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The interaction of electromagnetic waves with metallic nanostructures generates resonant 
oscillations of the conduction-band electrons at the metal surface. These resonances can 
lead to large enhancements of the incident field and to the confinement of light to 
small regions, typically several orders of magnitude smaller than the incident wavelength. 
The accurate prediction of these resonances entails several challenges. Small geometric 
variations in the plasmonic structure may lead to large variations in the electromagnetic 
field responses. Furthermore, the material parameters that characterize the optical behavior 
of metals at the nanoscale need to be determined experimentally and are consequently 
subject to measurement errors. It then becomes essential that any predictive tool for 
the simulation and design of plasmonic structures accounts for fabrication tolerances and 
measurement uncertainties.
In this paper, we develop a reduced order modeling framework that is capable of real-
time accurate electromagnetic responses of plasmonic nanogap structures for a wide 
range of geometry and material parameters. The main ingredients of the proposed 
method are: (i) the hybridizable discontinuous Galerkin method to numerically solve 
the equations governing electromagnetic wave propagation in dielectric and metallic 
media, (ii) a reference domain formulation of the time-harmonic Maxwell’s equations to 
account for arbitrary geometry variations; and (iii) proper orthogonal decomposition and 
empirical interpolation techniques to construct an efficient reduced model. To demonstrate 
effectiveness of the models developed, we analyze geometry sensitivities and explore 
optimal designs of a 3D periodic coaxial nanogap structure.

© 2018 Elsevier Inc. All rights reserved.

The field of plasmonics [30,40] studies the excitation of electrons in the conduction band of metallic nanostructures. This 
excitations can lead to resonances which result in the trapping of light in deep-subwavelength regions, leading to enormous 
near-field enhancements of the incident electromagnetic (EM) field. These regions of high-intensity EM field are typically 
observed near the corners, sharp features or cavities within metallic nanostructures. Moreover, the tight confinement and 
enhancement of the EM waves provide unique means for manipulating light and its interaction with metals, well beyond the 
diffraction limit. As a result, the development of plasmonic field enhancement structures has found applications in energy 
harvesting [5], sensing [54], plasmonic waveguiding [31] and near-field scanning microscopy [38].
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The ability to accurately model and simulate EM wave propagation for plasmonics requires capabilities that challenge 
traditional simulation techniques. Plasmonic phenomena involve the propagation of μm and mm wavelengths through 
nanoscale apertures. It is thus essential to devise simulation methods that are capable of resolving multiple length scales. 
From a manufacturing perspective, the fabrication of nanometer-wide gap structures is challenging, and minor geometric 
deviations from the nominal design may lead to significant alterations in the performance of the device. Furthermore, the 
optical behavior of the metals at the nanoscale is poorly characterized and the material constants in the models, which are 
determined experimentally, are subject to measurement errors. If our ultimate goal is to develop simulation methods that 
can be effectively used in the design of plasmonic structures, it is of foremost importance that these methods incorporate 
fabrication tolerances as well as parameter uncertainties.

The goal of this paper is to combine an advanced numerical simulation method for the time-harmonic Maxwell’s equa-
tions, the hybridizable discontinuous Galerkin (HDG) method, with a reduced order model (ROM) framework that will enable 
us to efficiently compute solutions for different combinations of the input parameters. These parameters may include ma-
terial properties, frequency and direction of the incident light, as well as geometric dimensions. The ability to inexpensively 
obtain multiple solutions for different input parameters is critical to allow the effective exploration of the design space. The 
HDG method [11,33], has been successfully applied to acoustics and elastodynamics [34,50], as well as electromagnetics 
[35]. The HDG method is fully implicit in time, can be implemented on unstructured spatial discretizations, and can be 
made high-order accurate in both space and time, thus exhibiting low dissipation and dispersion. Compared to other DG 
methods [26], the HDG method results in a reduced number of globally coupled unknowns, thereby resulting in smaller lin-
ear systems, and exhibits optimal convergence rates for both the solution and the flux. Despite the computational advantage 
offered by the HDG method, the size of the resulting systems of equations, typically several hundred thousand, is still too 
large to allow for the large number of solutions required in the design process. For this reason, we propose the construction 
of reduced order models (ROM) built upon the HDG method. These ROM allow for rapid and inexpensive queries of the 
outputs of interest for a range of geometry and problem parameters, effectively providing a parametrized solution of the 
problem.

The ROM of interest here are created by constructing a low-dimensional basis of the solution state space and seeking 
approximate solutions within this reduced space via Galerkin projection or other means. For this reason, they are often 
referred to as reduced basis (RB) methods [24,46,47]. Proper orthogonal decomposition (POD) [51] is commonly used to 
construct such low-dimensional bases. The starting point for POD is a set of solutions, or snapshots, that are obtained by 
numerically solving the forward HDG model for different values of the input parameters. Singular value decomposition is 
then employed to determine a low-dimensional basis such that the dominant information is retained by the basis vectors. 
POD has been used to construct ROM in computational fluid dynamics [4], mechanical systems [27] and electromagnet-
ics [1]. In addition, alternative approaches to POD for creating ROM have been proposed. For instance, Arnoldi methods 
can be used to develop ROM for turbomachinery flows [58] and in recent years, Patera et al. [19,45,49] introduced greedy 
sampling strategies to adaptively construct the RB, as well as rigorous a posteriori error estimators to certify the quality of 
the approximation and an offline/online strategy to improve computational efficiency. Other work has also been conducted 
to incorporate a priori error analysis [17,29] of the approximation in ROM. The reduced RB representation can also be used 
to compute rapid and accurate approximations of functional outputs of parametrized PDEs [37].

Recently, RB methods have been used for the time-harmonic Maxwell’s equations in combination with DG [10,13,28,
44] and integral [16,25] methods to successfully generate fast responses for complex electromagnetic devices, where the 
frequency and material properties are treated as parameters. Furthermore, there has been considerable work to incorpo-
rate geometry as a parameter for electromagnetic applications, using either affine geometry transformations [9,18,23,57] or 
parametrized meshes [22].

The application of ROM techniques to linear PDEs with affine parameter dependence is fairly straightforward. However, 
the existence of nonlinearities and more complex parametric dependence, such as geometry parametrization, poses a severe 
challenge for RB. In that case, the projection required to construct the reduced order model cannot be pre-computed and its 
cost scales as the dimension of the original solution space. In order to overcome this limitation, the empirical interpolation 
method (EIM) [2] and its discrete counterpart DEIM [8] were proposed. These methods employ a greedy sampling strategy 
to generate an independent approximation to the nonlinear terms, consisting of a weighted combination of interpolation 
functions. Thus, replacing the nonlinear term with this interpolation approximation recovers an efficient computational 
strategy to perform the projection onto the low-dimensional space. In electromagnetics, the EIM has been leveraged to 
construct a ROM for 3D scattering problems [18]. Alternatively, geometry parametrization has also been considered by 
directly interpolating the projection matrices that arise from the spatial discretization [15], with applications to 2D and 3D 
waveguides [6,7].

