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Abstract

We present a technique for the rapid and reliable prediction of linear-functional outputs of coercive and non-coercive
linear elliptic partial differential equations with affine parameter dependence. The essential components are: (i) rapidly
convergent global reduced basis approximations – (Galerkin) projection onto a space WN spanned by solutions of the gov-
erning partial differential equation at N judiciously selected points in parameter space; (ii) a posteriori error estimation –
relaxations of the error-residual equation that provide inexpensive yet sharp bounds for the error in the outputs of interest;
and (iii) offline/online computational procedures – methods which decouple the generation and projection stages of the
approximation process. The operation count for the online stage – in which, given a new parameter value, we calculate
the output of interest and associated error bound – depends only on N (typically very small) and the parametric complexity
of the problem.

In this paper we propose a new ‘‘natural norm’’ formulation for our reduced basis error estimation framework that: (a)
greatly simplifies and improves our inf–sup lower bound construction (offline) and evaluation (online) – a critical ingredi-
ent of our a posteriori error estimators; and (b) much better controls – significantly sharpens – our output error bounds, in
particular (through deflation) for parameter values corresponding to nearly singular solution behavior. We apply the
method to two illustrative problems: a coercive Laplacian heat conduction problem – which becomes singular as the heat
transfer coefficient tends to zero; and a non-coercive Helmholtz acoustics problem – which becomes singular as we
approach resonance. In both cases, we observe very economical and sharp construction of the requisite natural-norm
inf–sup lower bound; rapid convergence of the reduced basis approximation; reasonable effectivities (even for near-singular
behavior) for our deflated output error estimators; and significant – several order of magnitude – (online) computational
savings relative to standard finite element procedures.
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1. Introduction

1.1. Reduced basis approach

Engineering analysis requires the prediction of an (or more realistically, several) ‘‘output of interest’’ se 2 R

– related to energies or forces, stresses or strains, flowrates or pressure drops, temperatures or fluxes – as a
function of an ‘‘input’’ parameter P-vector l 2 D � RP – related to geometry, physical properties, boundary
conditions, or loads. These outputs se(l) are often functionals of a field variable ue(l),
1 Fo
seðlÞ ¼ ‘ðueðlÞÞ; ð1Þ

where ue(l) 2 Xe – say displacement, velocity, or temperature – satisfies in weak form the l-parametrized
(elliptic linear) partial differential equation
aðueðlÞ; v; lÞ ¼ f ðvÞ 8v 2 X e. ð2Þ

Here Xe is the appropriate function space, and a (respectively ‘, f) are continuous bilinear (respectively, linear)
forms.

In general, we cannot find the exact (our superscript ‘‘e’’ above) solution, and hence we replace se(l), ue(l)
with a Galerkin finite element approximation, sNðlÞ; uNðlÞ: given l 2 D,
sNðlÞ ¼ ‘ðuNðlÞÞ; ð3Þ

where uNðlÞ 2 XN satisfies
aðuNðlÞ; v; lÞ ¼ f ðvÞ 8v 2 XN. ð4Þ

Here XN � X e is a standard finite element approximation subspace of dimension N. Unfortunately, to
achieve the desired accuracy, N must typically be chosen very large; as a result, the evaluation l! sNðlÞ
is simply too costly in the many-query and real-time contexts often of interest in engineering. Low-order mod-
els – we consider here reduced basis approximations – are thus increasingly popular in the engineering anal-
ysis, parameter estimation, design optimization, and control contexts.

In the reduced basis approach [1–7], we approximate sNðlÞ; uNðlÞ – for some fixed sufficiently large
‘‘truth’’ N ¼Nt – with sN(l), uN(l): given l 2 D,
sN ðlÞ ¼ ‘ðuNðlÞÞ; ð5Þ

where uN(l) 2WN satisfies1
aðuN ðlÞ; v; lÞ ¼ f ðvÞ 8v 2 W N . ð6Þ

Here WN is a problem-specific space of dimension N �Nt that focuses on the (typically very smooth) para-
metric manifold of interest – fuNtðlÞjl 2 Dg – and thus enjoys very rapid convergence uNðlÞ ! uNtðlÞ and
hence sNðlÞ ! sNtðlÞ as N increases [3,8]. This dramatic dimension reduction, in conjunction with offline/online

computational procedures [6,7,9,10], yields very large savings in the many-query and real-time contexts: the on-
line complexity depends only on the size of the reduced basis space, N, which is typically orders of magnitude
smaller than the dimension of the finite element space, Nt.

Our own effort is dedicated to the development of a posteriori error estimators for reduced basis approx-
imations [6,7,11,12]: inexpensive – complexity independent of Nt – and sharp error bounds Ds

N ðlÞ such that
jsNtðlÞ � sN ðlÞj 6 Ds
N ðlÞ 8l 2 D.
Absent such rigorous error bounds we cannot efficiently determine if N is too small – and our reduced basis
approximation unacceptably inaccurate – or if N is too large – and our reduced basis approximation unneces-
sarily expensive. (Furthermore, in the nonlinear context, error bounds are crucial in establishing the very exis-

tence of a ‘‘truth’’ solution uNtðlÞ [13–15].) We cannot determine in ‘‘real-time’’ if critical design conditions and
constraints are satisfied – for example, does approximate feasibility sN(l) 6 C imply ‘‘true’’ feasibility
sNtðlÞ 6 C? And, in fact, we can not even construct an efficient and well-conditioned reduced basis approxi-
mation space WN [12,16].
r simplicity in this Introduction, we consider a purely primal approach; we shall subsequently pursue a primal–dual formulation.
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In this paper we focus on error estimators for (coercive and non-coercive) linear elliptic partial differ-
ential equations with affine parameter dependence. (For parabolic problems see [17]; for nonlinear prob-
lems, including the incompressible Navier–Stokes equations, see [11,12,14,15]; and for non-affine parameter
dependence, see [16,18,19].) Relative to our earlier work, we introduce a new ‘‘natural norm’’ that (a)
greatly simplifies and improves our inf–sup lower bound construction and evaluation – a critical ingredient
of our error estimators [11,12,15]; and (b) much better controls the effectivity of – significantly sharpens –
our error bounds, in particular (through deflation [11]) for nearly singular problems. We describe the for-
mulation and provide several illustrative numerical examples.

1.2. Application to uncertainty quantification

In general, uncertainty quantification must account for (a) error introduced by the numerical discretization,
(b) error or variance introduced by the input data, and (c) error introduced by the mathematical model. Our
error estimators directly address (a) within the reduced basis approximation context. However, reduced basis
error estimators are also an important ‘‘enabling technology’’ for the treatment of (b) and (c). Our emphasis in
this paper is on the enabling technology per se – the reduced basis error estimators; however, we briefly consider
here an application of our enabling technology to (b) and (c) – in particular, real-time parameter estimation – as
an illustration of broader relevance to the themes of this Special Volume.

For our abstract inverse problem [20,21], we decompose l ” (m, r) and D ¼ Dm �Dr; here m represents the
(say, Pm) parameters to be determined, and r represents the (Pr = P � Pm) parameters to be ‘‘controlled.’’ We
presume that we are given a set of experimental intervals Ij such that s(m*, rj) 2 Ij, 1 6 j 6 J, where m� 2 Dm is
the value of the unknown parameter, and the rj 2 Dr; 1 6 j 6 J , are the specified values of the experimental
control parameter. We then wish to determine – in the field, in real time – the ‘‘possibility’’ region
P � fm 2 Dmjsðm; rjÞ 2 Ij; 1 6 j 6 Jg containing all values of m (including, of course, m*) consistent with the
experimental data: we wish to quantify the uncertainty in the unknown parameter. (More simply, we may find
mmin

m � minm2Pmm and mmax
m � maxm2Pmm; 1 6 m 6 P m, from which we can construct the minimal box that con-

tains P;B ¼
QP m

m¼1½mmin
m ; mmax

m �.) Unfortunately, real-time construction of P (or B) is typically not computation-
ally viable.

We might thus consider the approximate reduced basis possibility region Po
N � fm 2 DmjsNðm; rjÞ 2 Ij; 1

6 j 6 Jg. However, Po
N may not include m*, in which case we risk an infeasible or unsafe decision (in, say,

a subsequent robust optimization framework [22]); alternatively, Po
N may be much larger than P, in which

case we risk an overly pessimistic decision. We should thus instead construct the approximate possibility
region [16,18,22] PN � fm 2 Dmj½sN ðm; rjÞ � Ds

Nðm; rjÞ; sN ðm;rjÞ þ Ds
N ðm; rjÞ� \ Ij 6¼ ;; 1 6 j 6 Jg. The certainty

provided by our error bound simultaneously provides (i) efficiency, and hence rapid response: we may
choose N (minimally) such that the reduced basis error Ds

N ðlÞ is commensurate with the experimental
error, and (ii) feasibility and safety: our approximate possibility region now perforce includes the ‘‘true’’
possibility region, ðm� 2ÞP � PN . We refer the reader to [16,18,22] for applications of this reduced basis
uncertainty quantification to non-destructive evaluation of cracks.

There are of course many alternative approaches to inverse problems and uncertainty quantification more
generally, from Monte Carlo methods [23] to Bayesian techniques [24–26] to polynomial chaos expansions
[27]. Our reduced basis enabling technology can readily serve in all these frameworks, providing for extre-
mely accurate and rapid (and exhaustive) evaluation without – thanks to our error bounds – introducing a
major new source of (numerical) uncertainty. (There are certainly other examples of the application of low-
dimensional models to uncertainty quantification (e.g., [24]); however, rigorous a posteriori error control
has received relatively little attention.)

2. Problem statement

2.1. Abstract formulation

Our exact output and field variable, seðlÞ 2 R and ue(l) 2 Xe, satisfy (1), (2). Here, for any l ” (l1	 	 	lP)
in our closed input domain D � RP , að	; 	; lÞ : X e � X e ! R is a parameter-dependent bilinear form, and
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‘ : X e ! R and f : X e ! R are parameter-independent linear forms (extension to parameter-dependent lin-
ear forms is straightforward). (See [16,28] for treatment of complex-valued fields with application to inverse
scattering and acoustics more generally.) We shall consider second-order partial differential equations, and
hence our exact space Xe satisfies H 1

0ðXÞ � X e � H 1ðXÞ: here X � Rd (d = 1, 2, or 3) is a spatial domain with
suitably regular boundary oX; and H1(X) (respectively, H 1

0ðXÞ) is the usual Hilbert space of derivative-
square-integrable functions (respectively, derivative-square-integrable functions that vanish on oX).

