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Abstract

We present a technique for the rapid and reliable prediction of linear-functional outputs of coercive and non-coercive
linear elliptic partial differential equations with affine parameter dependence. The essential components are: (i) rapidly
convergent global reduced basis approximations — (Galerkin) projection onto a space Wy spanned by solutions of the gov-
erning partial differential equation at N judiciously selected points in parameter space; (ii) a posteriori error estimation —
relaxations of the error-residual equation that provide inexpensive yet sharp bounds for the error in the outputs of interest;
and (iii) offline/online computational procedures — methods which decouple the generation and projection stages of the
approximation process. The operation count for the online stage — in which, given a new parameter value, we calculate
the output of interest and associated error bound — depends only on N (typically very small) and the parametric complexity
of the problem.

In this paper we propose a new “natural norm” formulation for our reduced basis error estimation framework that: (a)
greatly simplifies and improves our inf-sup lower bound construction (offline) and evaluation (online) — a critical ingredi-
ent of our a posteriori error estimators; and (b) much better controls — significantly sharpens — our output error bounds, in
particular (through deflation) for parameter values corresponding to nearly singular solution behavior. We apply the
method to two illustrative problems: a coercive Laplacian heat conduction problem — which becomes singular as the heat
transfer coefficient tends to zero; and a non-coercive Helmholtz acoustics problem — which becomes singular as we
approach resonance. In both cases, we observe very economical and sharp construction of the requisite natural-norm
inf-sup lower bound; rapid convergence of the reduced basis approximation; reasonable effectivities (even for near-singular
behavior) for our deflated output error estimators; and significant — several order of magnitude — (online) computational
savings relative to standard finite element procedures.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction
1.1. Reduced basis approach

Engineering analysis requires the prediction of an (or more realistically, several) “output of interest” s¢ € R
— related to energies or forces, stresses or strains, flowrates or pressure drops, temperatures or fluxes — as a
function of an “input” parameter P-vector u € ¢ C R” — related to geometry, physical properties, boundary
conditions, or loads. These outputs s°(u) are often functionals of a field variable u°(u),

s°(u) = £(u(p)), (1)
where u°(u) € X° — say displacement, velocity, or temperature — satisfies in weak form the p-parametrized
(elliptic linear) partial differential equation

a(u®(p),v;p) = f(v) VoeX©. (2)

Here X° is the appropriate function space, and « (respectively 4, f) are continuous bilinear (respectively, linear)
forms.

In general, we cannot find the exact (our superscript “e” above) solution, and hence we replace s°(u), u°(u)
with a Galerkin finite element approximation, s (u),u” (1): given u € 2,

s (u) = L (W), (3)
where v (1) € X' satisfies
a(u’" (@), v3p) = f(v) YoeXx". (4)

Here X' C X° is a standard finite element approximation subspace of dimension ./". Unfortunately, to
achieve the desired accuracy, ./~ must typically be chosen very large; as a result, the evaluation u — s (u)
is simply too costly in the many-query and real-time contexts often of interest in engineering. Low-order mod-
els — we consider here reduced basis approximations — are thus increasingly popular in the engineering anal-
ysis, parameter estimation, design optimization, and control contexts.

In the reduced basis approach [1-7], we approximate s (u),u" (1) — for some fixed sufficiently large
“truth” A" = A"y — with sp(u), up(p): given pu € 9,

sv (1) = (un (1)), (5)
where uy(u) € Wy satisfies'
aluy (), v ) = f(v) Vv € Wy. (6)

Here Wy is a problem-specific space of dimension N < .47, that focuses on the (typically very smooth) para-
metric manifold of interest — {u""t(u)|u € 2} — and thus enjoys very rapid convergence uy(u) — u't(u) and
hence sy (u) — s (u) as N increases [3,8]. This dramatic dimension reduction, in conjunction with offlinelonline
computational procedures [6,7,9,10], yields very large savings in the many-query and real-time contexts: the on-
line complexity depends only on the size of the reduced basis space, N, which is typically orders of magnitude
smaller than the dimension of the finite element space, ./",.

Our own effort is dedicated to the development of a posteriori error estimators for reduced basis approx-
imations [6,7,11,12]: inexpensive — complexity independent of A" — and sharp error bounds A} (u) such that

"4 (0) — sn ()] < Ay(w) Ve 2.

Absent such rigorous error bounds we cannot efficiently determine if N is too small — and our reduced basis
approximation unacceptably inaccurate — or if N is too large — and our reduced basis approximation unneces-
sarily expensive. (Furthermore, in the nonlinear context, error bounds are crucial in establishing the very exis-
tence of a ““truth” solution u”"t(¢) [13-15].) We cannot determine in “‘real-time” if critical design conditions and
constraints are satisfied — for example, does approximate feasibility spy(u) < C imply “true” feasibility
s (1) < C? And, in fact, we can not even construct an efficient and well-conditioned reduced basis approxi-
mation space Wy [12,16].

! For simplicity in this Introduction, we consider a purely primal approach; we shall subsequently pursue a primal-dual formulation.
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In this paper we focus on error estimators for (coercive and non-coercive) linear elliptic partial differ-
ential equations with affine parameter dependence. (For parabolic problems see [17]; for nonlinear prob-
lems, including the incompressible Navier—Stokes equations, see [11,12,14,15]; and for non-affine parameter
dependence, see [16,18,19].) Relative to our earlier work, we introduce a new ‘“natural norm” that (a)
greatly simplifies and improves our inf-sup lower bound construction and evaluation — a critical ingredient
of our error estimators [11,12,15]; and (b) much better controls the effectivity of — significantly sharpens —
our error bounds, in particular (through deflation [11]) for nearly singular problems. We describe the for-
mulation and provide several illustrative numerical examples.

1.2. Application to uncertainty quantification

In general, uncertainty quantification must account for (a) error introduced by the numerical discretization,
(b) error or variance introduced by the input data, and (c) error introduced by the mathematical model. Our
error estimators directly address (a) within the reduced basis approximation context. However, reduced basis
error estimators are also an important “enabling technology” for the treatment of (b) and (c). Our emphasis in
this paper is on the enabling technology per se — the reduced basis error estimators; however, we briefly consider
here an application of our enabling technology to (b) and (c) — in particular, real-time parameter estimation — as
an illustration of broader relevance to the themes of this Special Volume.

For our abstract inverse problem [20,21], we decompose p=(v, 0) and ¥ = &, x Z,; here v represents the
(say, P,) parameters to be determined, and o represents the (P, = P — P,) parameters to be “controlled.” We
presume that we are given a set of experimental intervals /; such that s(v*, 6;) € I;, 1 <j < J, where v* € 2, is
the value of the unknown parameter, and the ¢; € &,,1 < j < J, are the specified values of the experimental
control parameter. We then wish to determine — in the field, in real time — the “possibility” region
P ={veg,s(v,0;) €1;,1 <j<J} containing all values of v (including, of course, v*) consistent with the
experimental data: we wish to quantify the uncertainty in the unknown parameter. (More simply, we may find
VIl = min,c v, and VI = max,csV,, 1 < m < P, from which we can construct the minimal box that con-
tains 2, % = H;":l [vmin ymax] ) Unfortunately, real-time construction of 2 (or %) is typically not computation-
ally viable.

We might thus consider the approximate reduced basis possibility region 25 = {v € Z,|sy(v,0,) €1;,1
< j < J}. However, 2 may not include v*, in which case we risk an infeasible or unsafe decision (in, say,
a subsequent robust optimization framework [22]); alternatively, 2%, may be much larger than 2, in which
case we risk an overly pessimistic decision. We should thus instead construct the approximate possibility
region [16,18,22] 2y = {v € Z,|[sy(v,0;) — Ay (v,0;),sx(v,0;) + Ay (v,a,)]N1; # 0,1 < j < J}. The certainty
provided by our error bound simultancously provides (i) efficiency, and hence rapid response: we may
choose N (minimally) such that the reduced basis error Ay () is commensurate with the experimental
error, and (ii) feasibility and safety: our approximate possibility region now perforce includes the “true”
possibility region, (v €)? C Py. We refer the reader to [16,18,22] for applications of this reduced basis
uncertainty quantification to non-destructive evaluation of cracks.

There are of course many alternative approaches to inverse problems and uncertainty quantification more
generally, from Monte Carlo methods [23] to Bayesian techniques [24-26] to polynomial chaos expansions
[27]. Our reduced basis enabling technology can readily serve in all these frameworks, providing for extre-
mely accurate and rapid (and exhaustive) evaluation without — thanks to our error bounds — introducing a
major new source of (numerical) uncertainty. (There are certainly other examples of the application of low-
dimensional models to uncertainty quantification (e.g., [24]); however, rigorous a posteriori error control
has received relatively little attention.)