In order to pursue ROM within the HDG method, we first develop a reference domain formulation [43] that renders 
a transformed set of time-harmonic Maxwell’s equations for an arbitrary differentiable deformation mapping. We then 
combine the HDG discretization of the transformed equations with empirical interpolation techniques to recover a weak 
HDG formulation in terms of affine parametric expressions [49]. Finally, we employ POD to construct the RB for the ROM 
and the standard offline-online computational strategy that enables the evaluation of approximate solutions of large 3D 
problems in real-time. The main contribution of this article is the combination of existing numerical approaches such 
as HDG, EIM and ROM to address the simulation and design of novel plasmonic devices. The framework presented here 
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Fig. 1. Metallic structure � embedded in dielectric � illuminated by plane wave.

is shown to dramatically reduce the computational cost of plasmonic simulations, therefore enabling the exploration of 
multiple material and geometry configurations.

This article is organized as follows. In Section 1, we introduce the equations and notation used throughout the paper. In 
Section 2, we introduce the HDG method to solve time-harmonic Maxwell’s equations on a reference domain and discuss its 
implementation. In Section 3, we describe the construction of a reduced order model for time-harmonic Maxwell’s equations 
based on proper orthogonal decomposition and empirical interpolation. In Section 4, we present numerical results to assess 
the performance of the proposed method. We finalize in Section 5 by providing some concluding remarks.

1. Governing equations

1.1. Time-harmonic Maxwell’s equations

Maxwell’s equations describe the propagation of the electric E(x, t) and magnetic H(x, t) fields. For monochromatic 
waves, we can express the electromagnetic fields using only their complex amplitudes, since the time dependence is 
assumed harmonic, that is E(x, t) = �{E(x) exp(−iωt)}, for a given angular frequency ω and corresponding frequency ffl = ω/(2π). For a linear, non-magnetic medium in the absence of impressed currents and charges, the frequency-domain 
Maxwell’s equations for the complex electromagnetic amplitudes E and H are expressed as

∇ × E − iωH = 0,

∇ × H + iωεE = σE,

where ε is the relative permittivity of the medium and σ is its conductivity.
In this paper, we study the scenario where a plasmonic structure � embedded in a dielectric medium � scatters an 

incident p-polarized plane wave E0 propagating in the d-direction, that is E0 = p exp(iω
√

εd d · x), see Fig. 1. The dielectric 
medium is characterized by a dielectric permittivity εd and zero conductivity. The metal � can be described with the 
complex Drude’s permittivity [14], that is

εm = ε∞ − σ

iω
= ε∞ − ω2

p

ω(ω + iγ )

where ε∞ is permittivity due to the valence-band bound electrons, ωp is the (nondimensional) plasma frequency of the 
metal and γ is the (nondimensional) electron collision rate. This model assumes the electrons in the valence band are fully 
detached from the ions, and are only subject to electron–ion and electron–electron collisions. This model accounts for the 
dispersive and lossy nature of metals and is commonly known in literature as local model, since the motion of one electron 
is not coupled to that of its neighbors. For compactness, we use a spatially-varying permittivity ε(x), defined as

ε(x) = εd1� + εm1�.

Introducing the additional variable V = iωH, we arrive at the time-harmonic Maxwell’s equations

∇ × E − V = 0,

∇ × V − ω2ε(x)E = 0,
(1)

defined in � ∪ �. The system above is complemented with boundary conditions

n × E × n = E∂ , on ∂�E ,

n × V = n × V∂ , on ∂�V ,

n × V + iω
√

εd n × E × n = f0, on ∂�rad ,
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Fig. 2. Deformation mapping between reference and physical domain.

with f0 = n × (∇ × E0) + iω
√

εdn × E0 × n. The first (resp. second) equation corresponds to a boundary condition where the 
value of the tangential component of the electric (resp. magnetic) field is prescribed. Symmetries in the structure can be 
enforced by setting E∂ = 0 (V∂ = 0) on selected boundaries, see Section 4. The last equation imposes the radiation conditions 
required to truncate the infinite space. In particular, we employ Silver–Müller conditions, which are first order absorbing 
boundary conditions [32,53].

1.2. Reference domain formulation

In this section, we develop a reference domain formulation for the time-harmonic Maxwell’s equations. Let us assume 
that the geometry of the physical domain, D(θ) ∈ R

n with coordinates x, is parametrized by θ defined in a compact set. 
In addition, we consider a reference domain Dr ∈ R

n with coordinates xr which is mapped to the physical domain D(θ)

by means of a one-to-one mapping given by a diffeomorphism x = G(xr, θ), see Fig. 2. Our goal is to pull Maxwell’s 
equations in the physical domain (1) back to the reference domain. The transformed equations in the reference domain are 
parametrized by θ, but in return, they are defined and can be solved on a fixed, reference space, thus avoiding re-discretizing 
the computational domain for each new geometry, or value of the mapping parameters θ.

The deformation gradient of the mapping G and its Jacobian are defined G = ∇rG and g = detG , respectively. Note that 
∇ = G−T ∇r . For simplicity, we shall assume deformations only occur within the vicinity of the metal, thus the outer bound-
aries of the computational domain – where radiation conditions are prescribed – remain fixed. For the plasmonic structures 
studied here, periodicity occurs in the x − y directions and radiation conditions are imposed in the z constant plane, thus 
the mapping can be easily decomposed to satisfy the required conditions, see Appendix B. More general structures may 
either require more complex deformation mappings, or the use of perfectly matched layers (PMLs) [3] to model radiation 
without the constraint of keeping the radiation boundaries fixed.

In order to obtain the transformed equations on the reference space Dr , we consider, for illustration purposes, the second 
equation of (1) and integrate the curl term on a control volume v ∈D. The application of Stokes’ theorem and the relations 
dv = gdvr and nds = gG−T nrdsr [43] yields,ˆ

v

∇ × Vdv = −
ˆ

s

V × nds = −
ˆ

sr

gV ×
(
G−T nr

)
dsr = −

ˆ

sr

g
(
G−T

(
GT V

))
×

(
G−T nr

)
dsr

= −
ˆ

sr

G
(
GT V

)
× nrdsr =

ˆ

vr

G∇r ×
(
GT V

)
dvr .

The second term in transforms asˆ

v

ω2ε(x)Edv =
ˆ

vr

ω2ε(xr)Egdvr .

The boundary conditions are transformed similarly, for instance

0 =
ˆ

s

(E − E∂ ) × nds =
ˆ

sr

g(E − E∂ ) × (G−T nr)dsr =
ˆ

sr

G
[

nr × (GT (E − E∂ ))
]

dsr

=
ˆ

sr

nr × (GT (E − E∂ ))dsr .

Finally, the transformed time-harmonic Maxwell’s equations in �r ∪ �r read

∇r × Ge − v = 0,

∇ × Gv − ω2ε(x )e = 0,
(2)
r r
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where a generic field u transforms as u = gG−1U and G = g−1GTG . The system is complemented with boundary conditions

nr × (Ge) = nr × (Ge∂ ), on ∂�r,E ,

nr × (Gv) = nr × (Gv∂ ), on ∂�r,V ,

nr × (Gv) + iω
√

εnr × (Ge) × nr = f0, on ∂�r,rad.