Our ‘‘truth’’ or ‘‘reference’’ finite element approximation to the exact output and field variable, sðlÞ �
sNtðlÞ and uðlÞ � uNtðlÞ 2 XNt � X , satisfies (3), (4) for the particular choice N ¼Nt. Given l 2 D,
sðlÞ ¼ ‘ðuðlÞÞ; ð7Þ
where u(l) 2 X satisfies
aðuðlÞ; v; lÞ ¼ f ðvÞ 8v 2 X . ð8Þ
We assume that Nt is chosen sufficiently large that s(l) and u(l) are essentially indistinguishable from se(l)
and ue(l), respectively. We shall build our reduced basis approximation upon this ‘‘truth’’ approximation; and
we shall evaluate the error in our reduced basis approximation with respect to this ‘‘truth’’ approximation. As
we will subsequently prove (see Section 7 and the Appendix), the online complexity (and stability) of our re-
duced basis approach is independent of Nt; hence, we may choose Nt to be ‘‘arbitrarily’’ large at no detriment
to (online) performance.

In addition to our ‘‘truth’’ primal problem, we shall also require a ‘‘truth’’ dual (or adjoint) problem [7,29–
31] associated with our particular output functional. Given l 2 D,
sðlÞ ¼ �f ðwðlÞÞ; ð9Þ
where the adjoint w(l) 2 X satisfies
aðv;wðlÞ; lÞ ¼ �‘ðvÞ 8v 2 X . ð10Þ
It follows from the primal problem (8) and the dual problem (10) that
‘ðuðlÞÞ ¼ �aðuðlÞ;wðlÞ; lÞ ¼ �f ðwðlÞÞ; ð11Þ
hence, (9) is a direct result of (10). Note that in the case of compliance – defined as (i) a symmetric:
a(w, v; l) = a(v, w; l) "w, v 2 X, and (ii) ‘ = f – we obtain w(l) = �u(l). We introduce the dual problem
(10) and the adjoint variable w(l) to improve the convergence of the output; we discuss this further in Section
4, in particular Lemma 4.1.

We shall suppose that our bilinear form is ‘‘affine’’ in the parameter: for some fixed integer Q – typically Q

shall be larger than P, sometimes by a considerable factor – we require
aðw; v; lÞ ¼
XQ

q¼1

HqðlÞaqðw; vÞ 8w; v 2 X ; 8l 2 D; ð12Þ
where Hq : D! R and aqðw; vÞ : X � X ! R; 1 6 q 6 Q, are parameter-dependent functions and parameter-
independent continuous bilinear forms, respectively. We shall further assume that Hq 2 C1ðDÞ; 1 6 q 6 Q.
‘‘Simple affine’’ (respectively, ‘‘general affine’’) shall refer to the case in which all the Hq, 1 6 q 6 Q, are
affine functions of l (respectively, at least one of the Hq, 1 6 q 6 Q, is not an affine function of l).

We denote the inner product and norm associated with our Hilbert space X ð� XNtÞ as (w, v)X and
kvkX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv; vÞX

p
, respectively. We further define the dual norm for any bounded linear functional h as
khkX 0 � sup
v2X

hðvÞ
kvkX

; ð13Þ
recall that X is finite-dimensional. A typical choice for our inner product (Æ,Æ)X is
ðw; vÞX ¼
Z

X
rw 	 rvþ wv; ð14Þ
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which is simply the standard H1(X) inner product. Any inner product which induces a norm equivalent to the
H1 norm is acceptable.

We next introduce [11,12,22,29] the parametrized linear operator Tl : X! X such that, for any l in D and
any w in X,
ðT lw; vÞX ¼ aðw; v; lÞ 8v 2 X . ð15Þ

The classical inf–sup parameter and continuity parameter can then be expressed as
bðlÞ � inf
w2X

sup
v2X

aðw; v; lÞ
kwkXkvkX

� inf
w2X

kT lwkX

kwkX

ð16Þ
and
cðlÞ � sup
w2X

sup
v2X

aðw; v; lÞ
kwkXkvkX

� sup
w2X

kT lwkX

kwkX

. ð17Þ
(Note that, from the Cauchy–Schwarz inequality, v = Tlw is the inner supremizer in (16) and (17).)
We now suppose that 0 < b0 6 b(l) 6 c(l) 6 c0 <1 8l 2 D (note we may strengthen this requirement

to hold for all N P Nt); we further assume that ‘ 2 X 0 and f 2 X 0 – bounded linear functionals. It then
follows that our primal and dual ‘‘truth’’ problems, (8) and (10), respectively, are well posed for all l in
D.

Our method – in particular our inf–sup lower bound and our deflated adjoint approximation – requires a
discrete set of K parameter values, VK � fl1; . . . ; lKg � D – upon which to construct local corrections. It
shall also prove convenient to introduce an indicator function IK : D!VK which associates to any l in
D a member of VK . (The process by which we select ‘‘good’’ VK and IK is described in Section 5.)

We may then introduce, for given l 2VK , our ‘‘natural inner product’’ and ‘‘natural norm’’ as
ðððw; vÞÞÞl � ðT lw; T lvÞX 8w; v 2 X ð18Þ
and
jjjvjjjl �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðððv; vÞÞÞl

q
� kT lvkX 8v 2 X ; ð19Þ
respectively. Note that, thanks to our assumptions on b(l) and c(l), (19) does indeed define a norm (equiv-
alent to iÆiX). (See [32] for a very different approach to, and very different application of, ‘‘natural norms’’
for non-symmetric (coercive) operators.)

We can also define a symmetric positive-semidefinite eigenproblem related to the (square of the) singular
values of our partial differential operator: for given l 2VK � D, ðUiðlÞ; qiðlÞÞ 2 X � R, i ¼ 1; . . . ;Nt,
satisfies
ðT lUiðlÞ; T lvÞX ¼ qiðlÞðUiðlÞ; vÞX 8v 2 X ; ð20Þ

the eigenvalues are ordered such that 0 < q1 6 q2 6 	 	 	 6 qNt

. We normalize our eigenfunctions as
kUiðlÞkX ¼ 1; i ¼ 1; . . . ;Nt, and hence orthogonality reads
ðT lUiðlÞ; T lUjðlÞÞX ¼ qiðlÞðUiðlÞ;UjðlÞÞX ¼ qiðlÞdij; 1 6 i; j 6Nt; ð21Þ

where dij is the Kronecker-delta symbol. We may then identify
bðlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
q1ðlÞ

p
ð22Þ
and
cðlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qNt
ðlÞ

q
; ð23Þ
where bðlÞ and cðlÞ are the classical inf–sup and continuity parameters defined in (16), (17) for the choice
l ¼ l. We also identify the second singular value,
bþðlÞ �
ffiffiffiffiffiffiffiffiffiffiffi
q2ðlÞ

p
. ð24Þ
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Finally, we define2
2 Wh
entitie
vðlÞ � U1ðlÞ=bðlÞ ðjjjvðlÞjjjl ¼ 1Þ : ð25Þ
the function vðlÞminimizes the inf–sup parameter – and hence represents the most unstable ‘‘mode’’; T lvðlÞ is
the corresponding supremizer.

2.2. Reduced basis error estimation

We take advantage of the abstract formulation to summarize the central result of the reduced basis methods
developed in this paper – the certified and sharp output error bounds for (nearly singular) linear elliptic param-
etrized PDEs. We also provide a roadmap for the remainder of the paper.

Given l 2 D, we define uN(l) and wN(l) as the reduced basis approximations to the ‘‘truth’’ primal and
dual fields u(l) and w(l); we denote the corresponding primal and dual residuals as
rpr
N ðv; lÞ ¼ f ðvÞ � aðuN ðlÞ; v; lÞ 8v 2 X ;

rdu
N ðv; lÞ ¼ �‘ðvÞ � aðv;wN ðlÞ; lÞ 8v 2 X ;

ð26Þ
respectively. The adjoint wN(l) is ‘‘deflated’’ to ensure that the dual residual is orthogonal to the most ‘‘unsta-
ble’’ mode vðlÞ (for l ¼ IKl):
rdu
N ðvðlÞ; lÞ ¼ 0. ð27Þ
Recall that IK : D!VK is an indicator function that associates to each l 2 D a ‘‘representative’’ (in fact,
‘‘nearby’’) member of the discrete parameter set VK .

We can then define our output error bound: for given l 2 D and thus l ¼ IKl 2VK ,
Ds
NðlÞ �

1

glðlÞbþðlÞ
krpr

N ð	; lÞkX 0 krdu
N ð	; lÞkX 0 . ð28Þ
Here krpr
N ð	; lÞkX 0 and krdu

N ð	; lÞkX 0 are the dual norms of the primal and dual residuals, respectively, and
glðlÞbþðlÞ is ‘‘effectively’’ (though not rigorously) a lower bound for b+(l) – the second singular value,
(24). (Strictly speaking, glðlÞ is a lower bound to an order-unity natural-norm inf–sup parameter defined in
Section 5.) The form of (28) is in some sense standard: a residual divided by a stability factor.

We prove in Section 6 that
jsðlÞ � sN ðlÞj 6 Ds
N ðlÞ 8l 2 D. ð29Þ
Deflation, (27), eliminates (an approximation to) the most unstable mode, which in turn eliminates b(l) – the
first singular value, (22) – in the error bound (28). Our result is particularly relevant for near-singular param-
eter values – parameter values for which bðlÞ �

ffiffiffiffiffiffiffiffiffiffiffi
q1ðlÞ

p
is very small but (typically) bþðlÞ �

ffiffiffiffiffiffiffiffiffiffiffi
q2ðlÞ

p
remains

‘‘O(1)’’. (Note, however, that even for ‘‘regular’’ problems – for which b(l) 
 b+(l) – our procedure for the
construction of the inf–sup lower bound function glðlÞ is still very useful.)

In Section 3, we introduce two illustrative instantiations to which we shall apply our reduced basis meth-
odology. In Section 4, we describe the generation of the primal and dual reduced basis spaces and correspond-
ing primal and deflated dual approximations, uN(l) and wN(l). In Section 5, we introduce our natural-norm
inf–sup parameter and associated lower bound function, glðlÞ. In Section 6, we describe our output error
bound and prove the central result (29). Finally in Section 7, we briefly present a computational comparison
of reduced basis methods (with error estimation) and standard finite element approaches for our two model
problems; an Appendix presents the offline/online computational strategy by which we efficiently compute
sN(l) and Ds

NðlÞ.
ile the eigenproblem (20) and associated quantities (22)–(25) can be defined for any l 2 D, in practice we shall only need these
s for l 2VK � D.
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3. Examples

3.1. Example I: Thermal plate fin – Laplacian

We consider a heat conduction problem corresponding to one unit of a thermal plate fin designed for the
cooling of electronic components. We show in Fig. 1(a) the original domain of the problem Xo(L), consisting
of a spreader subdomain of conductivity a (below) and a fin subdomain of conductivity unity and length L

(above). The temperature field satisfies the Laplacian in the spreader–fin domain Xo(L). We impose unit heat
flux (inhomogeneous Neumann) conditions on the spreader base CB; periodic boundary conditions on the
spreader vertical surfaces CP; continuity of temperature and heat flux at the spreader–fin interface CI; insu-
lated (zero Neumann) conditions on the spreader and fin horizontal surfaces (shaded in Fig. 1); and a convec-
tion (Robin) boundary condition – with non-dimensional heat-transfer coefficient/Biot number Bi – on the fin
vertical surfaces (exposed to the flowing air). We consider P = 3 parameters, l1 ” a, l2 ” (Bi L), and l3 ” L, for
the parameter domain D ¼ ½1; 10� � ½0:025; 3:75� � ½2:5; 7:5�.