2. Problem statement
2.1. Abstract formulation

Our exact output and field variable, s°(u) € R and u®(u) € X°, satisfy (1), (2). Here, for any p=(y;- - -tip)
in our closed input domain Z C R”, a(-,-;u) : X® x X* — R is a parameter-dependent bilinear form, and
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{:X°— R and f: X° — R are parameter-independent linear forms (extension to parameter-dependent lin-
ear forms is straightforward). (See [16,28] for treatment of complex-valued fields with application to inverse
scattering and acoustics more generally.) We shall consider second-order partial differential equations, and
hence our exact space X° satisfies H}(Q) C X° C H'(Q): here Q C R’ (d =1, 2, or 3) is a spatial domain with
suitably regular boundary 0Q; and H'(Q) (respectively, H{(Q)) is the usual Hilbert space of derivative-
square-integrable functions (respectively, derivative-square-integrable functions that vanish on 0Q).

Our “truth” or “reference” finite element approximation to the exact output and field variable, s(u) =
s't(p) and u(p) = u' (p) € X't = X, satisfies (3), (4) for the particular choice 4" = ./, Given u € 9,

s(u) = Lu(w), (7)
where u(p) € X satisfies
a(u(w),v; 1) = f(v) Vo€ X. (8)

We assume that ./, is chosen sufficiently large that s(u) and u(p) are essentially indistinguishable from s%(u)
and u°(u), respectively. We shall build our reduced basis approximation upon this “truth’” approximation; and
we shall evaluate the error in our reduced basis approximation with respect to this “truth’ approximation. As
we will subsequently prove (see Section 7 and the Appendix), the online complexity (and stability) of our re-
duced basis approach is independent of A";; hence, we may choose ./ to be ““arbitrarily” large at no detriment
to (online) performance.

In addition to our “truth” primal problem, we shall also require a “truth” dual (or adjoint) problem [7,29—
31] associated with our particular output functional. Given u € 2,

s(uw) = =f (Y (w), ©)
where the adjoint y(p) € X satisfies

a(v, () 1) = —(v) Vo€ X, (10)
It follows from the primal problem (8) and the dual problem (10) that

Cu(p)) = —a(u(w), ¥ (w); 1) = = ((w); (11)

hence, (9) is a direct result of (10). Note that in the case of compliance — defined as (i) a symmetric:
a(w, v; ) = a(v, w; 1) Yw,v € X, and (ii) £ =f — we obtain Y(u) = —u(y). We introduce the dual problem
(10) and the adjoint variable (u) to improve the convergence of the output; we discuss this further in Section
4, in particular Lemma 4.1.

We shall suppose that our bilinear form is “affine” in the parameter: for some fixed integer Q — typically O
shall be larger than P, sometimes by a considerable factor — we require

a(w,v; 1) Z@" Jal(w,v) VYw,vE€X, Yu € 9, (12)

where 07 : 2 — R and a?(w,v) : X x X — R, 1 < ¢ < Q, are parameter-dependent functions and parameter-
independent continuous bilinear forms, respectively. We shall further assume that @7 € 4'(2),1 < ¢ < Q.
“Simple affine” (respectively, “general affine”) shall refer to the case in which all the @7, 1 < ¢ < Q, are
affine functions of u (respectively, at least one of the ®7, 1 < ¢ < Q, is not an affine function of u).

We denote the inner product and norm associated with our Hilbert space X(=X"*) as (w, v)y and
llolly = +/(v,v),, respectively. We further define the dual norm for any bounded linear functional / as

h(v
Il = sup 0.

vex [[vllx

(13)
recall that X is finite-dimensional. A typical choice for our inner product (-,")y is

(W,U)X:/QVW~VU+WU, (14)
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which is simply the standard H'(Q) inner product. Any inner product which induces a norm equivalent to the
H' norm is acceptable.

We next introduce [11,12,22,29] the parametrized linear operator 7": X — X such that, for any u in 2 and
any win X,

(T'w,v), = a(w,v;u) YveX. (15)
The classical inf-sup parameter and continuity parameter can then be expressed as
. s [T
B(1) = inf sup alw, v; 1) = 17wy (16)
weX pex [[wllgllvlly — wex f[wlly
and
alw,v; u THw
(00 = sup sup AL gy, [Tl (17)

wex vex [Wlixllvlly — wex Wl

(Note that, from the Cauchy-Schwarz inequality, v = T"w is the inner supremizer in (16) and (17).)

We now suppose that 0 < < () < p(p) < 70 <oo VYu € I (note we may strengthen this requirement
to hold for all 4" = 47); we further assume that £ € X’ and f€ X’ — bounded linear functionals. It then
follows that our primal and dual “truth’ problems, (8) and (10), respectively, are well posed for all u in
9.

Our method — in particular our inf-sup lower bound and our deflated adjoint approximation — requires a
discrete set of K parameter values, ¥ = {f,...,fix} C 2 — upon which to construct local corrections. It
shall also prove convenient to introduce an indicator function .#* : & — ¥** which associates to any y in
% a member of 7. (The process by which we select “good” 7* and .#* is described in Section 5.)

We may then introduce, for given fi € ¥'*, our “natural inner product” and “natural norm” as

((w, )y = (T'w, T"), VYw,v€X (18)

elllz = 4/ (((v,0)))z = 1T, Vo €X, (19)

respectively. Note that, thanks to our assumptions on S(u) and y(u), (19) does indeed define a norm (equiv-
alent to |||x). (See [32] for a very different approach to, and very different application of, “natural norms”
for non-symmetric (coercive) operators.)

We can also define a symmetric positive-semidefinite eigenproblem related to the (square of the) singular
values of our partial differential operator: for given i€ ¥v* C 2, (®,(), p,(W) EX xR, i=1,...,.47%,
satisfies

(T"®i(T), T"0),c = pi(T)(Pi(7), v)y Vo € X; (20)

the eigenvalues are ordered such that 0 <p; <p, <---<p,,. We normalize our eigenfunctions as
|®:(@)|ly =1,i=1,...,.4", and hence orthogonality reads

(T"®,(R), T"®,(R))x = p,(A)(P:(R), D,(A))xx = p,()3y, 1 <ij <Ny, (21)
where ¢;; is the Kronecker-delta symbol. We may then identify

B = vpi() (22)

and

and

Y (1) = /P (1), (23)

where f(1) and y(@) are the classical inf-sup and continuity parameters defined in (16), (17) for the choice
u = 1. We also identify the second singular value,

B (1) = /o (R). (24)
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Finally, we define?
2(m) = e/ pmE (lx@lllE=1) : (25)

the function y(f) minimizes the inf-sup parameter — and hence represents the most unstable “mode”; 7%y (f) is
the corresponding supremizer.

2.2. Reduced basis error estimation

We take advantage of the abstract formulation to summarize the central result of the reduced basis methods
developed in this paper — the certified and sharp output error bounds for (nearly singular) linear elliptic param-
etrized PDEs. We also provide a roadmap for the remainder of the paper.

Given p € 9, we define up(u) and Y (u) as the reduced basis approximations to the “truth” primal and
dual fields u(u) and y(u); we denote the corresponding primal and dual residuals as

m(vsu) = f(v) —a(uy(p),v; 1) Vo e€X,
M (o) = —L(v) — a(v, Yy (n); ) Vv E€X,

respectively. The adjoint /() is ““deflated” to ensure that the dual residual is orthogonal to the most “unsta-
ble” mode y(z) (for = .#% ):

e (x(A); ) = 0. (27)

Recall that #* : 2 — ¥* is an indicator function that associates to each u € & a “representative’ (in fact,
“nearby”’) member of the discrete parameter set 7X.
We can then define our output error bound: for given u € & and thus i = S5 € v*,

; ’,.Pr . , I”du . ,
F @ G Gl N

Here ||/ (1)l and /9" (-; 1)|| are the dual norms of the primal and dual residuals, respectively, and
gﬁ(,u)[?*(ﬁ) is “effectively” (though not rigorously) a lower bound for f(u) — the second singular value,
(24). (Strictly speaking, g;(u) is a lower bound to an order-unity natural-norm inf-sup parameter defined in

Section 5.) The form of (28) is in some sense standard: a residual divided by a stability factor.
We prove in Section 6 that

Is) — s ()| < Ay(w) Ve 2. (29)

Deflation, (27), eliminates (an approximation to) the most unstable mode, which in turn eliminates f(u) — the
first singular value, (22) — in the error bound (28). Our result is particularly relevant for near-singular param-
eter values — parameter values for which f(u) = /p, (1) is very small but (typically) B (1) = +/p,() remains
“O(1)”. (Note, however, that even for “regular” problems — for which f(u) ~ (1) — our procedure for the
construction of the inf-sup lower bound function g;(u) is still very useful.)

In Section 3, we introduce two illustrative instantiations to which we shall apply our reduced basis meth-
odology. In Section 4, we describe the generation of the primal and dual reduced basis spaces and correspond-
ing primal and deflated dual approximations, u(u) and ¥ (u). In Section 5, we introduce our natural-norm
inf-sup parameter and associated lower bound function, g;(u). In Section 6, we describe our output error
bound and prove the central result (29). Finally in Section 7, we briefly present a computational comparison
of reduced basis methods (with error estimation) and standard finite element approaches for our two model
problems; an Appendix presents the offline/online computational strategy by which we efficiently compute

sn(p) and Ay ().