Since deformations are only nonzero in the vicinity of the scatterer (G�∂�rad = Id), we have V = Gv and E = Ge on ∂�rad.

2. HDG method for time-harmonic Maxwell’s equations

2.1. Approximation spaces

Following [35], we denote by Th a triangulation of disjoint regular elements T that partition a domain D ∈ R
3. The set 

of element boundaries is then defined as ∂Th := {∂T : T ∈ Th}. For an arbitrary element T ∈ Th , F = ∂T ∩ ∂D is a boundary 
face if it has a nonzero 2D Lebesgue measure. Any pair of elements T + and T − share an interior face F = ∂T + ∩ ∂T − if its 
2D Lebesgue measure is nonzero. We finally denote by Eo

h and E∂
h the set of interior and boundary faces respectively, and 

the total set of faces Eh = Eo
h ∪ E∂

h .
Let n+ and n− be the outward-pointing unit normal vectors on the neighboring elements T +, T − , respectively. We 

further use u± to denote the trace of u on F from the interior of T ± , where u resides in L2(D) ≡ [L2(D)]3, with L2(D) the 
space of square integrable functions on D. The jump �·� for an interior face F ∈ Eo

h is defined as

�u � n� = u+ � n+ + u− � n−,

and is single-valued for a boundary face F ∈ E∂
h with outward normal n, that is

�u � n� = u � n,

where the binary operation � refers to either · or ×. The tangential ut and normal un components of u, for which u =
ut + un , are then represented as

ut := n × (u × n), un := n(u · n).

Let P p(D) denote the space of complex-valued polynomials of degree at most p on D. We now introduce the following 
approximation spaces

Wh = {w ∈ L2(D) : w|T ∈ P p(T ), ∀T ∈ Th},
W h = {ξ ∈ L2(D) : ξ |T ∈ [

P p(T )
]3

, ∀T ∈ Th},
Mh = {μ ∈ L2(Eh) : μ|F ∈ P p(F ), ∀F ∈ Eh},
Mh = {μ ∈ L2(Eh) : μ|F ∈ P p(F )t1 ⊕P p(F )t2, ∀F ∈ Eh},

where t1, t2 are vectors tangent to the face, thus including the curl-conforming nature of the solutions, since by construction 
μ ∈ Mh satisfies μ = n × (μ × n) = μ1t1 + μ2t2. The tangent vectors can be defined in terms of n = (n1, n2, n3) as t1 =
(−n2/n1, 1, 0) and t2 = (−n3/n1, 0, 1). This definition assumes that |n1| ≥ max(|n2|, |n3|) but analogous expressions can be 
obtained when |n2| ≥ max(|n1|, |n3|) or |n3| ≥ max(|n1|, |n2|) to avoid division by a small number. Boundary conditions 
are included by setting Mh(u∂ ) = {μ ∈ Mh : n × μ = 	u∂ on ∂D} and Mh(u∂ ) = {μ ∈ Mh : μ = 	u∂ on ∂D}, where 	u∂

(respectively, 	u∂ ) is the projection of u∂ onto Mh (respectively, u∂ onto Mh).
Finally, we define the volume Hermitian inner products as,

(η, ζ )Th
:=

∑
T ∈Th

(η, ζ )T , (η, ζ )Th
:=

3∑
i=1

(ηi, ζi)Th
,

and the surface Hermitian inner products as,

〈η, ζ 〉∂Th
:=

∑
T ∈Th

〈η, ζ 〉∂T , 〈η, ζ 〉∂Th
:=

3∑
i=1

〈ηi, ζ i〉∂Th
.
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2.2. Weak formulation

In order to solve (2) on the reference domain �r ∪ �r , we first seek an approximation (vh, eh) ∈ W h × W h to the 
transformed magnetic and electric fields (v, e). Furthermore, we also introduce a new variable êh that approximates the 
tangential component of the transformed electric field at the element interfaces, that is nr × (eh × nr). We finally introduce 
the approximation to the tangential component of the transformed magnetic field v̂h , and conservation is enforced by 
imposing continuity on the tangential component of G v̂h across inter-element boundaries, that is �nr × G v̂h � = 0 on Eo

h .
The HDG method for the discretization of system (2) seeks a solution (vh, eh, ̂eh) ∈ W h × W h × Mh(0), such that the 

following system holds for all (κ , ξ , μ) ∈ W h × W h × Mh(0)

(vh,κ)Th − (Geh,∇ × κ)Th − 〈G êh,κ × nr〉∂Th = 0,

(Gvh,∇ × ξ)Th + 〈G v̂h, ξ × nr〉Th − ω2(εeh, ξ)Th = 0,

−〈nr × G v̂h,μ〉∂Th\∂�r,E + 〈G êh,μ〉∂�r,E − iω〈√εG êh,μ〉∂�rad = 〈f,μ〉∂�r ,

where

f = Ge∂�∂�r,E − n × Gv∂�∂�r,V − f0�∂�r,rad , (3)

and

G v̂h = Gvh + τt G (eh − êh) × nr .

The global stabilization parameter τt is required to ensure the accuracy and stability of the HDG discretization, and de-
fined as τt = √

εω [35]. Introducing the flux definition in the above system, we arrive to the final HDG system for the 
frequency-domain Maxwell’s equations on a reference domain:

(vh,κ)Th − (Geh,∇ × κ)Th − 〈G êh,κ × nr〉∂Th = 0,

(Gvh,∇ × ξ)Th + 〈Gvh, ξ × nr〉Th − ω2(εeh, ξ)Th

+〈τt G(eh − êh) × nr, ξ × nr〉Th = 0,

−〈nr × Gvh + τt Geh,μ〉∂Th\∂�r,E + 〈τ̃t G êh,μ〉∂Th = 〈f,μ〉∂�r ,

(4)

where the stabilization constant τ̃t is given by

τ̃t =

⎧⎪⎨
⎪⎩

τt, on ∂Th\∂�r,E ∪ ∂�r,rad

τt − iω
√

ε, on ∂�r,rad

1, on ∂�r,E .

Solving the weak formulation above is equivalent to solving the HDG discretization of (1) on the deformed domain G(�r ∪
�r, θ). However, we prefer the formulation in (4) since it allows us to work on a fixed parameter-independent domain and 
casts a clear strategy for model order reduction, as we shall describe below.