In order to apply our methodology we map Xo(L)! X ” Xo(L = Lref = 1), as shown in Fig. 1(b); the trans-
formation is piecewise affine – the identity in the spreader/base, and a simple dilation in the fin. In these
mapped coordinates, our bilinear form is given by
aðw; v; lÞ ¼ a
Z

XS

rw 	 rvþ ðBiLÞ
Z

CC

wvþ L
Z

XF

ow
ox1

ov
ox1

þ 1

L

Z
XF

ow
ox2

ov
ox2

; ð30Þ
here x = (x1, x2) is our mapped spatial coordinate, XS and XF are the mapped (and hence parameter-indepen-
dent) spreader and fin subdomains, respectively, and CC comprises the mapped vertical (‘‘convection’’) sur-
faces of the fin. We observe that a is symmetric and coercive. Our linear form for the inhomogeneous
Neumann condition is simply f ðvÞ �

R
CB

v, where we recall that CB is the base of the spreader. Finally,
X e � H 1

#ðXÞ, in which # indicates periodicity on the vertical spreader surfaces CP (except for periodicity,
all other boundary conditions are natural); our truth approximation space X ¼ XNt is a P1 (linear) finite ele-
ment space of dimension Nt ¼ 5300.

We shall consider two outputs associated with two different output functionals. The first output s1(l) is the
spreader base average temperature, corresponding to the output functional ‘1(v) ” f(v); since a is symmetric,
this output functional is compliant. The output varies significantly with respect to all three parameters, from
a minimum of 1.92 to a maximum of 23.58; there is a particularly steep increase as Bi! 0 – our problem
is singular for Bi = 0. The second output s2(l) is the average temperature at the spreader–fin interface,
corresponding to the output functional ‘2ðvÞ � ð1=0:3Þ

R
CI

v; this output is of course not compliant. The second
Fig. 1. Thermal plate fin: (a) original domain, and (b) reference/mapped domain.



44 S. Sen et al. / Journal of Computational Physics 217 (2006) 37–62
output varies significantly with respect to (Bi L) and L (but not with respect to a), from a minimum of 1.84 to a
maximum of 22.71.

We observe that our bilinear form is indeed affine – ‘‘general affine’’ – as defined in (12). In particular, we
identify Q = 4, with H1(l) = l1, H2(l) = l2, H3(l) = l3, and H4(l) = 1/l3. As will often be the case for ‘‘phys-
ical’’ parameters associated with material properties or geometric variations, a typical function Hq(l) will
depend on only a few components of the parameter P-vector. (Obviously, the parametric representation is
not unique, and hence we implicitly choose the Hq(l) with this ‘‘limited dependency’’ property.)

3.2. Example II: ‘‘Microphone probe’’ – Helmholtz

We consider a frequency-domain acoustics problem corresponding to a highly simplified microphone
probe. We show in Fig. 2(a) the original domain of the problem Xo(L), consisting of an inlet (probe) and a
cavity. The inlet in our non-dimensionalization is of length 1/2 and height 1/4; the cavity is of length 1 and
height ð1

4
þ LÞ. The pressure field satisfies the Helmholtz equation in Xo(L). We impose uniform unity pressure

at the inlet Cin, Neumann symmetry conditions on the cavity centerline, and homogeneous Neumann (hence
zero velocity) conditions on the walls. We shall consider P = 2 parameters, l1 ” k2 (the non-dimensional wave-
number squared), and l2 = L, in the triangular parameter domain D shown in Fig. 3; we also plot in Fig. 3 the
first resonance curve – for which this undamped system will be singular – which approaches quite closely to the
parameter domain boundary.

In order to apply our methodology we map Xo(L)! X ” Xo(L = Lref = 1). As for the fin problem, the
transformation is piecewise affine: the identity for the Lower part of the domain (inlet and cavity) –
XL � � � 1

2
; 1½ � �0; 1

4
½ for the mapped problem; and a simple dilation in the Upper part of the cavity –

XU � �0; 1½ � � 14 ; 5
4
½ for the mapped problem. In these mapped coordinates, our bilinear form is given byZ Z Z Z Z
aðw; v; lÞ ¼
XL

rw 	 rv� k2

XL

wvþ L
XU

ow
ox1

ov
ox1

þ 1

L XU

ow
ox2

ov
ox2

� k2L
XU

wv; ð31Þ
where x = (x1, x2) is the mapped coordinate. We observe that a is again symmetric (though our method is cer-
tainly not restricted to symmetric operators); however, a is no longer coercive. Our linear form f(v; l) is given
by �a(U, v; l), where U = �2x1 (respectively, 0) for x1 6 0 (respectively, x1 > 0); U is a lifting function for the
inhomogeneous unity pressure boundary condition on Cin. Finally, X e ¼ fv 2 H 1ðXÞjvjCin

¼ 0g (except for the
inflow pressure condition, all boundary conditions are natural); our truth approximation space X ¼ XNt is a
quadratic ðP2Þ finite element space of dimension Nt ¼ 4841.

Finally, for our output, we consider a measure of the pressure over the right boundary of the cavity CO –
the ‘‘microphone surface’’ – corresponding to the output functional ‘ðvÞ ¼ ð1=ð1=4þ LÞÞ

R
CO

v. (Note that our
lifting function U vanishes for x1 > 0 and hence on CO; there is thus no contribution from U to the output.)
This output varies significantly with respect to both parameters – from a minimum of close to unity (corre-
sponding to faithful transducer performance) far from resonance to a maximum of 25 (corresponding to
unwanted amplification) near the resonance/singular curve.

We observe that our bilinear form a is indeed affine – ‘‘general’’ affine – as defined in (12). In particular, we
identify Q = 5, with H1(l) = 1, H2(l) = �l1 ” �k2, H3(l) = l2 ” L, H4(l) = 1/l2 ” 1/L, and H5(l) = �l1l2 ”
�k2L. Note for this particular problem, our linear functional f and our output functional ‘ also depend
Fig. 2. ‘‘Microphone probe’’: (a) original domain, and (b) reference/mapped domain.



Fig. 3. Parameter domain D for the Helmholtz problem. The dashed line indicates the (first) resonance curve.
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affinely on the parameter. For simplicity of presentation in this paper, we shall restrict our exposition of the
methodology to the abstract formulation of Section 2, in which f and ‘ are independent of l; the extension to
affine parameter dependence of f and ‘ – reflected in the results for Example II – is very simple.

4. Reduced basis approximation

4.1. Formulation

We first define (in fact, relative to the Introduction, redefine) N = (Npr, Ndu), where Npr and Ndu refer to the
dimension of the primal and dual reduced basis approximation spaces. We also specify Npr,max and Ndu,max as
the upper limits on the dimensions of the primal and dual spaces, respectively, which will determine the max-
imum reduced basis accuracy that can be achieved.

We next introduce sets of primal and dual parameter points, lpr
n ; 1 6 n 6 Npr;max, and ldu

n ; 1 6 n 6 N du;max,
respectively. Our primal (Lagrangian [4]) reduced basis nested approximation spaces are then given by
W pr

Npr
� spanfuðlpr

n Þ; 1 6 n 6 Nprg; 1 6 N pr 6 N pr;max, where the uðlpr
n Þ; 1 6 n 6 Npr;max, are our ‘‘snapshots.’’

We express (any member of) W pr
Npr

in terms of the basis fpr
n ; 1 6 n 6 N pr, where the fpr

n ; 1 6 n 6 N pr;max, are gen-
erated from the uðlpr

n Þ; 1 6 n 6 Npr;max, by a Gram–Schmidt orthogonalization process relative to the (Æ, Æ)X

inner product. In an analogous fashion, we create our dual reduced basis nested approximation spaces as
W du

Ndu
� spanfwðldu

n Þ; 1 6 n 6 Ndug � spanffdu
n ; 1 6 n 6 Ndug; 1 6 N du 6 N du;max.3

Then, for given l 2 D, our primal approximation uNðlÞ 2 W pr
Npr

satisfies
3 In
selectio
snapsh
proced
may b
aðuNðlÞ; v; lÞ ¼ f ðvÞ 8v 2 W pr
Npr

; ð32Þ
we denote the primal residual as
rpr
N ðv; lÞ � f ðvÞ � aðuN ðlÞ; v; lÞ 8v 2 X ; ð33Þ
and the primal error as
eprðlÞ � uðlÞ � uN ðlÞ. ð34Þ

We presume that (32) is well-posed and yields a unique solution. (Although Petrov–Galerkin approaches may
be preferable for (provable) discrete stability [29], in actual practice Galerkin reduced basis methods typically
suffice even for non-coercive problems.)
actual practice, our primal and dual sample points and associated primal and dual approximation spaces are constructed by a greedy
n process – based on the a posteriori error estimation procedures of the next section – that ensures ‘‘maximally independent’’
ots (in parameter space) and hence a rapidly convergent reduced basis approximation. In conjunction with our orthogonalization
ure, this sampling strategy also guarantees a well-conditioned reduced basis discrete system [16]. Details of this sampling procedure
e found in [11,12] for elliptic problems and [17,18] for parabolic problems.
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Our ‘‘undeflated’’ dual approximation wo
N ðlÞ 2 W du

Ndu
satisfies
aðv;wo
NðlÞ; lÞ ¼ �‘ðvÞ 8v 2 W du

Ndu
; ð35Þ
we denote the associated ‘‘undeflated’’ residual and error as
rdu;o
N ðv; lÞ � �‘ðvÞ � aðv;wo

N ðlÞ; lÞ 8v 2 X ; ð36Þ

and
edu;oðlÞ � wðlÞ � wo
N ðlÞ; ð37Þ
respectively. We presume that (35) is well-posed and yields a unique solution.
For a given l 2 D and associated l ¼ IKl 2VK , the deflated dual [11] approximation is then given by
wVK ;IK

N ðlÞ ¼ wo
N ðlÞ þ dlðlÞ; ð38Þ
where
dlðlÞ � clðlÞT lvðlÞ ð39Þ

satisfies
aðvðlÞ; dlðlÞ; lÞ ¼ rdu;o
N ðvðlÞ; lÞ. ð40Þ
We shall henceforth abbreviate wVK ;IK

N as wN; the dependence (through the deflation correction) on VK , IK is
understood. We denote the associated ‘‘deflated’’ residual and error as
rdu
N ðv; lÞ � �‘ðvÞ � aðv;wN ðlÞ; lÞ 8v 2 X ; ð41Þ
and
eduðlÞ � wðlÞ � wN ðlÞ; ð42Þ

respectively. We adopt the convention that Ndu = 0 corresponds to wo(l) = 0; in this case, wN ðlÞ ¼ dlðlÞ.

