
cache memory for a big enough number of faces nf . As the results show, the performance drop appears later
in the 3D case than in the 2D case because the amount of memory to store the values Ailk is much bigger
in 3D than in 2D.

On the other hand, the results presented in Figs. 2 and 3 show a similar behavior for the minimum
and maximum performance curves on the GPU. The curves show a global and a local behavior. Globally,
they grow with the amount of used memory, and locally, they oscillate. The global behavior can be easily
understood. For a small number of faces (low memory usage) the number of threads used (np � nc � nf ) is
low. This leads to low hardware occupancy and therefore, to low performance. The local behavior is due
to memory alignment issues. The proposed method ensures that, for a �xed value of k, contiguous threads
read values of Ailk in contiguous memory addresses. However, we cannot ensure that the �rst thread of
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Figure 3. Minimum and maximum e�ective memory bandwidth (GBytes/s) as a function of the required memory
(MBytes) for 2D and 3D problems and p = 1; : : : ; 10: on the CPU for (a) single and (b) double precision; and on the
GPU for (c) single and (d) double precision.

each block reads a value of Ailk which is stored in a memory address that is a multiple of the half-warp
(one half of the number of hardware threads per block). Note that the maximum memory performance (full
coalescing) can only be obtained when the threads read contiguous memory and the �rst thread of each
block reads a memory address that is multiple of half-warp (16 for the GTX 285). Nevertheless, the tests
on the GPU show that stride one and contiguous memory reads of Ailk run at a signi�cant 60% of the peak
memory bandwidth. We also note that part of this memory bandwidth is used to read the values Xkl. This
cost of reading Xkl is reduced automatically in the CPU by the cache memory and manually in the GPU by
binding the multi-array Xkl to the cache of the texture memory. Finally, the rest of the bandwidth is used
to write the values of yil. This operation is e�cient both in the CPU and the GPU because it is performed
with stride one and contiguous aligned memory accesses. In particular, the values of yil are written with
full coalescing on the GPU.

Since proposed contraction is a memory-bound operation, we would expect that it would perform about
ten times faster in the tested GPU (159.7 GBytes/s) than in the tested CPU (16 GBytes/s). To verify this
point, we present in Figure 4, the minimum and maximum speedup curves (CPU time/GPU time) for single
and double precision. As we mentioned above, the CPU implementation presents a very low performance for
low p = 1; 2. Consequently, the speedup for these cases is very large. Even if we ignore maximum speedup
curves and consider only the minimum speedup curves, the results show that the GPU is more than 20 times
faster than the CPU, for single and double precision. This is two times bigger than the ratio of the peak
memory bandwidths. Therefore, we would expect that the CPU maximum performance could be improved
by optimizing the memory access.

V.B. Comparison with MATLAB and CUSPARSE library

The main purpose of is this section is to show that the proposed GPU-accelerated sparse-matrix vector
product for HDG is more e�cient than general-purpose sparse-matrix vector products for both the CPU
and the GPU. The price for this higher performance is that the proposed method can only be applied to
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Figure 4. Minimum and maximum speedup (CPU time / GPU time) as function of required memory (MBytes) for 2D
and 3D problems, p = 1; : : : ; 10: (a) single and (b) double precision.

p npnc npncnf CSR (nnz) DBF (nnz) nnz ratio CSR (MB) DBF (MB) Memory ratio

1 8 94240 3743188 3769600 1.0071 44.63 33.29 0.75

2 12 141360 8423010 8481600 1.0070 99.09 71.40 0.72

3 16 188480 14975728 15078400 1.0069 174.98 123.89 0.71

4 20 235600 23395950 23560000 1.0070 272.24 190.75 0.70

5 24 282720 33696648 33926400 1.0068 391.02 272.00 0.70

Table 1. Properties of the �ve tested sparse matrix-vector products for p = 1; : : : ; 5 corresponding to a triangular mesh
with 11780 faces: number of unkowns per face (npnc), total number of unkowns (npncnf ), number of non-zero values
for CSR (nnz) and DBF (nnz), ratio of non-zero values (DBF / CSR), memory (MBytes) required to perform the
operation for CSR and DBF, ratio of required memory (DBF / CSR).

matrices which have the speci�c structure considered here. We compare the proposed algorithm with the
CUSPARSE library running on the GPU, and sparse-matrix vector product of MATLAB running on the
CPU.