2.3. Implementation

We rewrite the weak formulation of system (4) as: find (vh, eh, ̂eh) ∈ W h × W h × Mh(0), such that

A(vh,κ) −B(Geh,κ) − C(G êh,κ) = 0,

B(Gvh, ξ) +K(Gvh, ξ ) +D(Geh, ξ) − ω2Aε(eh, ξ) − E(G êh, ξ) = 0, (5)

−R(Gvh,μ) −L(Geh,μ) +M(G êh,μ) = F(μ),

holds for all (κ , ξ , μ) ∈ W h × W h × Mh(0). Here, the linear and bilinear forms are given by

A(v,κ) = (v,κ)Th , Aε(e, ξ ) = (εe, ξ )Th ,

B(Ge,κ) = (Ge,∇ × κ)Th , C(G ê,κ) = 〈G ê,κ × n〉∂Th ,

K(Gv, ξ) = 〈Gv, ξ × n〉∂Th , D(Ge, ξ) = 〈τt Ge,n × ξ × n〉∂Th ,

E(G ê, ξ) = 〈τt G ê,nr × ξ × nr〉∂Th , R(Gv,μ) = 〈Gv,μ × nr〉∂Th ,

L(Ge,μ) = 〈τt Ge,μ〉∂Th , M(G ê,μ) = 〈τ̃t G ê,μ〉∂Th ,

F(μ) = FE(μ) + FV (μ) + Frad(μ)

where the boundary form F arises from (3).
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The discretization of the bilinear forms in (5) gives rise to the system of equations⎡
⎣ A −B −C

B+K D− ω2
Aε −E

−R −L M

⎤
⎦

⎡
⎣ v

e
ê

⎤
⎦ =

⎡
⎣ 0

0
F

⎤
⎦ (6)

for the unknowns v, e, ̂e corresponding to the degrees of freedom of the discretization Th . In practice, however, the system 
(6) is never assembled. Instead, we invoke the discontinuity of the approximation spaces and eliminate at the element 
level v and e, also known as local variables, to obtain a system involving only the global variables ê, hence reducing the 
size of the resulting linear system. The local variables may be rewritten as a function of the global variables using a Schur 
complement decomposition, namely[

v
e

]
=

[
A −B

B+K D− ω2
Aε

]−1 [
C

E

]
ê = Z ê , (7)

where Z has a sparse structure. That is, for a given element, the only nonzero columns correspond to the degrees of freedom 
of the faces of that element. The local linear systems (7) are solved during the assembly process, and Z is stored. Finally, 
the system involving only the global unknowns is given by(

M+ [
R L

]
Z
)

ê = F . (8)

This procedure characterizes the solution to (2) in terms of êh , which consists of only two components defined on the 
element faces. As a consequence, the HDG method exhibits less globally coupled degrees of freedom than other DG methods. 
Once the global variables êh have been computed, the local variables vh, eh can be inexpensively recovered in parallel 
using the pre-computed matrices Z for each element independently. Finally, the approximate electromagnetic fields may be 
recovered from the transformed fields using the identities

Vh = g−1Gvh, Eh = g−1Geh. (9)

3. Reduced order modeling

The formulation and implementation introduced above describe the procedure for computing solutions to (2) for any 
combination of the parameter values (ω, ε, θ). In order to describe the construction of ROM, we first rewrite the HDG 
system (6) in a more compact form as follows: find a solution e†

h := (vh, eh, ̂eh) in the N †-dimensional approximation space 
W †

h := W h × W h × Mh(0) satisfying

A†
(

e†
h, ξ

† ; (ω,ε,θ)
)

e†
h = F†

(
ξ † ; (ω,ε,θ)

)
, (10)

for any ξ † := (κ, ξ , μ) ∈ W †
h .

Let us now assume that we are given a collection of solutions e†
h ∈ W †

h , or snapshots, computed at multiple parameter 
values through expressions (7) and (8). In order to extract a low-dimensional representation of the parametric dependence, 
we apply POD and obtain a set of Nmax orthonormalized basis functions ζ †

n ∈ W †
h, 1 ≤ n ≤ Nmax such that (ζ †

n, ζ †
n′)W † = δnn′

for 1 ≤ n, n′ ≤ Nmax, where the inner product (·, ·)W † is defined as

(ξ
†
1, ξ

†
2)W † = (κ1,κ2)Th + (ξ1, ξ2)Th + 〈μ1,μ2〉∂Th .

The choice Nmax is made by monitoring the ratio between the energy in the model to the total energy of the snapshot 
matrix above using singular value information, see [56] for more details.

The orthonormalized basis functions allow us to define an associated hierarchical POD space W †
N as

W †
N = span{ζ †

n, 1 ≤ n ≤ N}, N = 1, . . . , Nmax.

We now consider the Galerkin variational statement (10) but restricted to W †
N ⊂ W †

h , that is: for an unseen parametric 
tuple (ω, ε, θ), find an approximate solution e†

N ∈ W †
N satisfying

A†
(

e†
N , ξ † ; (ω,ε,θ)

)
e†

N = F†
(
ξ † ; (ω,ε,θ)

)
, (11)

for any ξ † ∈ W †
N . The above system of equations is low-dimensional and, in principle, we would expect that its evaluation 

for a new set of parameters is inexpensive. The main challenge, however, is that the geometry parameter θ enters in the 
definitions of A† and F† through G in a non-affine manner. This prevents us from isolating the parametric dependence and 
precomputing the required integrals required for the evaluation of A† and F†. This means that solving system (11) does 
not offer substantial computational advantages compared to the regular HDG system (10), since it still requires formation 
and assembly of the G-dependent bilinear forms in (5) for any new θ. In order to circumvent this limitation, we resort to 
empirical interpolation techniques.
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Fig. 3. (a) Schematic diagram of thin gold film on silica substrate patterned with periodic square array of alumina gaps under plane wave THz illumination. 
(b) Top and cross section of computational domain, with dimensions and boundary conditions.

3.1. Empirical interpolation

A widespread technique in function interpolation is EIM [2]. The idea behind EIM is to approximate a non-affine 
parametrized function f (x, θ) by a weighted combination of Q orthogonal spatial functions � = [φ1(x), . . . , φQ(x)], that 
is f (x, θ) ≈ �(x)α(θ) for a certain parameter-dependent coefficient vector α(θ).

In order to apply the EIM to the bilinear forms (5), we first need to identify the non-affine parametrized functions to be 
interpolated, as well as the discrete set of spatial points x where the interpolants will be evaluated. In the spirit of keeping 
the main body of the article as clear as possible, we defer the implementation details of EIM to Appendix A, and assume 
from this point onwards that both A† and F† may be approximated as

A† (·, · ; (ω,ε,θ)) ≈
Q∑

q=1

αA
q (θ)A

†
q (·, · ; (ω,ε))

F† (· ; (ω,ε,θ)) ≈
Q∑

q=1

αF
q (θ)F

†
q (· ; (ω,ε))

(12)

where the A†
q, F

†
q forms are affine in ω and ε.

If we now insert the approximations (12) into (11), we arrive at a linear system that is affine in both the geometric 
parameters θ and the optical parameters ω, ε by construction, that is

Q∑
q=1

αA
q (θ)A

†
q

(
e†

N , ξ † ; (ω,ε)
)

e†
N =

Q∑
q=1

αF
q (θ)F

†
q

(
ξ † ; (ω,ε)

)
,

with solution e†
N ∈ W †

N for any ξ † ∈ W †
N .