It can be shown that (40) is stable: under suitable (verifiable) hypotheses on VK , IK , we can directly relate
kdlðlÞkX to iedu,o(l)iX – see Proposition 5.3 of Section 5 for the proof. Hence our deflation correction will not
incommensurately adversely affect the dual error; indeed, deflation may reduce the dual error, though this is
not guaranteed. The main purpose of deflation is to eliminate the component of the error – associated with the
most unstable mode – that forces us, through our inf–sup lower bound, to treat in our error bound all error
modes overly pessimistically (see Section 2.2). We discuss this in detail in the Section 6.

Finally, we shall define (in fact, relative to the Introduction, redefine) our deflated reduced basis output
approximation sN(l) as
sN ðlÞ � ‘ðuNðlÞÞ � rpr
N ðwN ðlÞ; lÞ. ð43Þ
We can then prove

Lemma 4.1. Under our assumption that the discrete problems (32), (35), and (40) are well posed, sN(l) of (43)

satisfies
sðlÞ � sN ðlÞ ¼ �aðeprðlÞ; eduðlÞ; lÞ ¼ �rdu
N ðeprðlÞ; lÞ 8l 2 D. ð44Þ
Proof. We first note that sðlÞ � sN ðlÞ ¼ ‘ðeprðlÞÞ þ rpr
N ðwN ðlÞ; lÞ, which, from the definition of our dual

problem (10), can be expressed as sðlÞ � sN ðlÞ ¼ �aðeprðlÞ;wðlÞ; lÞ þ rpr
N ðwN ðlÞ; lÞ. The result then directly

follows from the standard primal and dual error-residual relationships, rpr
N ðv; lÞ ¼ aðeprðlÞ; v; lÞ and

rdu
N ðv; lÞ ¼ aðv; eduðlÞ; lÞ, respectively. h

We thus observe the usual ‘‘quadratic’’ convergence of the output relative to the primal and dual errors.

Remark 1. In the case of compliance – (i) a symmetric, and (ii) ‘ = f – we may replace (43) with
sN ðlÞ � �‘ðwNðlÞÞ þ rdu
N ðwN ðlÞ; lÞ ðcomplianceÞ ð45Þ
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and (44) of Lemma 4.1 with
Table
Examp
gs

i;N , as

Ndu

4
8

12
16
20

(See Se

Table
Examp
effectiv

Ndu

2
4
6
8

10

(See Se
sðlÞ � sN ðlÞ ¼ aðeduðlÞ; eduðlÞ; lÞ ¼ rdu
N ðeduðlÞ; lÞ ðcomplianceÞ; ð46Þ
we no longer need the primal solution. (Of course, we can also rephrase the result solely in terms of a deflated
primal; however, since our dual is already deflated, (46) is notationally more convenient.)
4.2. Numerical results

We present in Table 1 the convergence of the two outputs s1(l) and s2(l) – associated with output function-
als ‘1(l) and ‘2(l), respectively – of Example I of Section 3.1, the thermal plate fin. We present the results in
terms of Ndu; for the first (compliant) output, there is no need for a primal solution – we invoke (45); for the
second (non-compliant) output, we take Npr = Ndu. The error Ei,N reported for each output, subscript i = 1, 2,
is the maximum of the relative error, jsi(l) � si,N(l)j/jsi(l)j, over a random parameter test sample NI

test � D of
size nI

test ¼ 1000. We observe very rapid convergence with N, as expected from the ‘‘smooth parametric man-
ifold’’ arguments [3,8,12].

We present in Table 2 the convergence of the output associated with Example II of Section 3.2, the ‘‘micro-
phone probe.’’ We present the results in terms of Ndu (=Npr). The error EN is the maximum of the relative
error, js(l) � sN(l)j/js(l)j, over a random parameter test sample NII

test � D of size nII
test ¼ 400. As for the ther-

mal fin, we observe very rapid convergence with N. Note that our parameter domain D – see Fig. 3 – only
significantly excites a single (near-) resonant mode. If D were to approach other resonant modes (or, in the
case of a damped system, to include other resonant modes), the reduced basis spaces would need to be suitably
enlarged [11]. In general for Helmholtz problems – due to both approximation and certainly inf–sup lower
bound considerations – we can only hope to address some modest number of resonances within any particular
certified reduced basis approximation.

5. Inf–sup parameter: lower bound

Our error bound (28) requires an inexpensive (online) and reasonably accurate lower bound for a piecewise
‘‘natural-norm’’ inf–sup stability parameter. We first define the latter, and then construct the former – the
function glðlÞ of Section 2.2.
1
le I, Thermal plate fin: the (maximum) relative error Ei,N, (maximum) a posteriori output error bound Ei;N , and (average) effectivity
a function of Ndu for outputs s1 and s2

E1,N E1;N gs
1;N E2,N E2;N gs

2;N

2.32E�02 8.28E�01 16.83 0.94E�02 4.85E�01 70.18
1.04E�03 2.25E�02 18.32 1.20E�04 5.13E�03 155.35
1.74E�05 7.29E�05 11.36 1.91E�06 4.61E�05 75.38
9.56E�07 9.73E�06 14.50 6.42E�07 6.63E�06 62.36
– – – 3.4E�08 7.12E�07 15.29

ction 6.2 for a discussion of the error bound and effectivity.)

2
le II, ‘‘Microphone probe’’: the (maximum) relative error EN, (maximum) a posteriori output error bound EN , and (average)
ity gs

N , as a function of Ndu

EN EN gs
N

8.56E�02 2.27E+00 35.58
3.72E�04 4.58E�03 52.17
1.52E�05 1.11E�04 33.33
4.34E�07 8.33E�06 40.05
9.00E�09 2.57E�07 15.14

ction 6.2 for a discussion of the error bound and effectivity.)
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5.1. Natural-norm inf–sup parameter

To begin, for given l 2 D and l 2VK , we define local natural-norm inf–sup and continuity parameters as
~blðlÞ � inf
w2X

sup
v2X

aðw; v; lÞ
jjjwjjjlkvkX

� inf
w2X

kT lwkX

kT lwkX

ð47Þ
and
~clðlÞ � sup
w2X

sup
v2X

aðw; v; lÞ
jjjwjjjlkvkX

� sup
w2X

kT lwkX

kT lwkX

; ð48Þ
respectively. It is clear that, for l ¼ l; ~blðlÞ ¼ ~clðlÞ ¼ 1; our natural norm can thus be viewed as a general-
ization of the usual energy norm (for symmetric, coercive operators) to the non-symmetric non-coercive case.
(Note the natural norms proposed in [32] for non-symmetric coercive operators, though very different in for-
mulation, details, and application, are also characterized by order-unity inf–sup and continuity constants: this
is arguably the essential property of any natural norm proposal.) It can be demonstrated that
bðlÞ~blðlÞ 6 bðlÞ 6 ~blðlÞcðlÞ; ð49Þ

hence (under our assumptions on b(l) and c(l)), ~blðlÞ is bounded away from zero for all l in D.

In what follows we shall also require an ‘‘intermediate’’ inf–sup parameter – an approximation to ~blðlÞ –
which we shall denote as blðlÞ: for given l 2 D and l 2VK ,
blðlÞ � inf
w2X

ðT lw; T lwÞX
jjjwjjj2l

. ð50Þ
It follows directly from the Cauchy–Schwarz inequality – or equivalently, we may observe that T lw is a can-
didate supremizer v in (47) – that blðlÞ is a lower bound for ~blðlÞ,
blðlÞ 6 ~blðlÞ 8l 2 D ð51Þ

(note that blðlÞ is not necessarily positive).

We can also show that blðlÞ is a ‘‘good’’ lower bound for ~blðlÞ; we sketch here the proof. We first expand
~b2

lðlÞ to obtain
~b2
lðlÞ ¼ inf

w2X

T lwþ ðT lw� T lwÞ; T lwþ ðT lw� T lwÞ
� �

X

kT lwk2
X

¼ 1þ 2 inf
w2X

ðT lw� T lw; T lwÞX
kT lwk2

X

þOðjl� lj2Þ ¼ �1þ 2blðlÞ þOðjl� lj2Þ as l! l ð52Þ
from the affine nature of a and our assumption Hq 2 C1ðDÞ (see the discussion following (12)); it thus follows
that
~blðlÞ ¼ blðlÞ þOðblðlÞ � 1Þ2 þOðjl� lj2Þ as l! l. ð53Þ

Finally, we again exploit the continuity of a to note that
blðlÞ � 1 ¼ Oðjl� ljÞ as l! l; ð54Þ

therefore, j~blðlÞ � blðlÞj ¼ Oðjl� lj2Þ as l! l, where jÆj refers to the usual Euclidean norm. We conclude

that blðlÞ is a second-order accurate approximation to ~blðlÞ for l near l.
Finally, we recall our parameter set VK � fl1 2 D; l2 2 D; . . . ; lK 2 Dg and associated ‘‘indicator’’ func-

tion IK : D!VK ; IK maps any given l 2 D to a ‘‘representative’’ (in fact, ‘‘nearby’’) member of VK . Our
global natural-norm inf–sup parameter is then assembled as
~bVK ;IK ðlÞ � inf
w2X

sup
v2X

aðw; v; lÞ
jjjwjjjIKlkvk

¼ ~bIK lðlÞ; ð55Þ
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we further define ~bVK ;IK

min � minl2D~bVK ;IK ðlÞ. (Where there is no opportunity for confusion, we shall abbrevi-
ate ~bVK ;IK ðlÞ as ~bKðlÞ.) Note that as K increases and VK becomes denser in D, ~bVK ;IK ðlÞ approaches unity for
all l 2 D; the piecewise natural-norm inf–sup parameter is thus intrinsically ‘‘easy’’ to approximate. We now
turn to the construction of a lower bound approximation.