(26)

Ay ()

2 While the eigenproblem (20) and associated quantities (22)—(25) can be defined for any u € &, in practice we shall only need these
entities for i € ¥X c 2.



S. Sen et al. | Journal of Computational Physics 217 (2006) 37-62 43
3. Examples
3.1. Example I: Thermal plate fin — Laplacian

We consider a heat conduction problem corresponding to one unit of a thermal plate fin designed for the
cooling of electronic components. We show in Fig. 1(a) the original domain of the problem Q°(L), consisting
of a spreader subdomain of conductivity o (below) and a fin subdomain of conductivity unity and length L
(above). The temperature field satisfies the Laplacian in the spreader—fin domain Q°(L). We impose unit heat
flux (inhomogeneous Neumann) conditions on the spreader base I'p; periodic boundary conditions on the
spreader vertical surfaces I'p; continuity of temperature and heat flux at the spreader—fin interface I'j; insu-
lated (zero Neumann) conditions on the spreader and fin horizontal surfaces (shaded in Fig. 1); and a convec-
tion (Robin) boundary condition — with non-dimensional heat-transfer coefficient/Biot number Bi — on the fin
vertical surfaces (exposed to the flowing air). We consider P = 3 parameters, u; = o, u, =(BiL), and pu3 = L, for
the parameter domain 2 = [1, 10] x [0.025,3.75] x [2.5,7.5].

In order to apply our methodology we map Q°(L) — Q= Q°(L = L™ = 1), as shown in Fig. 1(b); the trans-
formation is piecewise affine — the identity in the spreader/base, and a simple dilation in the fin. In these
mapped coordinates, our bilinear form is given by

a(w,v;,u):a/ VW-VU+(BiL)/ wo + L Ow 61;_'_1 ow Ov .
Qg I'c

— — 30
Q 6x1 6x1 L QF ze aXZ’ ( )

here x = (x}, x;) is our mapped spatial coordinate, Qg and Qf are the mapped (and hence parameter-indepen-
dent) spreader and fin subdomains, respectively, and I'c comprises the mapped vertical (“convection’) sur-
faces of the fin. We observe that a is symmetric and coercive. Our linear form for the inhomogeneous
Neumann condition is simply f(v) = || ry O where we recall that I'g is the base of the spreader. Finally,
X'=H ;(Q), in which # indicates periodicity on the vertical spreader surfaces I'p (except for periodicity,
all other boundary conditions are natural); our truth approximation space X = X't is a P, (linear) finite ele-
ment space of dimension .4y = 5300.

We shall consider two outputs associated with two different output functionals. The first output s1(u) is the
spreader base average temperature, corresponding to the output functional ¢,(v) = f{v); since a is symmetric,
this output functional is compliant. The output varies significantly with respect to all three parameters, from
a minimum of 1.92 to a maximum of 23.58; there is a particularly steep increase as Bi — 0 — our problem
is singular for Bi=0. The second output s,(u) is the average temperature at the spreader—fin interface,
corresponding to the output functional ¢,(v) = (1/0.3) |, 1, v; this output is of course no compliant. The second

0.3
L Qp
Lref =1 FC FC
F[ FI
— == 1 — f == 1
1 1 1 ]
1 1 1 Qg 1
FPI IFP 0.6 Fpl IFP
1 1 1 To 1
1 1 1 1
1 Q°(L) l 1 I Q)
I'p I's Z1
@ (b) | 1 |

Fig. 1. Thermal plate fin: (a) original domain, and (b) reference/mapped domain.
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output varies significantly with respect to (Bi L) and L (but not with respect to ), from a minimum of 1.84 to a
maximum of 22.71.

We observe that our bilinear form is indeed affine — ““general affine” — as defined in (12). In particular, we
identify Q = 4, with @' (1) = p1, O (1) = 1, O (1) = s, and O*(u) = 1/us. As will often be the case for “phys-
ical” parameters associated with material properties or geometric variations, a typical function @7(u) will
depend on only a few components of the parameter P-vector. (Obviously, the parametric representation is
not unique, and hence we implicitly choose the @Y(u) with this “limited dependency” property.)

3.2. Example II: “Microphone probe”” — Helmholtz

We consider a frequency-domain acoustics problem corresponding to a highly simplified microphone
probe. We show in Fig. 2(a) the original domain of the problem Q°(L), consisting of an inlet (probe) and a
cavity. The inlet in our non-dimensionalization is of length 1/2 and height 1/4; the cavity is of length 1 and
height (4 + L). The pressure field satisfies the Helmholtz equation in Q°(L). We impose uniform unity pressure
at the inlet I';;,, Neumann symmetry conditions on the cavity centerline, and homogeneous Neumann (hence
zero velocity) conditions on the walls. We shall consider P = 2 parameters, u; = k° (the non-dimensional wave-
number squared), and u, = L, in the triangular parameter domain & shown in Fig. 3; we also plot in Fig. 3 the
first resonance curve — for which this undamped system will be singular — which approaches quite closely to the
parameter domain boundary.

In order to apply our methodology we map Q°(L) — Q= Q°(L = L™ =1). As for the fin problem, the
transformation is piecewise affine: the identity for the Lower part of the domain (inlet and cavity) —

Q,=]-14,1[x]0,;[ for the mapped problem; and a simple dilation in the Upper part of the cavity —
Quy =10,1[ x H“—H for the mapped problem. In these mapped coordinates, our bilinear form is given by
ow ov 1 ow Ov
a(w,v;u) = Vw-Vv—kz/ wo+ L ———i—f/ ———k2L/ wo, 31
( 'u) Q Q Qu a)ﬁ a.)CI L Qu axz axz Q ( )

where x = (x, x;) is the mapped coordinate. We observe that « is again symmetric (though our method is cer-
tainly not restricted to symmetric operators); however, a is no longer coercive. Our linear form f{v; u) is given
by —a(U, v; u), where U = —2x, (respectively, 0) for x; < 0 (respectively, x; > 0); U is a lifting function for the
inhomogeneous unity pressure boundary condition on I'y,. Finally, X¢ = {v € H'(Q)|v| r, = 0} (except for the
inflow pressure condition, all boundary conditions are natural); our truth approximation space X = X't is a
quadratic (P,) finite element space of dimension A" = 4841.

Finally, for our output, we consider a measure of the pressure over the right boundary of the cavity I'p —
the “microphone surface” — corresponding to the output functional ¢(v) = (1/(1/4+ 1)) [, r, U- (Note that our
lifting function U vanishes for x; > 0 and hence on I'; there is thus no contribution from U to the output.)
This output varies significantly with respect to both parameters — from a minimum of close to unity (corre-
sponding to faithful transducer performance) far from resonance to a maximum of 25 (corresponding to
unwanted amplification) near the resonance/singular curve.

We observe that our bilinear form « is indeed affine — “general” affine — as defined in (12). In particular, we
identify 0 =5, with @'(0) =1, O*(u) = — iy = k%, @*(W) = w=L, O () =1/ =1/L, and O°(p) = — o =
—k’L. Note for this particular problem, our linear functional / and our output functional ¢ also depend

I cavity
Jl pIPPP P94

{ Linet oW
(@) 3 — 1 |

Fig. 2. “Microphone probe”: (a) original domain, and (b) reference/mapped domain.
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Fig. 3. Parameter domain & for the Helmholtz problem. The dashed line indicates the (first) resonance curve.

affinely on the parameter. For simplicity of presentation in this paper, we shall restrict our exposition of the
methodology to the abstract formulation of Section 2, in which f'and ¢ are independent of y; the extension to
affine parameter dependence of f and ¢ — reflected in the results for Example I — is very simple.

4. Reduced basis approximation
4.1. Formulation

We first define (in fact, relative to the Introduction, redefine) N = (Np, Nqy), where Ny, and Ny, refer to the
dimension of the primal and dual reduced basis approximation spaces. We also specify Npr max and Ngy max as
the upper limits on the dimensions of the primal and dual spaces, respectively, which will determine the max-
imum reduced basis accuracy that can be achieved.

We next introduce sets of primal and dual parameter points, u?", 1 < 1 < Nprmax, and uS“, 1 <1 < Ngumax
respectively. Our primal (Lagrangian [4]) reduced basis nested approximation spaces are then given by
W}i,rpr = span{u(u’),1 <n < Ny}, 1 < Ny < Nprmax, Where the u(uf"), 1 < n < Nprmax, are our “snapshots.”
We express (any member of) W%‘m in terms of the basis (", 1 < n < Ny, where the (7', 1 < 1 < Ny max, are gen-
erated from the u(u"),1 < n < Nprmax, by @ Gram—Schmidt orthogonalization process relative to the (-, )y
inner product. In an analogous fashion, we create our dual reduced basis nested approximation spaces as
W%‘;u = span{y(u"),1 <n < Ng} =span{{® 1 <n < Naw}, 1 < Naw < Nawmas-

Then, for given p € &, our primal approximation uy(u) € WZ;Y satisfies

a(uy(u),v; ) = f(v) Vo€ Wy ; (32)
we denote the primal residual as

(05 ) = £(0) — aluy (@), v ) Vo € X, (33)
and the primal error as

e (1) = u(p) — uy(p). (34)

We presume that (32) is well-posed and yields a unique solution. (Although Petrov—Galerkin approaches may
be preferable for (provable) discrete stability [29], in actual practice Galerkin reduced basis methods typically
suffice even for non-coercive problems.)