Furthermore, for each new tuple (ω, ε, θ) the system can be assembled extremely efficiently, since the dimension of the 
matrices is N × N due to the Galerkin projection using the low-dimensional approximation space W †

N . The solution of this 
reduced order system are the trial coefficients {λ†

n}N
n=1, that is e†

N = ∑N
n=1 λ†

nζ
†
n , enabling us to recover the approximate 

transformed electromagnetic fields as e†
N = (vN , eN , ̂eN ). The actual approximate electromagnetic fields VN , EN are obtained 

from vN , eN using (9) element-wise. Note that, for efficiency purposes, the non-affine function g−1G needed for the trans-
formation can also be approximated with the EIM. Details concerning computational cost and implementation strategy are 
also described in Appendix A.

4. Numerical results

4.1. 3D periodic coaxial nanogap structure

The first example consists of a 3D periodic annular structure shown in Fig. 3a, which has been used for plasmonic sensing 
applications as well as fundamental studies of nanophotonics phenomena [42,59]. A 150 nm-thick gold film is deposited 
over a sapphire substrate, and the coaxial nanoapertures are filled with Al2O3. For this problem, we choose the diameter of 
the rings to be 32 microns with square periodicity of 50 μm, and a gap width of 10 nm.
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Table 1
Variability ranges, interval of validity and references for parameters of struc-
ture in Fig. 3a.

Parameter Values Wavelength range (μm) References

�ωp [eV] 9.02 ± 0.18 < 12 [39,41,48]
�γ [eV] 0.02678 ± 0.007 < 12 [39,41,48]
εAl2O3

5–6 thickness-dependent [21]
nsapphire 3.07 ± 0.006 < 2 [20]

We illuminate the annular structure from below with an x-polarized plane wave, and for efficiency purposes we reduce 
the computational domain by exploiting the symmetries of the lattice, hence we only need to solve for one quadrant of 
the ring structure as indicated in Fig. 3b. Symmetries are imposed by setting E × n = 0 on the x-constant boundaries and 
H × n = 0 on the y-constant boundaries, whereas radiation conditions are prescribed on the z-constant boundaries.

To analyze the performance of the structure, we focus on the electric field’s x-component enhancement π within the 
gap volume and the transmitted power ς through the structure, computed as

π =
´

gap |Ex|dV´
gap

∣∣E0,x
∣∣dV

, ς =
´

A1
|� [E × H∗] · n|dA´

A0

∣∣� [
E0 × H∗

0

] · n
∣∣dA

, (13)

where A0 is an arbitrary xy plane below the gold film and A1 an arbitrary xy plane above the gold film.
The HDG discretization is composed of 1.3K hexahedral anisotropic elements, enabling us to accommodate the multiple 

length scales present in the structure with a reduced number of degrees of freedom, where a cubic representation of the 
geometry is employed to better represent the curved annular boundaries. Further details on the meshing strategies for 
these periodic coaxial nanostructures may be found in [55]. For the examples in this article, numerical accuracy is verified 
through grid convergence studies against a very fine mesh, until the relative error for the field enhancement is below 0.1% 
at resonance.

4.1.1. Material parameters
One of the difficulties of simulating plasmonic devices is the determination of the permittivities for metals and di-

electrics, since data that comes from measurements is often noisy and may exhibit significant variability. To that end, we 
develop a ROM considering the material properties as exploration parameters. The main objective is to show that, with few 
full model evaluations, we can construct a ROM that is capable of predicting inexpensively the response of the plasmonic 
device for a range of material properties and frequencies. In this example, we assume there are no geometry deformations, 
that is G = id.

Firstly, we define the parameters and their corresponding intervals of variability. We are interested in studying the field 
enhancement on the aperture volume of the coaxial structure introduced in Fig. 3a, with frequencies ranging from 0.5 THz 
to 0.9 THz. The range of values used for the relevant parameters, along with the references wherefrom data was extracted, 
is summarized in Table 1.

Secondly, the matrix of snapshots is obtained by sampling the 5-dimensional parameter space – ω plus four material 
parameters in Table 1 – and computing the full electromagnetic solution at 200 selected parameter values. The parameter 
values are chosen according to the Sobol sequence [52] in order to achieve a more uniform sampling in the high-dimensional 
space.

In order to assess the accuracy of the POD basis, we compute the HDG solution for 100 random parameter values – re-
ferred to as the test set – and evaluate the relative error committed by the reduced order model on the test set of examples 
using up to N = 30 modes in the basis. The relevant statistics of the distribution of relative errors clearly shows that the 
accuracy of the reduced model increases with the size of the basis N , see Fig. 4. Furthermore, with only 10 modes 95% of 
all testing examples are already below the threshold 0.1%, which is generally deemed sufficient for most engineering appli-
cations. Note that the ROM does not converge exponentially for this problem, which may be due to the high dimensionality 
of the parameter space and the non-regularity of the quantity of interest.

The efficiency of the ROM is assessed by timing its online performance, more specifically the assembly, solution of the 
linear system and recovery of the local variables (VN , EN) from the trial coefficients {λ†

n}N
n=1. Time estimates are obtained 

averaging the wall time for 500 runs for each task using a single processor of a 512GB Linux 12.04 machine with 32 AMD 
Opteron(tm) Processors 6320x15, and results are collected in Table 2. The advantages of the reduced order model are re-
markable for this 3D problem, since we achieve an online cost reduction of ∼ 4 orders of magnitude for the most expensive 
POD basis without compromising accuracy, as seen in Fig. 4. As anticipated, the bulk of the computational cost to evaluate 
the POD basis is devoted to recovering the local variables required to evaluate the quantity of interest, since it involves 
operating with the high-dimensional POD basis functions. This approach is particularly beneficial for large problems with 
parametric variability, where the model must produce accurate solutions in real-time for multiple queries.

The comparison above concerns only the online cost, but for completeness we shall now discuss the offline cost as 
well. The bulk of the offline cost is spent computing the HDG solutions that are later employed to construct the POD 
approximation space W † . Note however, that this solutions can be easily computed in parallel. Since it is impossible to 
N
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Fig. 4. Median and maximum relative error on field enhancement for the parameters in the test set, evaluated using 6 reduced models with increasing 
fidelity.

Table 2
Times in s·10−4. Reduced model can be evaluated 
O(104) times faster overall than HDG while maintain-
ing accuracy.

Model Assembly Linear system VN , EN

N = 5 0.64 0.83 44.5
N = 10 0.73 1.13 48.6
N = 15 0.94 1.17 51.7
N = 20 1.10 1.42 56.9
N = 25 1.36 1.75 58.0

HDG 7.6e5 1.8e6 8e3

establish a priori the optimal number of snapshots required, we typically start with a small number of snapshots and then 
gradually enrich the solution space if the accuracy requirements on the test set are not met. All in all, creating a ROM for a 
3D realistic problem is a computationally demanding task, hence it is only justified if the resulting ROM ought to be queried 
multiple times.

4.1.2. Geometry deformations
In this section, we demonstrate the effectivity of ROM for geometry deformations on the periodic coaxial structure in-

troduced above. The objective is to show that, when the domain is subject to deformations, instead of solving Maxwell’s 
equations on the deformed structure, it is desirable to solve the transformed Maxwell’s equations (2) on the original refer-
ence structure in Fig. 3b.