5.2. Lower bound construction

5.2.1. Local lower bound

We begin with a local lower bound. Furthermore, for pedagogical purposes, we first consider the ‘‘simple
affine’’ case; more precisely, we assume that a(w, v; l) has the ‘‘simplest affine’’ form (Q = P)
aðw; v; lÞ ¼
XP

p¼1

lpapðw; vÞ;
where lp is the pth component of l 2 RP and the ap, 1 6 p 6 P, are continuous bilinear forms.
Under this assumption, it follows from (50) and (15) that, for given l 2 D and l 2VK ,
bsa
l ðlÞ ¼ inf

w2X

ðT lwþ ðT lw� T lwÞ; T lwÞX
jjjwjjj2l

¼ 1þ inf
w2X

XP

p¼1

ðlp � lpÞ
apðw; T lwÞX
jjjwjjj2l
(here ‘‘sa’’ refers to ‘‘simplest affine’’). Hence, if we introduce the extreme eigenvalues
kp;sa
l;min ¼ min

w2X

apðw; T lwÞX
jjjwjjj2l

;

kp;sa
l;max ¼ max

w2X

apðw; T lwÞX
jjjwjjj2l

;

then
gsa
l ðlÞ � 1þ

XP

p¼1

Min ðlp � lpÞkp;sa
l;min; ðlp � lpÞkp;sa

l;max

h i
¼ 1þ

XP

p¼1

inf
w2X

ðlp � lpÞ
apðw; T lwÞX
jjjwjjj2l

 !
6 blðlÞ.
Note Min[x, y] returns x if x 6 y and y otherwise.
Thus gsa

l ðlÞ is a lower bound for bsa
l ðlÞ and, from (51), for ~bsa

l ðlÞ as well. We also expect that gsa
l ðlÞ will be a

reasonably good lower bound at least for l near l. In particular, we note from our derivation that
gsa

l ðlÞ ¼ bsa
l ðlÞ (exactly) along parameter coordinate directions – for any l ¼ lþ z for which z 2 RP is non-

zero in only a single component. (Unfortunately, and despite (53), (54), the discrepancy j~bsa
l ðlÞ � gsa

l ðlÞj is
not generally Oðjl� lj2Þ even for l near l, since bsa

l ðlÞ and ~bsa
l ðlÞ are not C1ðDÞ.)

We now address the general affine case, (12), by an (almost) direct Taylor-series extension of the simplest
affine case described above. To wit, for given l 2 D and l 2VK , we write
glðlÞ ¼ max
j2RP

ĝlðl; jÞ; ð56Þ
where for given l 2 D and l 2VK ,
ĝlðl; jÞ ¼ 1þ
XP

p¼1

Min jpðlp � lpÞkp
l;max; jpðlp � lpÞkp

l;min

h i
þ
XQ

q¼1

;Min HqðlÞ �HqðlÞ �
XP

p0¼1

oHq

olp0
ðlÞjp0 ðlp0 � lp0 Þ

 !
nq

l;max;

"

HqðlÞ �HqðlÞ �
XP

p0¼1

oHq

olp0
ðlÞjp0 ðlp0 � lp0 Þ

 !
nq

l;min

#
; ð57Þ
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here, for p = 1, . . . , P, kp
l;min and kp

l;max are given by
kp
l;minðmaxÞ ¼ min

w2X
ðmax

w2X
Þ
PQ

q¼1
oHq

olp
ðlÞaqðw; T lwÞ

jjjwjjj2l
; ð58Þ
and, for q = 1, . . . , Q, nq
l;min and nq

l;max are given by
nq
l;minðmaxÞ ¼ min

w2X
ðmax

w2X
Þ a

qðw; T lwÞ
jjjwjjj2l

. ð59Þ
(In (58) and (59), min(max) refers to two different quantities.) Recall that the Min[x, y] function returns x if
x 6 y and y otherwise.

We recognize the first two terms of (57), and the extreme eigenvalues (58), as the first-order Taylor series
generalization of the ‘‘simplest affine’’ result; we recognize the third sum in (57), and the extreme eigenvalues
(59), as the ‘‘remainder’’ term – which is of course absent in the simple affine case (for the choice j = 1). The
tuning parameter j 2 RP in (57) is effectively a local rescaling of the parameter – there is implicitly much
freedom in the parametric representation (see also Remark 3 below) – that is optimized in (56) to balance
the various contributions to the lower bound. We shall denote the optimal scaling parameter as jopt

l ðlÞ �
arg maxj2RP ĝlðl; jÞ.

Remark 2. We note that, for fixed l and l, the optimization with respect to j, (56), takes the form
glðlÞ ¼ 1þmax
j2RP

XPþQ

m¼1

Min½F mðjÞ;GmðjÞ�; ð60Þ
where the Fm, Gm, 1 6 m 6 P + Q, are affine functions of j. We may thus rewrite (60) as
glðlÞ ¼ 1þ max
j2RP ;d2RPþQ

F mðjÞPdm;GmðjÞPdm;16m6PþQ

XPþQ

m¼1

dm; ð61Þ
which is simply a Linear Program (LP).

We can then prove

Lemma 5.1. For given l 2VK and j 2 RP ,
ĝlðl; jÞ 6 blðlÞ 8l 2 D. ð62Þ
Proof. We take as our point of departure the definition of blðlÞ, (50). We then write Tlw as T lwþ ðT lw
�T lwÞ and invoke (15) and (12) to obtain
blðlÞ ¼ 1þ inf
w2X

XQ

q¼1

ðHqðlÞ �HqðlÞÞ a
qðw; T lwÞ
jjjwjjj2l

 !
. ð63Þ
Next, we add and subtract to our ‘‘infimand’’ in (63) the term
XQ

q¼1

XP

p¼1

oHq

olp
ðlÞjpðlp � lpÞ

aqðw; T lwÞ
jjjwjjj2l

; ð64Þ
and group the contributions as
blðlÞ ¼ 1þ inf
w2X

XP

p¼1

jpðlp � lpÞ
XQ

q0¼1

oHq0

olp
ðlÞ a

q0 ðw; T lwÞ
jjjwjjj2l

 !(

þ
XQ

q¼1

HqðlÞ �HqðlÞ �
XP

p0¼1

oHq

olp0
ðlÞjp0 ðlp0 � lp0 Þ

 !
aqðw; T lwÞ
jjjwjjj2l

)
. ð65Þ
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Finally, we note that the ‘‘inf of the sums’’ bounds from above the ‘‘sum of the infs’’; we then invoke the equal-
ities (58), (59), which concludes the proof. h

This proof is, of course, quite similar to the simpler ‘‘simplest affine’’ case.
As regards accuracy, we anticipate that (56) will inherit the good properties of the simple affine case to lead-

ing order; the general affine contributions only contribute to second order – and hence, even for larger Q,
should be reasonably well controlled. We provide numerical evidence for this claim in Section 5.4.

Remark 3. We understand (from our ‘‘simplest affine’’ arguments) that our lower bound for blðlÞ will be
sharpest in the parameter coordinate directions. We can exploit the freedom in the parametric representation
to ‘‘optimally’’ locally align a parameter coordinate with the largest gradients in blðl ¼ lÞ. The derivatives of
blðlÞ and ~blðlÞ at l ¼ l will only exist in the directional sense; however, we can plausibly assume – see the left
inequality of (49) – that the steepest variation will be approximately aligned with the gradient of b(l).
Although b(l) is not C1ðDÞ, the gradient GðlÞ 2 RP at l ¼ l will generally exist, and can be formally
evaluated by the usual sensitivity arguments as
GpðlÞ ¼ bðlÞ
XQ

q¼1

oHq

olp
ðlÞaqðvðlÞ; T lvðlÞÞ; p ¼ 1; . . . ; P . ð66Þ
We may thus gainfully introduce, for given l, a new parameter coordinate system l̂ ¼ Rll in which the first
component of l̂ aligns with GðlÞ; here Rl 2 RP�P is an orthogonal (rotation) matrix. We shall refer to the local
lower bound construction based on l – the parameter coordinate system given – as ‘‘without local rotation’’;
and the local lower bound construction based on l̂ – the new parameter coordinate system optimally aligned –
as ‘‘with local rotation.’’ This rotation is of course a valid transformation independent of the rigor of the moti-
vating arguments.
5.2.2. Global lower bound

For given VK , IK our global lower bound function gVK ;IK ðlÞ: D! R is then given by
gVK ;IK ðlÞ ¼ gIK lðlÞ. ð67Þ
(Where there is no opportunity for confusion, we may abbreviate gVK ;IK ðlÞ by gK(l).) We further define
gVK ;IK

min ¼ min
l2D

gVK ;IK ðlÞ. ð68Þ
We can then readily prove

Proposition 5.2. For given VK ;IK ,
gVK ;IK ðlÞ 6 ~bVK ;IK ðlÞ 8l 2 D. ð69Þ
Proof. The result follows directly from the definitions (55) and (67), Lemma 5.1, and the inequality (51). h

We note that gVK ;IK

min may be negative, in which case the lower bound is of little value.
We are also now in a position to return to – and prove – the stability of our adjoint deflation correction. In

particular,

Proposition 5.3. For VK ;IK such that gVK ;IK

min > 0, the deflation correction dlðlÞ defined in (39), (40) is

bounded.

Proof. We observe from (36), (10), (37), (15) and (48) that, for l 2 D and l ¼ IKl 2VK ,
rdu;o
N ðvðlÞ; lÞ ¼ aðvðlÞ; edu;oðlÞ; lÞ ¼ ðT lvðlÞ; edu;oðlÞÞX 6 ~clðlÞkT lvðlÞkXkedu;oðlÞkX . ð70Þ
We then note from (15), (39), (50), and (25) that
aðvðlÞ; dlðlÞ; lÞ ¼ clðlÞðT lvðlÞ; T lvðlÞÞX P clðlÞblðlÞkT lvðlÞk2
X ¼ clðlÞblðlÞ. ð71Þ
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Therefore, it follows from (39), (25), (40), and Lemma 5.1, (67), (68) that
4 Ac
l 2V

5 We
for jop

l

kdlðlÞkX 6
~clðlÞ

gVK ;IK

min

kedu;oðlÞkX ; ð72Þ
which concludes the proof. h
5.3. Selection of VK , IK

We first discuss the choice of IK given VK ; we then discuss the construction of VK . For IK , the best choice
will maximize our lower bound, gVK ;IK ðlÞ. It is thus clear that, given VK , we should specify IK ¼ IK

� , where
for given l 2 D,
IK
� l ¼ arg max

l2VK
glðlÞ. ð73Þ
In essence, (73) finds the best (largest) local lower bound. (We also expect, of course, that IK
� l will be near l in

the usual Euclidean sense.) Equivalently, we may say that, for given VK , the choice IK ¼ IK
� maximizes

gVK ;IK

min of (68) over all possible IK .
We conclude our development by proposing a procedure by which to determine a good set of parameter

points VK such that our lower bound is of value – gVK ;IK

min positive. We first introduce a large parameter sample
Ng � D of size ng� 1. We next set K = 1 and select a tolerance 0 < gtol < 1; we then choose l1, which in turn
defines gV1;I1

� ðlÞ. We now proceed to calculate for K = 1, . . . ,
lKþ1 ¼ arg max
l2Ng

min
fl02Ng jgV

K ;IK
� ðl0ÞPgtolg

jl� l0j
 !