3 In actual practice, our primal and dual sample points and associated primal and dual approximation spaces are constructed by a greedy
selection process — based on the a posteriori error estimation procedures of the next section — that ensures “‘maximally independent”
snapshots (in parameter space) and hence a rapidly convergent reduced basis approximation. In conjunction with our orthogonalization
procedure, this sampling strategy also guarantees a well-conditioned reduced basis discrete system [16]. Details of this sampling procedure
may be found in [11,12] for elliptic problems and [17,18] for parabolic problems.
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Our “‘undeflated”” dual approximation 3, (¢) € W?\,‘;u satisfies

a(v, (s ) = —L(v) Vv e Wy ;s (35)
we denote the associated “undeflated” residual and error as

(0 0) = — L) — a3 (Wi p) Vo EX, (36)
and

e (1) = (i) — Y (u), (37)

respectively. We presume that (35) is well-posed and yields a unique solution.
For a given u € & and associated i = #%Xu € 7'¥, the deflated dual [11] approximation is then given by

V) = () + (), (38)
where
du(m) = ea(m) Ty (1) (39)
satisfies
a(x(m), 05(w); ) = 1" (2 (7); ). (40)

We shall henceforth abbreviate n//jv’”K“" " as ¥ n; the dependence (through the deflation correction) on ¥%, #X is
understood. We denote the associated “deflated” residual and error as

P (v p) = —L(v) —a(v, Yy (w);n) Yo €X, (41)
and
e™(w) = Y(p) — vy (), (42)

respectively. We adopt the convention that Ng, = 0 corresponds to ¥°(x) = 0; in this case, V¥ (u) = o7(u).

It can be shown that (40) is stable: under suitable (verifiable) hypotheses on 7%, .#% we can directly relate
162(10)]l; to [le?™°(w)|lx — see Proposition 5.3 of Section 5 for the proof. Hence our deflation correction will not
incommensurately adversely affect the dual error; indeed, deflation may reduce the dual error, though this is
not guaranteed. The main purpose of deflation is to eliminate the component of the error — associated with the
most unstable mode — that forces us, through our inf-sup lower bound, to treat in our error bound all error
modes overly pessimistically (see Section 2.2). We discuss this in detail in the Section 6.

Finally, we shall define (in fact, relative to the Introduction, redefine) our deflated reduced basis output
approximation sy(u) as

s (1) = Lun (1) = riy (W (1); 1) (43)
We can then prove

Lemma 4.1. Under our assumption that the discrete problems (32), (35), and (40) are well posed, sy(u) of (43)
satisfies

s(i) = sw(p) = —a(e™ (), e (u); ) = =1y (" ()i 1) Ve 2. (44)
Proof. We first note that s(u) —sy(p) = (e’ (1)) + v (W (w); 1), which, from the definition of our dual
problem (10), can be expressed as s(u) — sy(p) = —a(eP (p), Y(w); 1) + iy (Wy(w); 1). The result then directly

follows from the standard primal and dual error-residual relationships, % (v;u) = a(e”(u),v; 1) and
% (v; 1) = a(v, e®(w); w), respectively. O

We thus observe the usual “quadratic” convergence of the output relative to the primal and dual errors.

Remark 1. In the case of compliance — (i) ¢« symmetric, and (ii) £ = f — we may replace (43) with

sv(p) = =€y () + Vg,u(le(,u);,u) (compliance) (45)
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and (44) of Lemma 4.1 with
s(w) — s (1) = a(e™ (), e () 1) = ri'(e™(w); ) (compliance); (46)

we no longer need the primal solution. (Of course, we can also rephrase the result solely in terms of a deflated
primal; however, since our dual is already deflated, (46) is notationally more convenient.)

4.2. Numerical results

We present in Table 1 the convergence of the two outputs s;(u) and s,(u) — associated with output function-
als ¢;(n) and £5(p), respectively — of Example I of Section 3.1, the thermal plate fin. We present the results in
terms of Ngy,; for the first (compliant) output, there is no need for a primal solution — we invoke (45); for the
second (non-compliant) output, we take N, = Ng4y,. The error E; y reported for each output, subscript i = 1, 2,
is the maximum of the relative error, |s{u) — s;x(t)|/|sd1)|, over a random parameter test sample =, C & of
size nl., = 1000. We observe very rapid convergence with N, as expected from the “smooth parametric man-
ifold” arguments [3,8,12].

We present in Table 2 the convergence of the output associated with Example IT of Section 3.2, the ““‘micro-
phone probe.” We present the results in terms of Ny, (=Np,). The error Ey is the maximum of the relative
error, |s(1) — sy(1)|/|s(1)|, over a random parameter test sample Zj., C & of size n, = 400. As for the ther-
mal fin, we observe very rapid convergence with N. Note that our parameter domain & — see Fig. 3 — only
significantly excites a single (near-) resonant mode. If & were to approach other resonant modes (or, in the
case of a damped system, to include other resonant modes), the reduced basis spaces would need to be suitably
enlarged [11]. In general for Helmholtz problems — due to both approximation and certainly inf-sup lower
bound considerations — we can only hope to address some modest number of resonances within any particular

certified reduced basis approximation.
5. Inf-sup parameter: lower bound

Our error bound (28) requires an inexpensive (online) and reasonably accurate lower bound for a piecewise
“natural-norm” inf-sup stability parameter. We first define the latter, and then construct the former — the
function gz (u) of Section 2.2.

Table 1
Example I, Thermal plate fin: the (maximum) relative error E; y, (maximum) a posteriori output error bound &, y, and (average) effectivity
7y as a function of Ny, for outputs s; and s>

Nau E\n E1N iy En Ern Ty
4 2.32E-02 8.28E—01 16.83 0.94E-02 4.85E—01 70.18
8 1.04E—-03 2.25E-02 18.32 1.20E-04 5.13E-03 155.35
12 1.74E—05 7.29E-05 11.36 1.91E-06 4.61E-05 75.38
16 9.56E—07 9.73E—-06 14.50 6.42E—07 6.63E—06 62.36
20 - - - 3.4E-08 7.12E—-07 15.29

(See Section 6.2 for a discussion of the error bound and effectivity.)

Table 2
Example II, “Microphone probe”: the (maximum) relative error Ey, (maximum) a posteriori output error bound &y, and (average)
effectivity 77}, as a function of Ng,

Nau Ey En My
2 8.56E—02 2.27E+00 35.58
4 3.72E-04 4.58E—03 52.17
6 1.52E—-05 1.11E-04 33.33
8 4.34E-07 8.33E—-06 40.05
10 9.00E—09 2.57TE-07 15.14

(See Section 6.2 for a discussion of the error bound and effectivity.)
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5.1. Natural-norm inf-sup parameter

To begin, for given u € & and 7 € ¥"X, we define local natural-norm inf-sup and continuity parameters as

~ . i
Ba(u) = inf sup 2OV 0GR e 1Tl (47)

wel vex [|Wlllgllvlly — vex | T7w]l,

and

= a(w,v; 1 Ty
7a(w) = sup sup ( ) _ sup I Wiy
wex vex [[[Willgllolly — wex [I77w]ly

(48)

respectively. It is clear that, for u = @, Bﬁ(ﬁ) = 7z(f) = 1; our natural norm can thus be viewed as a general-
ization of the usual energy norm (for symmetric, coercive operators) to the non-symmetric non-coercive case.
(Note the natural norms proposed in [32] for non-symmetric coercive operators, though very different in for-
mulation, details, and application, are also characterized by order-unity inf-sup and continuity constants: this
is arguably the essential property of any natural norm proposal.) It can be demonstrated that

BB (1) < Bw) < Pa(w)y(R); (49)

hence (under our assumptions on f(u) and y(u)), /Nfﬁ(,u) is bounded away from zero for all pin .
In what follows we shall also require an “intermediate” inf-sup parameter — an approximation to fz(u) —

which we shall denote as f(u): for given p € Z and mwe ¥,

_ . Trw, T'w

Batu) = ing T T, (50)

v [wlll

It follows directly from the Cauchy-Schwarz inequality — or equivalently, we may observe that T fw is a can-
didate supremizer v in (47) — that fz(u) is a lower bound for fz(p),

Ba(n) < Pa(n) VYuez (51)

(note that f(u) is not necessarily positive). R
_ We can also show that f;(u) is a “good” lower bound for fz(u); we sketch here the proof. We first expand
p2(u) to obtain

(T"w + (T'w — T*w), T'w + (T*w — T"w)) ,

B (1) = inf —
Pulh) = LR
. T'w — T'w, T'w _ _ _ B
-1+ 2igf T2 M O(u— ) = —1 + B + O — ) asp—7  (2)
X

from the affine nature of @ and our assumption @7 € %'(2) (see the discussion following (12)); it thus follows
that

Br(w) = Ba(w) + OBa(w) = 1) + O(lu — ") as p— (53)
Finally, we again exploit the continuity of a to note that
Ba(w) =1 =0(u~al) asu— T (54)

therefore, |Bz(u) — Br(w)| = O(|u — @*) as u — %, where || refers to the usual Euclidean norm. We conclude

that f(u) is a second-order accurate approximation to fiz(u) for u near 7.