We analyze the effect of modifying the radius and gap width of the rings, with nominal values R = 16 μm and w =
10 nm. The modifications considered in this paper, for both radius and gap, are homogeneous with respect to the angle 
of the ring, hence θ = (R, w). The material parameters and gold optical constants are set to εAl2O3 = 5.5, nsapphire = 3.07, 
�ωp = 9.02 eV, �γ = 0.02678 eV, ε∞ = 1, and we study two different models: a ±30% variation for the radius, that is 
R ∈ [11.2, 20.8] μm, for a fixed gap w = 10 nm, denoted as M1; and a ±20% variation for both the radius and the gap, 
namely R ∈ [12.8, 19.2] μm and w ∈ [8, 12] nm, denoted as M2. Finally, we consider frequencies ranging from 0.3 THz to 
0.9 THz.

The diffeomorphism G prescribes variations of both the radius and the gap. The mapping requires continuity of the 
derivatives for the entire domain in order to ensure the face integrals in the weak formulation are well defined. To that end, 
we use C2 cubic splines [12] in the radial direction to construct the mapping, described in detail in Appendix B.

The POD basis for M1 (resp. M2) is formed by computing 250 (resp. 400) solutions of (4) at different (ω, θ) values, 
and then compressing them to form a basis of 98 (resp. 86) modes. Once the ROM is constructed, it can be efficiently 
queried for any valid combination of frequency and radius or radius-gap. We collect the wall time elapsed to evaluate the 
different pieces of the ROM. Recovering the empirical interpolation coefficients α(θ) is independent of the dimension of the 
ROM. Similarly as before, the bulk of the cost is incurred calculating the approximate transformed electromagnetic fields 
vN , eN from the trial coefficients, since it involves operating with the high-fidelity dimension N †. Moreover, the reference 
domain formulation requires non negligible additional computations, since the approximate field variables VN , EN need to 
be recovered through (9). All in all, the benefits of employing a ROM to evaluate quantities of interest of the full EM 
simulation are remarkable, since a speedup of more than 3 orders of magnitude is achieved, even for the largest models, 
despite the overhead incurred by the empirical interpolation procedure, see Table 3.
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Table 3
Times in ms. Reduced model can be evaluated O(103) times faster overall than HDG de-
spite the EIM approximation.

Model N EIM coefficients Assembly Linear system vN , eN VN , EN

M1 25 21.78 1.83 0.21 2.97 4.90
50 3.68 0.33 3.32
75 12.55 0.68 4.96
98 23.05 1.03 5.82

M2 25 21.85 2.07 0.18 2.60 4.85
50 9.37 0.35 3.87
71 20.25 0.66 4.89
86 26.45 0.81 5.45

HDG – 1.1e5 7.2e5 9.5e2

Fig. 5. Resonant quantities maps for frequency and radius, evaluated with the M1 reduced order model. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

Finally, we go one step further and show how ROM can be leveraged to achieve a deeper understanding of this structure. 
For instance, we can analyze the field enhancement and transmission profiles as a function of both the frequency and the 
radius of the annular aperture. For a fixed gap size, reducing the radius has a significant impact in the resonant quantities, 
more specifically blue-shifting the resonance, as shown in Fig. 5.

Model M2 gives rise to additional interpretations and results, since we can not only study the impact of both the radius 
and the gap width separately, but also their interactions. The value of the resonant wavelength λ∗ for the nominal gap 
width 10 nm as a function of the radius is depicted in Fig. 6a. Additionally, the λ∗ dependence on the gap size for a fixed 
radius is shown in Fig. 6c. For both cases, we also provide intervals that correspond to the sensitivities of λ∗ with respect 
to ±5%, ±10% and ±20% relative variation of the either gap δw or the radius δR . The ROM is essential to compute these 
results, since for each ring radius value and gap width a frequency sweep to detect the resonant quantities is required.

Furthermore, additional relevant information may be extracted from the ROM. One such example is the relationship that 
maps gap relative variations δw (resp. radius relative variations δR) to relative shifts in resonant wavelength δλ∗ , see Fig. 6b 
(resp. Fig. 6d). These mappings are obtained effortlessly once the ROM is available, and yet contribute to acquiring a more 
profound understanding of the device’s behavior.

4.2. Design of a concentric annular structure

For this example, we will employ the ROM framework to investigate the annular structure with two concentric rings 
under several design criteria, and compare its performance with a single ring structure at low THz frequencies. Structures 
consisting of concentric coaxial nanogaps are expected to exhibit superior performance, since resonances are excited at 
distinct frequencies. More interestingly, the question of how to arrange the concentric apertures arises naturally, as different 
configurations may lead to significant changes in transmission.

The reference structure is shown in Fig. 7, with ring diameters of 26 and 38 microns. The material parameters and gold 
optical constants are set to εAl2O3 = 5.5, nsapphire = 3.07, �ωp = 9.02 eV, �γ = 0.02678 eV, ε∞ = 1, and we consider frequen-
cies in the range 0.3 THz to 0.9 THz. The gap widths are fixed to 10 nm, thus the only tunable geometric parameters are the 
radii of the rings θ = (R1, R2), set as ±10% of the nominal value, that is R1 ∈ [11.7, 14.3] μm and R2 ∈ [17.1, 20.9] μm. We 
then construct a surrogate of the high-fidelity model, using 650 snapshots computed over the three-dimensional parametric 
space formed by the ω and θ, and results in a ROM with 74 modes.
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Fig. 6. Absolute and relative sensitivities of resonant quantities on geometry modifications with M2. (a)–(b) Gap variations and resonant wavelength. (c)–(d) 
Radius variations and resonant wavelength.

Fig. 7. Schematic diagram of thin gold film on sapphire substrate patterned with periodic square array of concentric alumina gaps under plane wave THz 
illumination.

In order to illustrate the potential of the concentric coaxial structure, we shall investigate three distinct objective func-
tions to drive the design process, namely

H1 = max
R1,R2

ς, H2 = max
R1,R2

Effl [ς ] −
√

Vffl [ς ], H3 = max
R1,R2

Effl [ς ] − 10
√

Vffl [ς ]
where Effl , Vffl refer to the expectation and variance respectively, for frequencies 

ffl
in the range 0.4 THz to 0.7 THz. The 

objective function H1 seeks to maximize the transmitted power along the spectrum considered, whereas both H2, H3
target radii configurations that are robust to frequency variations (with distinct penalties) within the interval of interest. 
Fortunately, since the design space is only bidimensional it suffices to discretize it using a fine step size and compute the 
objective function invoking the ROM for all possible combinations of radii, thus avoiding the use of optimization algorithms.

The objective functions normalized between 0 and 1 along with the maximizing parameter configuration (marked with 
a cross) are represented in Fig. 8a. For each objective function, the transmitted power ς spectrum for the optima radii 
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Fig. 8. (a) Objective functions shown as surface plot for inner R1 and outer R2 radii values, normalized to [0, 1]. Optimal configuration is shown with black 
cross. (b) Frequency-transmission profiles of optimal configurations for different objective functions.