ð74Þ
until
min
l2Ng

gVK ;IK
� ðlÞP gtol; ð75Þ
here jÆj refers to the usual Euclidean norm, though more general metrics may also be considered. In essence,
(74) chooses the next point to be the farthest point from the ‘‘good set’’; other approaches are certainly pos-
sible. Note that (75) does not quite ensure gVK ;IK

�
min P gtol, since in (75) we consider only the finite albeit large

sample Ng � D.

5.4. Numerical results

We demonstrate our lower bound first for Example I, the thermal plate fin problem of Section 3.1. We spec-
ify ng = 2000 and gtol = 0.5 and apply (‘‘without local rotation’’) the algorithm (74), (75) with (73) to obtain VK

and IK
� ; we satisfy the desired tolerance for K = 27 – rather modest given the extensive parameter domain D.

We present in Figs. 4(a) and (b) slices of gKðlÞ � gVK ;IK
� ðlÞ for l1 ” a = 5, l2 ” (BiL) = 0.1,

l3 ” L 2 [2.5, 7.5], and for l1 ” a = 1, l2 ” (Bi L) 2 [0.05, 2.5], and l3 ” L = 5, respectively.4 We also include
in Fig. 4 the sub-optimal non-scaled result
gK
nsðlÞ ¼ max

l2VK
ĝlðl; j ¼ ð1 1 1Þ Þ; ð76Þ
clearly, j optimization – parameter rescaling – is quite effective in controlling the higher-order contributions.5

Although our lower bound is in some sense rather low order, each local approximation is nevertheless valid –
to the O(1) accuracy required for our error-bound purposes – over a considerable fraction of the parameter
domain: the piecewise natural-norm inf–sup parameter is, by construction, a relatively simple function to
represent.
cording to (73), gK(l) should be continuous. However in practice, to reduce online expense, we do not enumerate over all the
K to evaluate IK

� l – instead, the maximization process (73) is terminated once we find any l 2VK such that glðlÞP gtol.
note that for gK

ns in (76) and Fig. 4 we retain VK as calculated in (74), (75), (73) based on (67), (56); hence, VK in (76) is optimized
tðlÞ and not j ¼ ð1 1 1Þ . Our comparison here is intended only to demonstrate the important effect of rescaling.



Fig. 4. Inf-sup lower bound for the Laplacian of Example I for (a) l1 ” a = 5, l2 ” BiL = 0.1, l3 ” L 2 [2.5, 7.5], and (b) l1 ” a = 1,
l2 ” BiL 2 [0.05, 2.5], l3 ” L = 5. We present both gK(l) (solid line) and gK

nsðlÞ (dashed line).

Table 3
Requisite sample size of VK for gtol = 0.5 for the Helmholtz problem of Example II without (K) and with (KPP) Post-Processing

Case Rotation j optimization K KPP

1 Yes Yes 14 8
2 No Yes 18 15
3 Yes No 18 15
4 No No 21 20
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We next demonstrate our lower bound for Example II, the acoustics Helmholtz problem of Section 3.2. We
specify a uniform grid Ng � D of size ng = 3200 and prescribe gtol = 0.5. We now apply our algorithm (74),
(75) with (73) both ‘‘with local rotation’’ and ‘‘without local rotation’’ (see Remark 3), and both ‘‘with j opti-
mization’’ and ‘‘without j optimization’’; in the ‘‘without j optimization’’ case, we replace glðlÞ of (56) with
ĝlðl; j ¼ ð1 1Þ Þ. The four cases considered are defined in Table 3. Note that for each case considered the
parameter set VK (and hence also IK

� ) is chosen optimally for the particular case. In each case we also pursue
a simple Post-Processing step6 in which we eliminate unnecessary points that are artifacts of our greedy algo-
rithm – since our procedure to determine the set of parameter points VK is not necessarily optimal, it is likely
that there are some redundant points in VK .

Our results for Cases 1–4 are summarized in Table 3 in terms of the requisite K and KPP (Post-Processed)
for the given gtol = 0.5. (Recall that VK , IK

� , and K are optimized and hence different for each case.) We show
in Fig. 5 the parameter set VK for Case 1 (‘‘with local rotation’’ and ‘‘with j optimization’’) without Post-Pro-
cessing. Clearly, j optimization, local rotation, and Post-Processing can, in concert, significantly reduce the
requisite sample size. We observe however that, although K is quite modest, there is indeed a concentration
of points in VK near the resonance curve; this is necessary in order to accommodate the second-order or ‘‘cur-
vature’’ contributions to the inf–sup parameter. This does imply some significant dependence of K on P (the
number of parameters) since in general the resonance curves will be (P � 1)-dimensional manifolds. In order
to quantify this effect, and also the mitigating effect of any damping, further tests in higher parameter dimen-
sions are required [28].

6. A posteriori error estimation

6.1. Formulation

We first introduce a bound for the natural norm of the primal error; we then turn to the error bound for the
output of interest. Throughout this section, we presume that gKðlÞ � gVK ;IK ðlÞ for given VK and IK (typi-
cally IK

� ); and that gK
min � gVK ;IK

min of (68) is positive.
6 To Post Process VK we consider each point lk ; 1 6 k 6 K, in turn; we eliminate the point if the resulting reduced sample preserves our
gtol requirement.



Fig. 5. Parameter sample VK for the Helmholtz problem of Example II for Case 1 (‘‘with local rotation’’and ‘‘with j optimization’’)
without Post-Processing. The dashed line indicates the (first) resonance curve.
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Our bound for the primal error in the natural norm is given by
DNðlÞ �
1

gKðlÞ kr
pr
N ð	; lÞkX 0 ; ð77Þ
where the dual norm is defined in (13). We can prove

Lemma 6.1. For given l 2 D, the primal error satisfies
jjjeprðlÞjjjl 6 DN ðlÞ; ð78Þ
where l ¼ IKl.

Proof. It follows from the error-residual relationship, aðeprðlÞ; v; lÞ ¼ rpr
N ðv; lÞ, "v 2 X, the inf–sup definition

(47), (55), and Proposition 5.2, that
gKðlÞjjjeprðlÞjjjlkT leprðlÞkX 6 jr
pr
N ðT leprðlÞ; lÞj. ð79Þ
But clearly, from (13), jrpr
N ðT leprðlÞ; lÞj=kT leprðlÞkX 6 kr

pr
N ð	; lÞkX 0 , which concludes the proof. h

We can also readily demonstrate that
DNðlÞ 6
clðlÞ
gKðlÞ jjje

prðlÞjjjl; ð80Þ
however this good effectivity in the natural norm is not yet relevant to our ultimate objective – a bound for the
error in the output of interest.

We shall require one additional preliminary result, which we provide in

Lemma 6.2. For a functional h 2 X 0 that, for a given l 2VK , satisfies hðvðlÞÞ ¼ 0,
sup
v2X

hðvÞ
jjjvjjjl

6
1

bþðlÞ
khkX 0 . ð81Þ
Proof. We first observe by standard duality arguments that
sup
v2X

hðvÞ
jjjvjjjl

¼ hðHÞ
jjjH jjjl

; ð82Þ
where, from the definition (18), ðT lH ; T lvÞX ¼ hðvÞ 8v 2 X . It is clear from our hypothesis on h that
ðT lH ; T lvðlÞÞX ¼ 0. ð83Þ

We now expand H as
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H ¼
XNt

i¼1

ciUiðlÞ; ð84Þ
and observe from (21), (25), and the orthogonality condition (83) that c1 = 0. We further note from (19), (21),
and (24) that
jjjH jjj2l ¼
XNt

i¼1

c2
i qiðlÞ ¼

XNt

i¼2

c2
i qiðlÞP ðbþðlÞÞ

2
XNt

i¼2

c2
i ¼ ðb

þðlÞÞ2kHk2
X . ð85Þ
Therefore, from (85) and (13),
hðHÞ
jjjH jjjl

6
hðHÞ

bþðlÞkHkX

6
1

bþðlÞ
khkX 0 ; ð86Þ
which concludes the proof. h

This lemma is not surprising: it is a standard norm-equivalence argument except that we have eliminated the
extreme mode.

We now define our output error bound as
Ds
N ðlÞ �

1

bþðlÞgKðlÞ
krdu

N ð	; lÞkX 0 kr
pr
N ð	; lÞkX 0 ð87Þ
for l ¼ IKl. We can then prove

Proposition 6.3. The output error satisfies
jsðlÞ � sN ðlÞj 6 Ds
N ðlÞ 8l 2 D. ð88Þ
Proof. We first observe from Lemmas 4.1 and 6.1 that, for l ¼ IKl,
jsðlÞ � sN ðlÞj ¼ jrdu
N ðeprðlÞ; lÞj 6 sup

v2X

rdu
N ðv; lÞ
jjjvjjjl

 !
jjjeprðlÞjjjl 6 sup

v2X

rdu
N ðv; lÞ
jjjvjjjl

 !
DN ðlÞ. ð89Þ
We now observe from (38), (40) and (41) that rdu
N ðvðlÞ; lÞ ¼ 0, and hence from Lemma 6.2
sup
v2X

rdu
N ðv; lÞ
jjjvjjjl

6
1

bþðlÞ
krdu

N ð	; lÞkX 0 ; ð90Þ
which concludes the proof. h

We note that Proposition 6.3 is valid for any Npr, Ndu.
The quality, or sharpness, of our output bound is measured by the effectivity,
gs
N ðlÞ �

Ds
N ðlÞ

jsðlÞ � sN ðlÞj
. ð91Þ
In general, we cannot bound this output effectivity. The incorporation of the dual in the bound does eliminate
one important source of deterioration in the effectivity, in which (in particular, as ‘ approaches f) the primal
space well approximates the dual solution – and hence the output converges faster than the primal error even
without the dual correction [15]. However, another source of deterioration in the effectivity remains: implicitly,
our bound in (87) ignores any possible de-correlation between the primal and dual errors – whereas in fact
js(l) � sN(l)j may be significantly smaller than the product of the primal and dual errors. We can thus hope
that our effectivities will be well-behaved, but this may not always be the case [15]. We do note that, given the
rapid convergence of the reduced basis approximation, O(10) effectivities are not particularly worrisome, as
this can readily be absorbed by only a very slight increase in N.