Finally, we recall our parameter set ¥~ = {fi, € 2,1, € Z,...,Tix € Z} and associated “indicator” func-
tion X : 2 — v*; #% maps any given u € Z to a “representative” (in fact, “nearby’) member of ¥**. Our
global natural-norm inf-sup parameter is then assembled as

~ K gK . a(w,v;,u)
B’ (p) = inf sup — -
weX ey [[[w]] e, lo]

= Bxu(); (55)
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we further define ﬁmm = min,c, """ (). (Where there is no opportunity for confusion, we shall abbrevi-
ate p”"" (1) as B¥(n).) Note that as K increases and ¥ becomes denser in &, f”* " (1) approaches unity for
all u € 2; the piecewise natural-norm inf-sup parameter is thus intrinsically “easy” to approximate. We now
turn to the construction of a lower bound approximation.

5.2. Lower bound construction
5.2.1. Local lower bound

We begin with a local lower bound. Furthermore, for pedagogical purposes, we first consider the “simple
affine’ case; more precisely, we assume that a(w, v; u) has the “simplest affine” form (Q = P)

a(w,v; 1) Z,up w, v)

where y, is the pth component of u € R” and the ’, 1 < p < P, are continuous bilinear forms.
Under this assumption, it follows from (50) and (15) that, for given u € & and 7 € v*,

Bt (w) = inf (THWHTHTT |||TH s *”mfz ”ap(ﬁﬁ T||W)

(here ““sa” refers to “simplest affine”’). Hence, if we introduce the extreme eigenvalues

a’(w, T"w),,

23— mj
.
psa ap(w7 TEW)X
Fomax wex ’

2
w7

then

sa - . — sa — sa p(w’ Tﬁw) n
& (,LL) =1+ Z} Min |:(:up - :up)j‘%‘,min’ (tup ) Zmaxi| =1+ Z inf ( ﬂp)W < ﬁﬁ(ﬂ)
p= Iz

Note Min[x, y] returns x if x < y and y otherwise. ~

Thus g;*(u) is a lower bound for B%“(u) and, from (51), for f'(u) as well. We also expect that g;* () will be a
reasonably good lower bound at least for p near f. In particular, we note from our derivation that

g(p) = ﬁsa( ) (exactly) along parameter coordinate directions — for any u = 7 + z for which z € R” is non-
zero in only a single component (Unfortunately, and despite (53), (54), the dlscrepancy | ,8 (1) —gr (| is
not generally O(|u — 7|*) even for yu near T, since ﬁfj‘( ) and f'(u) are not ¢'(2).)

We now address the general affine case, (12), by an (almost) direct Taylor-series extension of the simplest
affine case described above. To wit, for given u € Z and i € 7%, we write

gr(1) = max &y k), (56)

where for given u € Z and i € 7%,

gﬂ(.uv - 1 + Z Mln |:KP( luﬁ)/lu max’ K, ('up ))Z mm:|
p=1
Y ] 0©1
+ Za Min @q(u) - @q(ﬁ) a ( )KP (:up’ - ﬁp’) é'%,max’
q=1
001

(9”(#) - 0(p) - ( By () (1 #p)> 5,tmm], (57)
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here, forp=1,..., P, 27, and 2% . are given by
S S () (w, Tw)
h%min(max) = IIE)I{](HI%{X - a 2 ) (58)
ver e |||W|H—
and, forg=1,...,0, &, and & are given by
a?(w, T'w)
q _ Ll
éﬁjmin(max) - 13}2}?( Wwex |HW|||E (59>
m

(In (58) and (59), min(max) refers to two different quantities.) Recall that the Min[x, y] function returns x if
x < y and y otherwise.

We recognize the first two terms of (57), and the extreme eigenvalues (58), as the first-order Taylor series
generalization of the “simplest affine” result; we recognize the third sum in (57), and the extreme eigenvalues
(59), as the “remainder” term — which is of course absent in the simple affine case (for the choice x = 1). The
tuning parameter x € R” in (57) is effectively a local rescaling of the parameter — there is implicitly much
freedom in the parametric representation (see also Remark 3 below) — that is optimized in (56) to balance
the various contributions to the lower bound. We shall denote the optimal scaling parameter as K"p‘(u) =

arg max,cqr &4 K)-
Remark 2. We note that, for fixed u and 7, the optimization with respect to x, (56), takes the form

P+0

gz(p) = 1+ max ZMin[Fm(K), G, (x)], (60)

KeRP
m=1

where the F,, G,, 1 <m < P+ Q, are affine functions of k. We may thus rewrite (60) as
P+Q

gﬁ(:u) =1 + max Zdrm (61)

KERP deRPHC
Fin () Zdm,Gm () Zdm, 1<”’<P+Q

which is simply a Linear Program (LP).
We can then prove

Lemma 5.1. For given i € ¥'% and x € R?,
gl k) < Palw) Vne 2. (62)

Proof. We take as our point of departure the definition of fz(u), (50). We then write T"w as T'w + (T*w
—T*"w) and invoke (15) and (12) to obtain

_ Q q TH
. _al(w, T'w

pr(p) = 1+ inf (Z(@q(u) - @q(:u))(72)>' (63)
v\ [Iwlllz

Next, we add and subtract to our “infimand” in (63) the term
- a@q at(w, T"w
3 3 2 Gy, — ) ), (64)
=1 =1 OHp H|W|Hﬁ

and group the contributions as

0 7 a? (w, T'w
Bl )—1+v12f{zxp m(Z " |(|»;|ﬂ% ))

q'=1 a'up

+Z (@%m - - Y 5 Rl - m) W} (65)
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Finally, we note that the “inf of the sums™ bounds from above the “sum of the infs’’; we then invoke the equal-
ities (58), (59), which concludes the proof. [

This proof is, of course, quite similar to the simpler “simplest affine” case.

As regards accuracy, we anticipate that (56) will inherit the good properties of the simple affine case to lead-
ing order; the general affine contributions only contribute to second order — and hence, even for larger Q,
should be reasonably well controlled. We provide numerical evidence for this claim in Section 5.4.

Remark 3. We understand (from our “simplest affine” arguments) that our lower bound for ﬁﬁ(u) will be
sharpest in the parameter coordinate directions. We can exploit the freedom in the parametric representation
to “optimally” locally align a parameter coordinate with the largest gradients in (1 = 7). The derivatives of
Pu(w) and fy(u) at p = @ will only exist in the directional sense; however, we can plausibly assume — see the left
inequality of (49) — that the steepest variation will be approximately aligned with the gradient of fS(u).
Although f(u) is not C'(2), the gradient G(u) € R” at u =7 will generally exist, and can be formally
evaluated by the usual sensitivity arguments as
2. 201 .
=\ — B(7 (A (T oy (7 _
G,() = B(m) > 5 (D@, 7@, p=1,....P. (66)

g=1 14

We may thus gainfully introduce, for given 1, a new parameter coordinate system j = Rzu in which the first
component of ji aligns with G(1i); here R; € R”*” is an orthogonal (rotation) matrix. We shall refer to the local
lower bound construction based on p — the parameter coordinate system given — as “without local rotation’’;
and the local lower bound construction based on 1 — the new parameter coordinate system optimally aligned —
as “with local rotation.” This rotation is of course a valid transformation independent of the rigor of the moti-
vating arguments.

5.2.2. Global lower bound
For given 7’¥, ¥ our global lower bound function g”"** (1): 2 — R is then given by
oK gK
g (1) = gx,(n). (67)
(Where there is no opportunity for confusion, we may abbreviate g’ +* K(u) by ¢%(x).) We further define

K gK . K gK
gun” = ming”" (1), (68)

We can then readily prove
Proposition 5.2. For given X 7%,
g W< (W) Ve, (69)

Proof. The result follows directly from the definitions (55) and (67), Lemma 5.1, and the inequality (51). O

We note that g;’nl[:l¢ " may be negative, in which case the lower bound is of little value.

We are also now in a position to return to — and prove — the stability of our adjoint deflation correction. In
particular,

Proposition 5.3. For v 7% such that g;tml;jk > 0, the deflation correction oz(u) defined in (39), (40) is
bounded.