(solid line), as well as the power transmitted by a structure with a single ring, for both the inner (dashed) and the outer 
(dash-dot) radius, are collected in Fig. 8b. Note that the response of the concentric ring structure differs significantly from 
the responses of the single ring configurations. Maximum transmission is attained when the concentric rings are separated 
by a small distance, whereby the transmission peaks that would correspond to each ring fuse into a single enhanced 
resonance. Moreover, the optimal configuration shown in Fig. 8a (left) suggests that larger transmissions may be encountered 
if the separation is further reduced.

Conversely, if robust optima are sought, the ideal radii configurations result in increased separation, enabling the clear 
identification of the resonances corresponding to both annular apertures. The main changes between H2 and H3 is that the 
former prioritizes a larger average transmission on the interval of interest, whereas the latter renders a design less sensitive 
to frequency changes, at the expense of smaller average transmission. In both cases, the concentric ring structure provides 
increased transmission over a broader range of frequencies than that of the single ring.

5. Conclusions

In this paper, we have developed a reduced order modeling framework for plasmonic coaxial nanogap structures based 
on the HDG method for Maxwell’s equations. In order to account for the variability in the geometry of the plasmonic 
structures, we have proposed an alternative formulation of the HDG method for Maxwell’s equations on a reference 
(parameter-independent) domain. The reference formulation, combined with proper orthogonal decomposition and em-
pirical interpolation techniques, enables us to incorporate both material and geometric variability into the reduced order 
model. Furthermore, the ROM offline-online decomposition strategy allows us to compute solutions to Maxwell’s equations 
inexpensively. The developed tool is advantageous for real design situations where multiple solutions for different values of 
the design parameters are required.
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Appendix A. EIM on non-affine functions of HDG discretization

In this appendix, we provide extensive documentation on how to perform discrete empirical interpolation on the bilinear 
forms introduced in (5), thus enabling the approximation of the linear system in (11) using the affine expression (12). In 
addition, we review the computational strategy pursued to efficiently evaluate the reduced order model.

Discretization of bilinear forms

Firstly, for the discretization of the forms in (5), we introduce ϕi, 1 ≤ i ≤ I to be the basis functions of P p(T ) and 
φk, 1 ≤ k ≤ K the basis functions of P p(F ). Bearing in mind that the 3x3 deformation tensor G is symmetric, we derive 
the contribution from an arbitrary element T ∈ Th to the global system. Furthermore, we shall make use of the identity 
μ = nr × (μ × nr), for μ ∈ Mh(0) spanned by the reference-domain tangent vectors t1 and t2.

The elemental matrices for element T have the following form:

A
t =

⎡
⎣A

t
0 0 0

0 A
t
0 0

0 0 A
t
0

⎤
⎦ B

t =
⎡
⎣B

t
11 B

t
12 B

t
13

B
t
21 B

t
22 B

t
23

B
t
31 B

t
32 B

t
33

⎤
⎦ K

t =
⎡
⎣K

t
11 K

t
12 K

t
13

K
t
21 K

t
22 K

t
23

K
t
31 K

t
32 K

t
33

⎤
⎦

C
t =

⎡
⎣C

t
11 C

t
12

C
t
21 C

t
22

C
t
31 C

t
32

⎤
⎦ D

t =
⎡
⎣D

t
11 D

t
12 D

t
13

D
t
21 D

t
22 D

t
23

D
t
31 D

t
32 D

t
33

⎤
⎦ E

t =
⎡
⎣E

t
11 E

t
12

E
t
21 E

t
22

E
t
31 E

t
32

⎤
⎦ (A.1)

R
t =

[
R

t
11 R

t
12 R

t
13

R
t
21 R

t
22 R

t
23

]
L

t =
[
L

t
11 L

t
12 L

t
13

L
t
21 L

t
22 L

t
23

]
M

t =
[
M

t
11 M

t
12

M
t
21 M

t
22

]

Below, we provide expressions for the different subblocks for each elemental matrix, using for the volume ϕ (resp. face φ) 
basis functions i/ j (resp. k/�) as test/trial indices respectively, 1 ≤ c, d ≤ 3 for the dimension indices and 1 ≤ a, b ≤ 2 for 
the tangent vectors indices. The matrix At consists of mass matrix subblocks At

0,i j = (ϕi, ϕ j)T in the diagonal. The different 
components of the curl-convection matrices in Bt are obtained as

B
t
1d,i j = (∂zϕi, G2d ϕ j)T − (∂yϕi, G3D ϕ j)T ,

B
t
2d,i j = (∂xϕi, G3D ϕ j)T − (∂zϕi, G1d ϕ j)T , (A.2)

B
t
3D,i j = (∂yϕi, G1d ϕ j)T − (∂xϕi, G2d ϕ j)T .

The subblocks for Kt and Dt are Kt
cd,i j = 〈κcdϕi, ϕ j〉∂T and Dt

cd,i j = 〈δcdϕi, ϕ j〉∂T , where κcd, δcd are given by

κ1d = G3Dn2 − G2dn3 , κ2d = G1dn3 − G3Dn1 , κ3D = G2dn1 − G1dn2 , (A.3)

δ1d = G1d(1 − n2
1) − n1n3G3D − n1n2G2d ,

δ2d = G2d(1 − n2
2) − n1n2G1d − n2n3G3D , (A.4)

δ3D = G3D(1 − n2
3) − n1n3G1d − n2n3G2d .

The submatrices for Ct , Et are given by Ct
cb,i� = 〈γcbϕi, φ�〉∂T , Et

cb,i� = 〈εcbϕi, φ�〉∂T . For simplicity, we introduce the modi-
fied tangent vectors ̂tb = Gtb , and define γcb, εcb as

γ1b = t̂b3n2 − t̂b2n3 , γ2b = t̂b1n3 − t̂b3n1 , γ3b = t̂b2n1 − t̂b1n2 , (A.5)

ε1b = t̂b1(1 − n2
1) − n1n3̂tb3 − n1n2̂tb2 ,

ε2b = t̂b2(1 − n2
2) − n1n2̂tb1 − n2n3̂tb3 , (A.6)

ε3b = t̂b3(1 − n2
3) − n1n3̂tb1 − n2n3̂tb2 .

In addition, the Rt components are given by Rt
ad,kj = 〈[G(ta ×nr)]dφk, ϕ j〉∂T and the Lt submatrices by Lt

ad,kj = 〈̂tadφk, ϕ j〉∂T . 
Finally, the subblocks of Mt are computed as Mt

ab,k�
= 〈νabφk, φ�〉∂T , with νab = t∗a Gtb .

The linear form can be defined as Ft = [Ft
1; Ft

2], where the components of the vector are given by

Ft
a,� = 〈(ta × nr)

∗Ge∂ ,φ�〉∂T ∩∂�r,E − 〈̂t∗a v∂ ,φ�〉∂T ∩∂�r,V − 〈t∗bf0, φ�〉∂T ∩∂�r,rad , (A.7)

for a = 1, 2.
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Table A.4
Non-affine functions for EIM.