Deflation can also play an important role in controlling effectivities. In particular, many coercive and non-
coercive problems may exhibit near singular behavior in which b(l) tends to zero: this occurs in Example I, the
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thermal fin/Laplacian, as we approach the Bi = 0 boundary of D; this also occurs in Example II, the acoustic
‘‘microphone probe’’/Helmholtz, as we approach resonances just outside D (or more generally, for lightly
damped systems, at resonances within D). Without deflation we must accommodate 1=bðlÞ in the denomina-
tor of our error bound – the worst mode ‘‘pollutes’’ the estimate for all the modes; with deflation, we are per-
mitted the much more benign 1=bþðlÞ in the denominator of our error bound – since the most dangerous
mode has now been ‘‘peeled off.’’ Clearly, our arguments assume that there is only one dangerous mode
(or, with suitable generalization, some small finite number of dangerous modes), as obtains in both the exam-
ples cited: if there are no dangerous modes, deflation is an unnecessary expense; if there are many (a continuum
of) dangerous modes, deflation cannot be effective. The former is benign; the latter is unlikely – an indication
of fundamental ill-posedness.

Remark 4. In the case of compliance (see Remark 1) – a symmetric and ‘ = f – we replace our output error
bound (87) with
Ds
NðlÞ �

1

bþðlÞgKðlÞ
krdu

N ð	; lÞk
2
X 0 ðcompliantÞ; ð92Þ
recall that we no longer require the primal solution. If we additionally require coercivity of a, we can in fact
bound the effectivity (since now the output error can be zero only if the dual error is zero):
gs
N ðlÞ 6

cðlÞ
bþðlÞgKðlÞ

ðcompliant; coerciveÞ; ð93Þ
which is similar to the standard result [7] but now corrected for deflation. Here l ¼ IKl in both (92) and (93).

Remark 5. There are error indicator proposals in other contexts – adaptive finite difference techniques for
ordinary differential equations [33] and adaptive finite element methods for partial differential equations
[30] – that do not require an explicit lower bound for the stability constant. These indicators are intended
primarily for adaptive refinement, not certification.

In our context, the indicator in [33] (might) take the form
bDs
N ðlÞ � kr

pr
N ð	; lÞkX 0 kw

o
N ðlÞkX
as motivated by the relation
j‘ðuðlÞ � uN ðlÞÞj 6 krpr
N ð	; lÞkX 0 kwðlÞkX 6 kr

pr
N ð	; lÞkX 0 ðkw

o
N ðlÞkX þ kedu;0ðlÞkX Þ 
 kr

pr
N ð	; lÞkX 0 kw

o
NðlÞkX .
Clearly, bDs
N ðlÞ is not a rigorous upper bound for j‘(u(l) � uN(l))j, and hence is not too well suited for certi-

fication; in essence, the stability constant is hidden (albeit to second order [30]) in the neglected adjoint error
term. In our particular context, control of the effectivity may also be compromised, as Galerkin orthogonality
is not recognized: for example, in the compliance case, bDs

N ðlÞ=j‘ðuðlÞ � uN ðlÞÞj will tend to infinity as N in-
creases. Finally, there is also an efficiency issue: if we calculate wN(l), we should include the residual correction
term in (43) – to improve the output accuracy [31]; but the associated error indicator will then be consistent
only if we now bound the adjoint error – which again requires a stability constant.

In our context, the indicators in [30] (might) take the form (for sN(l) as defined in (43))
jsðlÞ � sN ðlÞj 
 krpr
N ð	; lÞkXkw

o
2N ðlÞ � wo

N ðlÞkX ;
where wo
2N ðlÞ and wo

N ðlÞ refer to our reduced basis dual approximation for 2Ndu and Ndu dual basis functions,
respectively. Again, this indicator does not provide a rigorous bound; however, the treatment of the adjoint
error would at least partially address both the effectivity and efficiency/accuracy concerns.
6.2. Numerical results

We present in Table 1 the error bounds and effectivities for the two outputs s1(l) and s2(l) – associated with
the output functionals ‘1(l) and ‘2(l), respectively – for Example I of Section 3.1, the thermal plate fin. As
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before, we present the results in terms of Ndu; for the first (compliant) output, there is no need for a primal solu-
tion – we invoke (92); for the second (non-compliant) output, we take Npr = Ndu. The error bound Ei;N reported
for each output, subscript i = 1, 2, is the maximum of the relative error bound, jDs

i;N ðlÞj=jsiðlÞj, over our ran-
dom parameter test sample NI

test � D of size nI
test ¼ 1000; for each output, subscript i ¼ 1; 2; gs

i;N denotes the
average of the effectivity, gs

i;N ðlÞ, over the parameter test sample NI
test. (Note that we reject from our sample

NI
test those parameter points for which the dual norm of the residual squared is smaller than machine precision,

as for these parameter points the calculation is contaminated by round-off.)
We observe – though we cannot a priori guarantee – reasonably good effectivities for both the compliant

and non-compliant outputs. Note that, without deflation, the error in the reduced basis output prediction
changes only imperceptibly. However, for the lower l2 ” (Bi L) values – Bi 2 [0.01, 0.1] – the without-deflation
output error bound, (87) but with b+(l) replaced by bðlÞ in the denominator, is approximately 80 times larger

than the with-deflation output error bound Ds
N ðlÞ: deflation is a necessity for nearly singular problems if we

wish to control the effectivity.
We present in Table 2 the error bounds and effectivity for the (non-compliant) output of Example II of Sec-

tion 3.2, the acoustics Helmholtz problem. As before, we present the results in terms of Ndu (=Npr). The error
bound EN is the maximum of the relative error bound, jDs

N ðlÞj=jsðlÞj, over our random parameter test sample
NII

test � D of size nII
test ¼ 400; gs

N is the average of the effectivity, gs
NðlÞ, over the parameter test sample NII

test. (As
before, we reject from our sample NII

test those parameter points for which the dual norm of the residual squared
is smaller than machine precision.) We observe reasonably good effectivities. Near resonance, the without-
deflation output error bound is approximately 10–40 times larger than the with-deflation output error bound:
deflation is a necessity for Helmholtz problems near resonance.
7. Computational cost: offline/online approach

Our reduced basis approach admits an offline/online computational decomposition [6,7,9,10,12]: all Nt-
dependent operations are first performed offline in a preprocessing stage; the computational complexity and
storage of the online – or ‘‘deployed’’ – stage then depends only on N, Q, and K. In the online stage we
can provide extremely rapid response in the real-time context, and extremely efficient (average) response in
the many-query context; an example of both the former and the latter is the ‘‘non-destructive evaluation’’
parameter estimation framework described briefly in Section 1.2 and illustrated in detail in [16,18,22].

The total online cost for the output and output error bound, inclusive of both the primal and dual
solutions, the deflation correction, the inf–sup lower bound, and the dual norms of the primal and dual
residuals, is OðN 3

pr þ N 3
du þ Q2ðN pr þ Ndu þ 1Þ2Þ. The storage scales as OðQ2ðN 2

pr;max þ N 2
du;max þ KN du;maxÞÞ.7

Thus, all requisite online calculations and storage are indeed independent of the dimension of the under-
lying finite element space, Nt. A detailed accounting of the online operation count and storage is pre-
sented in Appendix A.

We now compare the online reduced basis computational cost to evaluate sN(l) and Ds
NðlÞ to the finite ele-

ment cost to compute our ‘‘truth’’ output sðlÞ � sNtðlÞ. Of course, this comparison is only meaningful if we
are in the real-time or many-query contexts – in which the offline reduced basis cost is unimportant, and only
the marginal cost is relevant. We present our results in Table 4 for Example I and Table 5 for Example II.8

Note we do not necessarily observe the expected scalings with Ndu due to memory access and other overhead
not accounted for in our complexity estimates.

We conclude from Table 1/Table 4 and Table 2/Table 5 that, for both our model problems, our approach
provides certified relative accuracy of 10�3 or 10�4 at (1/100)th the online cost of conventional techniques. The
7 We have chosen to express our output error bound (87) in terms of X 0 dual norms, which in turn necessitates deflation in order to
ensure good effectivities (see (90) and the discussion following Proposition 6.3). An alternative (see (89)) is to work directly with natural
dual norms and ‘‘hope’’ that the most dangerous mode is largely absent; however, this natural dual norm approach could incur larger
effectivities and, in any event, will require OðKQ2N2

du;maxÞ online storage – typically a K-fold increase over the X 0 dual norm approach
presented.

8 The online times are exclusive of the inf–sup lower bound calculation, which in our normalized units is (say, for Example I) about 9.77
(independent of Ndu and of course Nt). A more efficient LP strategy for j optimization could reduce this overhead.



Table 5
Example II, ‘‘Microphone probe’’: computational cost to evaluate sN, Ds

N , and sNt as a function of Ndu (for Npr = Ndu); the results are
normalized with respect to the time to calculate sN for Ndu = 2

Ndu Online time Time

sN Ds
N sNt

2 1 1.5
4 1.07 1.5
6 1.14 1.58 1800
8 1.21 1.58

10 1.22 1.58

Table 4
Example I, Thermal plate fin: computational cost to evaluate s1,N, Ds

1;N , s2,N, Ds
2;N , and sNt as a function of Ndu (for Npr = Ndu); the results

are normalized with respect to the time to calculate s1,N for Ndu = 4

Ndu Online time Time

s1,N Ds
1;N s2,N Ds

2;N sNt

4 1.00 5.37 1.42 5.58
8 1.16 5.42 1.68 5.74

12 1.26 5.63 1.89 6.00 2000
16 1.42 5.84 2.00 6.05
20 – – 2.16 6.58
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savings would be even larger for problems with more complex geometry and solution structures, and in
particular in higher space dimensions with correspondingly larger Nt.
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Appendix A. Offline/online computational procedures

In this appendix we develop the offline/online computational decomposition which allows us to efficiently
compute the primal and dual solutions, the output, and the error bounds in the online (or ‘‘deployed’’) stage.
In particular, we outline the procedure to compute the deflated dual solution wN(l), the inf–sup lower bound
gK(l), the output sN(l), and the dual norm of the dual residual krdu

N ð	; lÞkX 0 . Similar computational procedures
can be developed for the primal solution uN (l) and the dual norm of the primal residual krpr

N ð	; lÞkX 0 . For
simplicity, we shall assume in this appendix a and aq, 1 < q < Q, are symmetric.