Proof. We observe from (36), (10), (37), (15) and (48) that, for u € Z and i = S%Xu € v*,

du,o

v ((); 1) = a(u(m), e (w); 1) = (T 2(R), €™ (1) < Fa( I T2 () [l €™ (1) - (70)
We then note from (15), (39), (50), and (25) that

a(u(), 5a(); 1) = cx(w) (T"7(R), T'2(R))x = cx(W) Ba()I T 2RI = exp) Br(n). (71)
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Therefore, it follows from (39), (25), (40), and Lemma 5.1, (67), (68) that

162() Il < yfﬁf‘ D e ()l (72)

min

which concludes the proof. [

5.3. Selection of V%, 7%

We first discuss the choice of .#X given ¥7X; we then discuss the construction of #™*. For .#¥, the best choice
will maximize our lower bound, g”’/‘K“‘” . (w). It is thus clear that, given 7, we should specify .#X = .#X, where
for given p € 2,

I = arg max gx(s). (73)
Hey

In essence, (73) finds the best (largest) local lower bound. (We also expect, of course, that .#* i will be near p in
the usual Euclidean sense.) Equivalently, we may say that, for given 7, the choice JK % maximizes
g of (68) over all possible 7%

We conclude our development by proposing a procedure by which to determine a good set of parameter
pornts 7% such that our lower bound is of value — gm:; #* positive. We first introduce a large parameter sample
E,C9 of size n° > 1. We next set K =1 and select a tolerance 0 < g;,; < 1; we then choose 7, which in turn
defines g” '+ (). We now proceed to calculate for K=1, ...,

Hx41 = argmax ( rrn? ln— ,u/|> (74)
e \ (wegele”™ % (1) > gt}
until
SN > . 75
ming” """ (1) > g (75)
Hezg

here || refers to the usual Euclidean norm, though more general metrics may also be considered. In essence,
(74) chooses the next point to be the farthest pomt from the “good set”’; other approaches are certainly pos-
sible. Note that (75) does not quite ensure gmm > g, since in (75) we consider only the finite albeit large
sample 5, C Z.

5.4. Numerical results

We demonstrate our lower bound first for Example I, the thermal plate fin problem of Section 3.1. We spec-
ify ny, = 2000 and g,; = 0.5 and apply (“without local rotation”) the algorithm (74), (75) with (73) to obtain ¥
and .#X; we satisfy the desired tolerance for K = 27 — rather modest given the extensive parameter domarn 9

We present in Figs. 4(a) and (b) slices of g¥(u)=g" " (u) for wy=a=35 w=(Bil)=
pus=L e[2.5,7.5], and for gy =0 =1, u,=(BiL) €[0.05,2.5], and 3 =L = 5, respectively.* We also include
in Fig. 4 the sub-optimal non-scaled result

gs(k) = maxga(ue = (1 1 1)); (76)

clearly, x optimization — parameter rescaling — is quite effective in controlling the higher-order contributions.’
Although our lower bound is in some sense rather low order, each local approximation is nevertheless valid —
to the O(1) accuracy required for our error-bound purposes — over a considerable fraction of the parameter
domain: the piecewise natural-norm inf-sup parameter is, by construction, a relatively simple function to
represent.

4 According to (73), g%(u) should be continuous. However in practice, to reduce online expense, we do not enumerate over all the
7€ 7K to evaluate .#% i — instead, the maximization process (73) is terminated once we find any @ € ¥"X such that g“( ) = giol-

5 We note that for gk in (76) and Fig. 4 we retain 77K as calculated in (74), (75), (73) based on (67), (56); hence, ¥"X in (76) is optimized
for KOpl( ) and not k = (1 1 1). Our comparison here is intended only to demonstrate the important effect of rescaling.
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Fig. 4. Inf-sup lower bound for the Laplacian of Example I for (a) yy=a =35, u;=BiL=0.1, y3=L €[2.5,7.5], and (b) yy=a=1,
12 =BiL €[0.05,2.5], u3= L = 5. We present both g¥(u) (solid line) and g% (1) (dashed line).

Table 3

Requisite sample size of 7% for gi,; = 0.5 for the Helmholtz problem of Example II without (K) and with (Kpp) Post-Processing

Case Rotation K optimization K Kpp
1 Yes Yes 14 8
2 No Yes 18 15
3 Yes No 18 15
4 No No 21 20

We next demonstrate our lower bound for Example II, the acoustics Helmholtz problem of Section 3.2. We
specify a uniform grid &, C & of size n, = 3200 and prescribe gi,; = 0.5. We now apply our algorithm (74),
(75) with (73) both “with local rotation” and “without local rotation” (see Remark 3), and both “with « opti-
mization” and “without x optimization™; in the “without x optimization™ case, we replace g;(u) of (56) with
ga(u;x = (1 1)). The four cases considered are defined in Table 3. Note that for each case considered the
parameter set 7 (and hence also .#¥) is chosen optimally for the particular case. In each case we also pursue
a simple Post-Processing step® in which we eliminate unnecessary points that are artifacts of our greedy algo-
rithm — since our procedure to determine the set of parameter points ¥X is not necessarily optimal, it is likely
that there are some redundant points in 7%,

Our results for Cases 1-4 are summarized in Table 3 in terms of the requisite K and Kpp (Post-Processed)
for the given g,o; = 0.5. (Recall that ¥*, .#%, and K are optimized and hence different for each case.) We show
in Fig. 5 the parameter set ¥ % for Case 1 (“with local rotation” and “with x optimization”) without Post-Pro-
cessing. Clearly, x optimization, local rotation, and Post-Processing can, in concert, significantly reduce the
requisite sample size. We observe however that, although K is quite modest, there is indeed a concentration
of points in 7™ near the resonance curve; this is necessary in order to accommodate the second-order or “cur-
vature” contributions to the inf-sup parameter. This does imply some significant dependence of K on P (the
number of parameters) since in general the resonance curves will be (P — 1)-dimensional manifolds. In order
to quantify this effect, and also the mitigating effect of any damping, further tests in higher parameter dimen-
sions are required [28].

6. A posteriori error estimation
6.1. Formulation
We first introduce a bound for the natural norm of the primal error; we then turn to the error bound for the

output of interest. Throughog{t tKhis section, we presume that g&(u) = g'VKJ . (n) for given ¥* and #* (typi-
cally .#%); and that g¥. =g’ 7" of (68) is positive.

® To Post Process 7% we consider each point fi;, | < k < K, in turn; we eliminate the point if the resulting reduced sample preserves our
Ziol Tequirement.
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Fig. 5. Parameter sample #"* for the Helmholtz problem of Example II for Case 1 (‘“with local rotation”and “with x optimization”)
without Post-Processing. The dashed line indicates the (first) resonance curve.

Our bound for the primal error in the natural norm is given by

M) = S I ) - (77)
where the dual norm is defined in (13). We can prove
Lemma 6.1. For given u € &, the primal error satisfies

le™ (lllz < A (), (78)

where i = % .

Proof. It follows from the error-residual relationship, a(e” (u),v; 1) = riy (v; ), Vv € X, the inf-sup definition
(47), (55), and Proposition 5.2, that

g lle™ (WIINT"e™ ()l < [Py (T"e™ (u); ). (79)
But clearly, from (13), |} (T"e? (1); )| /|| T"e* ()|l < |I7N (- ) || > Which concludes the proof. [
We can also readily demonstrate that

7aln)
Ay () <~ Mlle™ (w15 (80)
) !
however this good effectivity in the natural norm is not yet relevant to our ultimate objective — a bound for the
error in the output of interest.

We shall require one additional preliminary result, which we provide in

Lemma 6.2. For a functional h € X' that, for a given i € ¥'X, satisfies h(y(1)) = 0,

h(v) 1
Y < Al 81
SUP Tl < 5 1 81)

Proof. We first observe by standard duality arguments that

h h(H
gy 0 _ )
vex |lolllz — IH]l
where, from the definition (18), (T*H, T"v), = h(v) Vv € X. It is clear from our hypothesis on / that

(T"H, T (1)), = 0. (83)

We now expand H as



S. Sen et al. | Journal of Computational Physics 217 (2006) 37-62 55

H= Z X Xm) (84)

i=1

and observe from (21), (25), and the orthogonality condition (83) that ¢; = 0. We further note from (19), (21),
and (24) that

N N

Nt
I =D o) =Y cini(m) W)Y = ) IH 5 (85)
i=1 i=2

i=2
Therefore, from (85) and (13),
h(H) < h(H) o 1
Al = B~ @IHl, ~ B ()

which concludes the proof. [J

1Al (86)

This lemma is not surprising: it is a standard norm-equivalence argument except that we have eliminated the
extreme mode.
We now define our output error bound as

Ay(n) = 175 G5 ) Ll 5 ) e (87)

1
B (Mg (w)
for 1 = .#% 1. We can then prove

Proposition 6.3. The output error satisfies
s(1) — sw(0)] < Ay(w) Vue 2. (88)

Proof. We first observe from Lemmas 4.1 and 6.1 that, for 7 = %y,

7 Il

We now observe from (38), (40) and (41) that r4"(x(%); 1) = 0, and hence from Lemma 6.2

500 = sv(00)] = AL (e )] < (‘2}2 ﬁ(H")) el < (g rfvt“““’)mm» )

du

FN(U;,U) 1 du
sup S o= iy G )y 90
ex H|v|||ﬁ ﬁ+(u)||N( )”X ( )

which concludes the proof. [J

We note that Proposition 6.3 is valid for any Ny, Ngy.