To perform the comparison, we consider �ve HDG matrices corresponding to the same steady-state
compressible Navier-Stokes problem on the same triangular mesh (11780 faces) for di�erent interpolation
degrees, p = 1; : : : ; 5. Table 1 shows for each matrix the number of faces and global unknowns, the number
of stored non-zero values for the compressed sparse row (CSR) format and the dense block format (DBF),
and the amount of memory required to perform the sparse matrix-vector product for the CSR and the DBF
formats (input vector, matrix, output vector and sparse indirection vectors). As expected, the number of
non-zero values stored with the dense block format is slightly bigger than for the CSR format. This additional
storage is required because in the dense format we do not take into account the fact that the boundary faces
are only connected to three faces rather than �ve. Nevertheless, the DBF requires only 3=4 of the memory
used with the CSR format. Memory e�ciency is a clear advantage of the proposed speci�c-purpose storage
format.

The proposed sparse-matrix vector product is performed in two steps, �rst the input vector is converted
to dense block format, and then the tensor contraction is computed. Table 2 summarizes the amount of
time spent on each procedure for the �ve test matrices. The results show that the tensor contraction is the
most expensive procedure and its time percentage grows with the interpolation degree. This is the expected
behavior, for di�erent p the size of the matrix grows with n2

p while the size of the vector grows with np.

VI. Conclusion

We have presented a sparse-matrix vector product for the matrices arising from HDG discretizations.
These matrices have a sparse structure with equal-sized, dense, non-overlapping blocks. These sparse matri-
ces are stored as a dense 3-dimensional array. Using this storage format, the sparse-matrix vector product
can be cast as dense tensor contraction. The performance of the resulting tensor contraction is determined
by the peak memory bandwidth of the selected platform. The dense tensor contraction operation has been
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p tv(ms) tc(ms) tv+tc (ms) tv (%) tc (%)

1 0.27 0.44 0.72 37.90% 62.10%

2 0.39 0.77 1.15 33.45% 66.55%

3 0.50 1.28 1.77 27.92% 72.08%

4 0.60 1.93 2.53 23.71% 76.29%

5 0.71 2.70 3.41 20.80% 79.20%

Table 2. Sparse matrix-vector product as a tensor contraction on the GPU for p = 1; : : : ; 5: time (ms) to convert the
input vector to dense block format (tv), time (ms) to perform the tensor contraction (tc), total time (ms) (tv+tc), time
percentage to convert the input vector to dense block format, and time percentage to perform the tensor contraction.

Execution time (ms) Speedup (MATLAB as reference)

p MATLAB CUSPARSE Proposed MATLAB CUSPARSE Proposed

1 22.81 1.87 0.72 1.00 12.22 31.91

2 47.07 3.05 1.15 1.00 15.41 40.79

3 77.37 4.17 1.77 1.00 18.54 43.64

4 118.51 5.91 2.53 1.00 20.05 46.82

5 179.37 7.39 3.41 1.00 24.28 52.54

Table 3. Speedup of the proposed and CUSPARSE sparse matrix-vector product compared with MATLAB for p =
1; : : : ; 5: MATLAB sparse matrix-vector product on the CPU, CUSPARSE matrix-vector product on the GPU, proposed
sparse matrix-vector product on the GPU, speedup taking MATLAB as the reference speed for MATLAB, CUSPARSE,
and the proposed method.

implemented on the GPU. The selected GPU (GEFORCE GTX 285) has a peak memory bandwidth ten
times greater than the one of the host computer (Mac Pro 2009). The proposed tensor contraction exploits
the characteristics of the HDG matrices to obtain full bene�t of the GPU: it performs partial coalesced reads
of the values of the HDG matrix, it uses the cache of the texture memory to read the unordered values
of the input vector, and performs full coalesced writes of the output values. As the double precision tests
show, the obtained tensor contraction performs at 20 to 25 GFLOP/s with a sustained e�ective memory
bandwidth greater than the 40% of the peak memory bandwidth. This results in a speci�c sparse-matrix
vector product for HDG that performs 2 times faster than the CUSPARSE library on the GPU and 30
times faster than MATLAB on the CPU. It is important to point out that the sparse-matrix vector product
proposed can be applied to other discretization methods with similar sparse matrix structure. In particular,
it is straightforward to apply the proposed algorithm to matrices derived from other DG discretizations.
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