A.1. Calculation of wN(l)

The deflated dual approximation wN is a sum of the ‘‘undeflated’’ dual approximation wo
NðlÞ, (35), and the

deflation correction term dlðlÞ, (39).
We first express the ‘‘undeflated’’ dual approximation wo

N ðlÞ as
wo
NðlÞ ¼

XNdu

j¼1

wo
NjðlÞf

du
j . ðA:1Þ
We then choose as test functions v ¼ fdu
i ; i ¼ 1; . . . ;Ndu, to represent our dual problem (35) algebraically: find

wo
N ðlÞ 2 RNdu such that
Adu
N ðlÞwo

N ðlÞ ¼ �Ldu
N . ðA:2Þ
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Here wo
N ¼ ðw

o
N1 	 	 	w

o
NN du
Þ, Adu

N ðlÞ 2 RNdu�Ndu is the symmetric matrix Adu
Ni;jðlÞ � aðfdu

j ; f
du
i ; lÞ; 1 6 i; j 6 Ndu,

and Ldu
N 2 RNdu is the ‘‘output’’ vector Ldu

Ni � ‘ðf
du
i Þ; i ¼ 1; . . . ;Ndu.

We now invoke the affine decomposition (12) to obtain
9 Re
Section
Adu
Ni;jðlÞ ¼ aðfdu

j ; f
du
i ; lÞ ¼

XQ

q¼1

HqðlÞaqðfdu
j ; f

du
i Þ; ðA:3Þ
which can be written as
Adu
N ðlÞ ¼

XQ

q¼1

HqðlÞAdu;q
N ; ðA:4Þ
where the Adu;q
N 2 RNdu�Ndu are given by Adu;q

Ni;j ¼ aqðfdu
j ; f

du
i Þ; 1 6 i; j 6 N du; 1 6 q 6 Q.

The coefficient for the deflation correction clðlÞ, (39), can then be calculated from (40) (for given lk 2VK )
as
clðlÞ
XQ

q¼1

HqðlÞCq;k ¼ �Lk
v �

XQ

q¼1

HqðlÞ Ddu;q;k
N

� �T

wo
N ðlÞ; ðA:5Þ
where the parameter-independent quantities Cq;k; Lk
v, and Ddu,q,k are given by
Cq;k ¼ aqðvðlkÞ; T lk vðlkÞÞ; 1 6 k 6 K; 1 6 q 6 Q;

Lk
v ¼ ‘ðvðlkÞÞ; 1 6 k 6 K;

Ddu;q;k
N ;i ¼ aqðvðlkÞ; fdu

i Þ; 1 6 k 6 K; 1 6 q 6 Q; 1 6 i 6 Ndu;max;

ðA:6Þ
respectively. Here T denotes algebraic transpose.
The offline/online decomposition is now clear. In the offline stage – performed only once – we first solve for

the fdu
n ; 1 6 n 6 Ndu;max; we then compute and store the l-independent quantities in (A.2), (A.4) and (A.6). The

computational cost is therefore O(Ndu,max) solutions of the underlying Nt-dimensional ‘‘truth’’ finite element
approximation and OðQðN 2

du þ KN duÞÞNt-inner products.
In the online stage – performed many times, for each new parameter l (and hence associated l ¼ IKl 2

VK , which determines k in (A.5)) – we first assemble the reduced basis matrix (A.4); this requires
OðQðN 2

duÞÞ operations. We then solve the dual problem for wo
N ðlÞ; since the reduced basis matrices are in general

full, the operation count (based on LU factorization) is OðN 3
duÞ. Finally, we solve for clðlÞ; this requires

O(QNdu) operations. The total online storage cost is OðQN 2
du;maxÞ þOðKQN du;maxÞ.9

A.2. Calculation of gVK ;IK ðlÞ

We consider here only the online stage. For a particular given (new) l, we must solve at most K Linear
Programs of the form (56) (or (60), (61)) with O(P + Q) variables and constraints. Typically, many fewer than
K LPs are required: to wit (see Footnote 4), we first list the l 2VK in order of increasing distance from l; we
then proceed through this re-ordered list until we find a l such that glðlÞP gtol.

A.3. Calculation of sN(l)

The output (43) can be calculated in terms of uNðlÞ 2 RNpr , wo
N ðlÞ 2 RNdu , and clðlÞ, as
sNðlÞ ¼ Lpr T
N uN ðlÞ � F du T

N wN ðlÞ þ
XQ

q¼1

HqðlÞ wo
N ðlÞ

TApr;du;q
N uNðlÞ þ clðlÞðBpr;q;k

N ÞTuN ðlÞ
� �

; ðA:7Þ
where uN ðlÞ ¼ ðuN1 	 	 	 uNNprÞ are the primal coefficients in the expansion uNðlÞ ¼
PNpr

i¼1uNiðlÞfpr
i , and k is the

index of IKl 2VK . The parameter-independent quantities Lpr
N , F du

N , Apr;du;q
N , and Bpr;q

N are given by
call Ndu,max is the maximum size of the dual approximation space; Ndu,max is independent of the size of the finite element mesh Nt.
4 and Footnote 3 summarize the construction of the primal and dual reduced basis spaces.
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Lpr
Nj ¼ ‘ðfpr

j Þ; 1 6 j 6 Npr;

F du
Ni ¼ ‘ðf

du
i Þ; 1 6 i 6 Ndu;

Apr;du
Ni;j ¼ aqðfpr

j ; f
du
i Þ; 1 6 q 6 Q; 1 6 i 6 Ndu;max; 1 6 j 6 Npr;max;

Bpr;q;k
N ;i ¼ aqðfpr

i ; T
lk vðlkÞÞ; 1 6 k 6 K; 1 6 q 6 Q; 1 6 i 6 Npr;max;

ðA:8Þ
respectively.
In the offline stage, the operation count to construct the terms in (A.8) is O(QNpr(Ndu + K)) Nt-inner prod-

ucts. In the online stage – for any new parameter l – the output evaluation (43) requires O(QNprNdu) opera-
tions; the online storage is O(KQNpr,max) + O(QNpr,maxNdu,max).

A.4. Calculation of krdu
N ð	; lÞkX 0

In this section we discuss the calculation of the dual norm of the dual residual. We first note from standard
duality arguments that
krdu
N ð	; lÞkX 0 � sup

v2X

rdu
N ðv; lÞ
kvkX

¼ kêduðlÞkX ðA:9Þ
where êduðlÞ 2 X is given by
ðêduðlÞ; vÞX ¼ rdu
N ðv; lÞ 8v 2 X . ðA:10Þ
From (41) and the affine assumption (12) it thus follows that êduðlÞ, for any choice of lk 2VK ; 1 6 k 6 K,
satisfies
ðêduðlÞ; vÞX ¼ �‘ðvÞ �
XNdu

j¼1

XQ

q¼1

HqðlÞwo
NjðlÞaqðfdu

j ; vÞ �
XQ

q¼1

HqðlÞclðlÞaqðv; T lk vðlkÞÞ 8v 2 Y . ðA:11Þ
It is clear from linear superposition that we can express êduðlÞ as
êduðlÞ ¼ ẑ0 �
XQ

q¼1

XNdu

j¼1

HqðlÞwo
NjðlÞẑ

du;q
j �

XQ

q¼1

HqðlÞclðlÞx̂q
k ; ðA:12Þ
where ẑ0 2 X , ẑdu;q
j 2 X , x̂q

k 2 X ; 1 6 k 6 K; 1 6 q 6 Q; 1 6 j 6 Ndu;max, satisfy
ð̂z0; vÞX ¼ �‘ðvÞ 8v 2 X ;

ð̂zdu;q
j ; vÞX ¼ aqðv; fdu

j Þ 8v 2 X ; 1 6 q 6 Q; 1 6 j 6 N du;max;

ðx̂q; vÞX ¼ aqðT lk vðlkÞ; vÞ 8v 2 X ; 1 6 k 6 K; 1 6 q 6 Q.

ðA:13Þ
Note that ẑ0, ẑdu;q
j , and x̂q

k are parameter independent.
From (A.9) and (A.12) it follows that (for given k)
krdu
N ð	; lÞk

2
X 0 ¼ Kdu;bb þ

XQ

q¼1

XNdu

j¼1

HqðlÞwo
NjðlÞKdu;ab

q;j þ
XQ

q¼1

HqðlÞclðlÞKdu;mb
q;k

þ
XQ

q¼1

XQ

q0¼1

XNdu

j¼1

HqðlÞwo
NjðlÞHq0 ðlÞclðlÞKdu;am

q;j;q0 ;k

þ
XQ

q¼1

XQ

q0¼1

XNdu

j¼1

XNdu

j0¼1

HqðlÞwo
NjðlÞHq0 ðlÞwo

Nj0 ðlÞK
du;aa
q;j;q0;j0 ;k

þ
XQ

q¼1

XQ

q0¼1

HqðlÞHq0 ðlÞc2
lðlÞK

du;mm
q;q0 ;k ; ðA:14Þ
where the parameter-independent quantities Kdu,Æ are defined as
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Kdu;bb ¼ ðẑ0; ẑ0ÞX ;

Kdu;ab
q;j ¼ �2ð̂zdu;q

j ; ẑ0ÞX 1 6 q 6 Q; 1 6 j 6 N du;max;

Kdu;mb
q;k ¼ �2ðx̂q; ẑ0ÞX 1 6 k 6 K; 1 6 q 6 Q;

Kdu;am
q;j;q0 ;k ¼ 2ðẑdu;q

j ; x̂q0

k ÞX 1 6 k 6 K; 1 6 q; q0 6 Q; 1 6 j 6 Ndu;max;

Kdu;aa
q;j;q0 ;j0 ¼ ð̂z

du;q
j ; ẑdu;q0

j0 ÞX 1 6 q; q0 6 Q; 1 6 j; j0 6 N du;max;

Kdu;mm
q;q0 ;k ¼ ðx̂

q
k ; x̂

q0

k ÞX 1 6 k 6 K; 1 6 q; q0 6 Q.

ðA:15Þ
(We introduce the superscripts ‘‘a’’, ‘‘b’’ and ‘‘m’’ to distinguish amongst the basis functions related to the re-
duced basis, the output functional, and the deflation, respectively.)

The offline/online decomposition is now clear. In the offline stage we first compute the quantities ẑ0, ẑdu;q
j ,

and x̂q
k from (A.13) and then evaluate the Kdu,Æ of (A.15); this requires (to leading order) O(Q(Ndu,max + K))

expensive ‘‘truth’’ finite element solutions and OðKQ2N du;maxÞ þOðQ2N 2
du;maxÞNt-inner products. In the online

stage, given a new parameter value l and associated reduced basis solutions uN(l) and wN(l), the operation
count to perform the sum (A.14) is O(Q2(Ndu,max + 1)2); the online storage is OðKQ2Ndu;maxÞ þOðQ2N 2

du;maxÞ.
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