The quality, or sharpness, of our output bound is measured by the effectivity,
_ AW
) = ) —sw ol

In general, we cannot bound this output effectivity. The incorporation of the dual in the bound does eliminate
one important source of deterioration in the effectivity, in which (in particular, as ¢ approaches f) the primal
space well approximates the dual solution — and hence the output converges faster than the primal error even
without the dual correction [15]. However, another source of deterioration in the effectivity remains: implicitly,
our bound in (87) ignores any possible de-correlation between the primal and dual errors — whereas in fact
|s(u) — sn(p)] may be significantly smaller than the product of the primal and dual errors. We can thus hope
that our effectivities will be well-behaved, but this may not always be the case [15]. We do note that, given the
rapid convergence of the reduced basis approximation, O(10) effectivities are not particularly worrisome, as
this can readily be absorbed by only a very slight increase in N.

Deflation can also play an important role in controlling effectivities. In particular, many coercive and non-
coercive problems may exhibit near singular behavior in which f(u) tends to zero: this occurs in Example I, the

(O1)
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thermal fin/Laplacian, as we approach the Bi = 0 boundary of Z; this also occurs in Example II, the acoustic
“microphone probe”/Helmholtz, as we approach resonances just outside & (or more generally, for lightly
damped systems, at resonances within &). Without deflation we must accommodate 1/f(f) in the denomina-
tor of our error bound — the worst mode “pollutes”™ the estimate for all the modes; with deflation, we are per-
mitted the much more benign 1/8" (%) in the denominator of our error bound — since the most dangerous
mode has now been “peeled off.” Clearly, our arguments assume that there is only one dangerous mode
(or, with suitable generalization, some small finite number of dangerous modes), as obtains in both the exam-
ples cited: if there are no dangerous modes, deflation is an unnecessary expense; if there are many (a continuum
of) dangerous modes, deflation cannot be effective. The former is benign; the latter is unlikely — an indication
of fundamental ill-posedness.

Remark 4. In the case of compliance (see Remark 1) — ¢ symmetric and ¢ = f — we replace our output error
bound (87) with

Mm:wgﬂmwmwﬁ (compliant): (92)

recall that we no longer require the primal solution. If we additionally require coercivity of a, we can in fact
bound the effectivity (since now the output error can be zero only if the dual error is zero):

. (1)
) S ek

which is similar to the standard result [7] but now corrected for deflation. Here i = .#* 1 in both (92) and (93).

(compliant, coercive), (93)

Remark 5. There are error indicator proposals in other contexts — adaptive finite difference techniques for
ordinary differential equations [33] and adaptive finite element methods for partial differential equations
[30] — that do not require an explicit lower bound for the stability constant. These indicators are intended
primarily for adaptive refinement, not certification.

In our context, the indicator in [33] (might) take the form

A (1) = 1P G L 195 ()

as motivated by the relation
() = un ()] < N Cs 9 L I ) e < N Cs ) e IR G e+ Hle®™ () L) 2 173 Cs ) L 93 () -

Clearly, Kj\,(/l) is not a rigorous upper bound for [£(u(u) — un(p))|, and hence is not too well suited for certi-
fication; in essence, the stability constant is hidden (albeit to second order [30]) in the neglected adjoint error
term. In our particular context, control of the effectivity may also be compromised, as Galerkin orthogonality
is not recognized: for example, in the compliance case, A} (u)/[¢(u(p) — uy(u))| will tend to infinity as N in-
creases. Finally, there is also an efficiency issue: if we calculate s 5(u), we should include the residual correction
term in (43) — to improve the output accuracy [31]; but the associated error indicator will then be consistent
only if we now bound the adjoint error — which again requires a stability constant.
In our context, the indicators in [30] (might) take the form (for sy(u) as defined in (43))

[s(u) = s () = [l G5 ) Wy () = 3 ()l

where ¥3, (1) and ¥}, (u) refer to our reduced basis dual approximation for 2Ny, and Ny, dual basis functions,
respectively. Again, this indicator does not provide a rigorous bound; however, the treatment of the adjoint
error would at least partially address both the effectivity and efficiency/accuracy concerns.

6.2. Numerical results

We present in Table 1 the error bounds and effectivities for the two outputs s;(u) and s,(u) — associated with
the output functionals ¢;(u) and ¢»(u), respectively — for Example 1 of Section 3.1, the thermal plate fin. As
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before, we present the results in terms of Ngy; for the first (compliant) output, there is no need for a primal solu-
tion — we invoke (92); for the second (non-compliant) output, we take N, = Ng,. The error bound & y reported
for each output, subscript i = 1, 2, is the maximum of the relative error bound, [A}, (u)|/|s:(1)], over our ran-
dom parameter test sample =}, C Z of size nl,, = 1000; for each output, subscript i = 1,2,7, denotes the
average of the effectivity, 77, (1), over the parameter test sample =} . (Note that we reject from our sample
Z},,, those parameter points for which the dual norm of the residual squared is smaller than machine precision,
as for these parameter points the calculation is contaminated by round-off.)

We observe — though we cannot a priori guarantee — reasonably good effectivities for both the compliant
and non-compliant outputs. Note that, without deflation, the error in the reduced basis output prediction
changes only imperceptibly. However, for the lower u, = (BiL) values — Bi € [0.01, 0.1] — the without-deflation
output error bound, (87) but with f*(u) replaced by (i) in the denominator, is approximately 80 times larger
than the with-deflation output error bound A} (u): deflation is a necessity for nearly singular problems if we
wish to control the effectivity.

We present in Table 2 the error bounds and effectivity for the (non-compliant) output of Example II of Sec-
tion 3.2, the acoustics Helmholtz problem. As before, we present the results in terms of Ny, (=N,,). The error
bound &'y is the maximum of the relative error bound, |A}(¢)|/|s(x)|, over our random parameter test sample
Elb, C Z of size nll = 400; 77, is the average of the effectivity, #3 (1), over the parameter test sample ;.. (As
before, we reject from our sample Egst those parameter points for which the dual norm of the residual squared
is smaller than machine precision.) We observe reasonably good effectivities. Near resonance, the without-
deflation output error bound is approximately 10-40 times larger than the with-deflation output error bound:

deflation is a necessity for Helmholtz problems near resonance.

7. Computational cost: offline/online approach

Our reduced basis approach admits an offline/online computational decomposition [6,7,9,10,12]: all A";-
dependent operations are first performed offline in a preprocessing stage; the computational complexity and
storage of the online — or “deployed” — stage then depends only on N, Q, and K. In the online stage we
can provide extremely rapid response in the real-time context, and extremely efficient (average) response in
the many-query context; an example of both the former and the latter is the “non-destructive evaluation”
parameter estimation framework described briefly in Section 1.2 and illustrated in detail in [16,18,22].

The total online cost for the output and output error bound, inclusive of both the primal and dual
solutions, the deflation correction, the inf-sup lower bound, and the dual norms of the primal and dual
residuals, is O(N;r + Nzu + QZ(Npr + Ngu + 1)2). The storage scales as O(Q* (le)r:max + Nﬁuﬁmax + KNdumx)).7
Thus, all requisite online calculations and storage are indeed independent of the dimension of the under-
lying finite element space, .4/". A detailed accounting of the online operation count and storage is pre-
sented in Appendix A.

We now compare the online reduced basis computational cost to evaluate sy(¢) and Ay (u) to the finite ele-
ment cost to compute our “truth” output s(u) = s *(u). Of course, this comparison is only meaningful if we
are in the real-time or many-query contexts — in which the offline reduced basis cost is unimportant, and only
the marginal cost is relevant. We present our results in Table 4 for Example I and Table 5 for Example II.%
Note we do not necessarily observe the expected scalings with Ny, due to memory access and other overhead
not accounted for in our complexity estimates.

We conclude from Table 1/Table 4 and Table 2/Table 5 that, for both our model problems, our approach
provides certified relative accuracy of 1072 or 10~* at (1/100)th the online cost of conventional techniques. The

7 We have chosen to express our output error bound (87) in terms of X’ dual norms, which in turn necessitates deflation in order to
ensure good effectivities (see (90) and the discussion following Proposition 6.3). An alternative (see (89)) is to work directly with natural
dual norms and “hope” that the most dangerous mode is largely absent; however, this natural dual norm approach could incur larger
effectivities and, in any event, will require O(KQZNﬁu.maX) online storage — typically a K-fold increase over the X’ dual norm approach
presented.

8 The online times are exclusive of the inf-sup lower bound calculation, which in our normalized units is (say, for Example I) about 9.77
(independent of Ny, and of course .4/"). A more efficient LP strategy for x optimization could reduce this overhead.
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Table 4
Example I, Thermal plate fin: computational cost to evaluate s; y, AS17N, sa.n, A v, and st as a function of Ny, (for Npr = Ngy); the results
are normalized with respect to the time to calculate s; y for Ny, =4

Ngu Online time Time
SLN Alx S2,N Ay st
4 1.00 5.37 1.42 5.58
8 1.16 5.42 1.68 5.74
12 1.26 5.63 1.89 6.00 2000
16 1.42 5.84 2.00 6.05
20 - - 2.16 6.58
Table 5

Example 11, “Microphone probe”: computational cost to evaluate sy, A}, and st as a function of Ng, (for Ny = Ngy); the results are
normalized with respect to the time to calculate sy for Ny, =2

Nyu Online time Time
SN A;\/ s
2 1 1.5
4 1.07 1.5
6 1.14 1.58 1800
8 1.21 1.58
10 1.22 1.58

savings would be even larger for problems with more complex geometry and solution structures, and in
particular in higher space dimensions with correspondingly larger A7.
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Appendix A. Offline/online computational procedures

In this appendix we develop the offline/online computational decomposition which allows us to efficiently
compute the primal and dual solutions, the output, and the error bounds in the online (or “deployed”) stage.
In particular, we outline the procedure to compute the deflated dual solution y5(u), the inf—sup lower bound
2"(w), the output sp(u), and the dual norm of the dual residual ||74"(-; u)| . Similar computational procedures
can be developed for the primal solution uy (u) and the dual norm of the primal residual ||/ (; )|l For
simplicity, we shall assume in this appendix ¢ and a7, 1 < g < Q, are symmetric.

A.1. Calculation of Yn(u)

The deflated dual approximation ¥ is a sum of the “undeflated”” dual approximation ¥}, (), (35), and the
deflation correction term dz(u), (39).
We first express the “undeflated”” dual approximation /(1) as

Nay
Yr(w) = (. (A1)
j=1
We then choose as test functions v = (i = 1,..., Ny, to represent our dual problem (35) algebraically: find

Y3 (1) € R such that
AR (07 (1) = —Ly" (A.2)
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N qu XN d d .
Here Y, = (lel Wiy, )» A% (p) € RV N ig the symmetrlc matrix Ay (1) = (C]”,ll i), 1 <i,j < Ny,

and LI € RV is the “output” vector L& = ¢({™),i=1,...,Nau.
We now invoke the affine decomposmon (12) to obtain

AN (1) = a(l, 5 ) Z O (wa’ (L, 1), (A.3)
which can be written as
AV (u Z O () Ay, (A.4)
where the 43! € RY&*Ve are given by Ay = (Cd“ (M1 <i,j < Naw, 1 << 0.
The coefficient for the deflation correction cﬂ( ), (39) can then be calculated from (40) (for given 7i, € ¥*)

as

cn(p

Mtc:

W = Z@q ) (5) i), (AS)

where the parameler-independent quantities Cq",L’;, and DY are given by

C™* = a?(y(m), T"x(m)), 1<k<K, 1<q<0,
Ly =0(x(m)), 1<k<K, (A.6)
DYt = at (7(f), ™), 1<k<K, 1<¢<0, 1<i< Nawmaxs

respectively. Here T denotes algebraic transpose.

The offline/online decomposition is now clear. In the offline stage — performed only once — we first solve for
the CS“, 1 < n < Ngumax; We then compute and store the p-independent quantities in (A.2), (A.4) and (A.6). The
computational cost is therefore O(Ngy max) solutions of the underlying ./"-dimensional “truth” finite element
approximation and O(Q(N3, + KNg,)) ./ -inner products.

In the online stage — performed many times, for each new parameter u (and hence associated i = .#%pu €
7%, which determines k in (A.5)) — we first assemble the reduced basis matrix (A.4); this requires
O(Q(N3,)) operations. We then solve the dual problem for ¢, (1); since the reduced basis matrices are in general
full, the operation count (based on LU factorization) is_O(N3 ). Finally, we solve for cz(u); this requires
O(QNy,) operations. The total online storage cost is O(ON3, max) T O(KON dumax )

A.2. Calculation of g"‘/‘K-JK( 1)

We consider here only the online stage. For a particular given (new) yx, we must solve at most K Linear
Programs of the form (56) (or (60), (61)) with O(P + Q) variables and constraints. Typically, many fewer than
K LPs are required: to wit (see Footnote 4), we first list the 7i € 7% in order of increasing distance from y; we
then proceed through this re-ordered list until we find a 7 such that g;(u) > g,

A.3. Calculation of sy( 1)

The output (43) can be calculated in terms of uy(u) € RY, Y4 (n) € RY, and cz(p), as
sw(p) = LY Ty (1) — Ey Ty (n) + Z 0(u ( LAy () + Cﬁ(u)(ﬁz‘%r"”k)TzN(u)), (A7)

where uy (1) = (un1 - - - unn,,) are the primal coefficients in the expansion uy(u) = Z:V Tuni (), and k is the
index of .#*u € ¥'X. The parameter-independent quantities LY, F&, A%, and BY* are given by

9 Recall Naumax 18 the maximum size of the dual approximation space; Ngy max i independent of the size of the finite element mesh /7.
Section 4 and Footnote 3 summarize the construction of the primal and dual reduced basis spaces.
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Ly =), 1<j<
F& =(¢™), 1<i<N
AR = (), 1<¢<0, 1 <i < Nawmaxs 1 <J < Npramaxs
BY — 10" TRy ()), 1<k<K, 1<q<0, 1<i<Normax,

respectively.

In the offline stage, the operation count to construct the terms in (A.8) is O(QNp(Ngy + K)) A" -inner prod-
ucts. In the online stage — for any new parameter u — the output evaluation (43) requires O(QN,Ng,) opera-
tions; the online storage is O(KQNpr max) T O(ONpr maxNdu,max)-

A.4. Calculation of ||r& (5 W)l

In this section we discuss the calculation of the dual norm of the dual residual. We first note from standard
duality arguments that

; I"du(l) #) du
175 (5 )]y = sup 2= = (| () (A9)
vex  |vlly
where ¢%%(u) € X is given by

(&% (w).0)y = M (vi0) Vo€ X. (A.10)

From (41) and the affine assumption (12) it thus follows that &% (u), for any choice of 7 € ¥ 1 < k <K,
satisfies

Nau 0
(@ (u),v)y = Z Z O (W3, (wa' (£, 0) = > O (wep(w)a’ (v, T x()) Yo e Y. (A1)
j= g=1
It is clear from linear superposition that we can express é%(u) as
Nau
M) =z — Z Z AN Er Z M (A.12)
g=1 j=

where % eX,%du’le,)%keX,l k<K, 1<qg<0,1 <)< Ngymax satisfy
(Z()a ) __E() VUEXa

E )y =a'(0,") YoeX, 1<q< 0, 1 <j< Nayma, (A.13)
(x4, 0) —aq(T"ky(,uk) v) YoeX, 1<k<K, 1<qg<0.
Note that zy, 2;"%, and x{ are parameter independent.
From (A.9) and (A.12) it follows that (for given k)
Ny Q
145 ) e = Ad“bb+2 D O WAL + 30 O sl
g=1
Q9 Q9 Na , d
+D 000 0w (WO (wer(w) Ay,
=1 g=1 j=1
Q Q Nay Nau , g
+> > O (1, (W) O (W () AL i
=1 g=1 j=1 j=1
[ , J
+3 030U wo! (wer(w) Ay, (A.14)
g=1 ¢'=1

where the parameter-independent quantities A% are defined as
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Adu P (ZO;ZO)Xa

AR = 2(EM ), 1<q< 0 1<) < Nowman:

Ad“"’b——Z(fc"éo) 1<k<K, 1<¢<0;

Alen =2 5),  1<k<K, 1<4.4 <0 1<)/ < Nomas (A.15)
Adan = (9 29 1 <q,q <O, 1<, /< Namard

At = (5,50 1<k<K, 1<q,q <0

(We introduce the superscripts “a’’, “b” and “m” to distinguish amongst the basis functions related to the re-
duced basis, the output functional, and the deflation, respectively.)

The offline/online decomposition is now clear. In the offline stage we first compute the quantities 2, 2 ‘-j““’,
and X! from (A.13) and then evaluate the A% of (A.15); this requlres (to leading order) O(Q(Ngymax + K))
expensive “truth” finite element solutions and O(KQ*N umax) + O(Q* N, na) -/ -inner products. In the online
stage, given a new parameter value p and associated reduced basis solutions u(u) and ya(p), the operation
count to perform the sum (A.14) is O(Qz(Ndu’max + 1)%); the online storage is O(KQ*N gy.max) + O(0* Ndu max)-
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