Bilinear/Linear forms Spatial points Non-affine functions # Non-affine terms

B Volume Gcd, 1 ≤ c ≤ d ≤ 3
∑6

i=1 Q B
i

C Face γcb, 1 ≤ c ≤ 3, 1 ≤ b ≤ 2
∑6

i=1 Q C
i

E Face εcb, 1 ≤ c ≤ 3, 1 ≤ b ≤ 2
∑6

i=1 Q E
i

K Face κcd, 1 ≤ c,d ≤ 3
∑9

i=1 Q K
i

D Face δcd, 1 ≤ c,d ≤ 3
∑9

i=1 Q D
i

R Face [G(ta × nr)]d, 1 ≤ a ≤ 2, 1 ≤ d ≤ 3,
∑6

i=1 Q R
i

L Face [Gta]d, 1 ≤ a ≤ 2, 1 ≤ d ≤ 3
∑6

i=1 Q L
i

M Face t∗a Gtb, 1 ≤ a,b ≤ 2
∑3

i=1 Q M
i

FE E-tangent boundary (ta × nr)
∗Ge∂ , 1 ≤ a ≤ 2

∑2
i=1 Q FE

i

FV V -tangent boundary t∗a Gv∂ , 1 ≤ a ≤ 2
∑2

i=1 Q FV
i

Empirical interpolation

In order to apply the EIM to the elemental matrices in (A.1), we first need to identify the non-affine parametrized 
functions to be interpolated, as well as the discrete set of spatial points where the interpolants will be evaluated. In the 
finite element context, the natural choice is the Gaussian quadrature points xξ in the discretization, needed to compute 
the elemental inner products for volumes and faces. In addition, the non-affine functions can be readily identified from 
(A.2)–(A.7), and involve the components of the deformation tensor G for the volume bilinear forms and its effect on the 
normal and the tangent vectors for the face bilinear forms. Details of the non-affine functions are collected in Table A.4.

For every non-affine function f (x, θ), the EIM also returns the Q spatial indices, denoted as I, where the parameter-
independent orthogonal basis � needs to be evaluated in order to retrieve the coefficients α(θ) for a new θ, achieved 
through solving the Q × Q linear system

f (xI,θ) = �(xI)α(θ).

Note that each non-affine function that is interpolated may require a different amount Q of orthogonal basis functions to 
meet the EIM accuracy requirements.

Once the non-affine functions are interpolated, we can approximate both A†
q and F†

q through affine expansions, namely

A†(e†, ξ †; (ω,ε,θ)) ≈A(v,κ) −
6∑

i=1

Q B
i∑

q=1

αB
qi (θ)

[
Bqi(e,κ) +Bqi(v, ξ )

]

− ω2Aε(e, ξ ) −
6∑

i=1

Q C
i∑

q=1

αC
qi(θ)Cqi (̂e,κ)

+
9∑

i=1

Q K
i∑

q=1

αK
qi (θ)Kqi(v, ξ) +

9∑
i=1

Q D
i∑

q=1

αD
qi (θ)Dqi(e, ξ) (A.8)

−
6∑

i=1

Q E
i∑

q=1

αE
qi(θ)Eqi (̂e, ξ) −

6∑
i=1

Q R
i∑

q=1

αR
qi (θ)Rqi(v,μ)

−
6∑

i=1

Q L
i∑

q=1

αL
qi (θ)Lqi(e,μ) +

3∑
i=1

Q M
i∑

q=1

αM
qi (θ)Mqi (̂e,μ)

F†(ξ †; (ω,ε,θ)) ≈
2∑

i=1

Q
FE
i∑

q=1

αFE
qi (θ)FE,qi(μ) +

2∑
i=1

Q
FV
i∑

q=1

αFV
qi (θ)FV ,qi(μ)

+Frad(μ; (ω,ε)),

where the parameter-independent forms Bqi, Cqi, Dqi, Eqi, Kqi, Rqi, Lqi, Mqi, FE,qi, FV ,qi are the orthogonal spatial functions 
� returned by the EIM. The expressions (A.8) are the detailed version of the more compact form given in (12).
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Computational strategy

The linearity and recovered affine parametric dependence of the problem allow for an efficient offline-online decompo-
sition strategy. The offline stage – parameter independent, computationally intensive but performed only once – comprises: 
(1) the computation of snapshots; (2) the POD compression that produces the orthonormalized snapshots ζ †

n, 1 ≤ n ≤ Nmax
associated with the HDG approximation space at the selected parameter values; (3) the application of EIM for each bi-
linear form in Table A.4; and (4) the formation and storage of several parameter-independent small matrices and vectors 
Bqi, Cqi, Dqi, Eqi, Kqi, Rqi, Lqi, Mqi, FE,qi, FV ,qi .

The online stage evaluates, for a new tuple (ω, ε, θ), the non-affine functions at the EIM indices I with a cost O(QN †
I )

and the EIM coefficients c(θ) in O(2Q·2) operations, where Q and Q·2 are given by

Q =
6∑

i=1

[
Q B

i + Q C
i + Q R

i + Q L
i

]
+

9∑
i=1

[
Q D

i + Q K
i

]
+

3∑
i=1

Q M
i ,

Q·2 =
6∑

i=1

[(
Q B

i

)2 +
(

Q C
i

)2 +
(

Q R
i

)2 +
(

Q L
i

)2
]

+
9∑

i=1

[(
Q D

i

)2 +
(

Q K
i

)2
]

+
3∑

i=1

(
Q M

i

)2
.

Evaluating the EIM functions has N †-dependence. Nevertheless, the dimension of the set of EIM indices N †
I where the 

functions are evaluated is usually much smaller than the discrete set of Gaussian quadrature points xξ , thus N †
I � N †. 

Computing the trial coefficients {λ†
n(ω, ε)}N

n=1 involves assembling the linear system in (A.8) with complexity O
(
QN2

)
and 

its solution with complexity O
(
N3

)
, hence independent of the dimension N † of the HDG approximation space.

Finally, the dependence on N † also appears when computing vN , eN , with a complexity of O
(
4N †N

)
. In the ROM 

community this obstacle is avoided by never evaluating the field variables; if the quantity of interest is linear in the field 
variables, the offline-online strategy enables dropping the N † dependence in the online stage, see [36,45]. Unfortunately, 
the quantities of interest in plasmonic simulations, such as the field enhancement or the optical intensity, are in general 
nonlinear in the field variables, thus the complexity for the online stage becomes N †-dependent. Despite this shortcoming, 
if the quantities of interest involve localized integrals –e.g. optical intensity through a surface surrounding the scatterer, 
or the field enhancement within sub-wavelength volumes– we can compute vN , eN only for the required discretization 
elements, thus greatly reducing the online cost. The approximate electromagnetic fields VN , EN are obtained applying (9) to 
vN , eN elementwise.

In summary, the implications of the above strategy are twofold: first, if N and Q are small and the quantity of interest 
is localized, we shall achieve very fast output evaluation, usually several orders of magnitude faster than the HDG output; 
second, we may choose the HDG approximation very conservatively – to effectively eliminate the error between the exact 
output and HDG output – by only slightly affecting the online (marginal) cost.

Appendix B. Deformation mapping for coaxial nanogap structure

In this appendix, we introduce the deformation mapping that is employed for the periodic annular structure. For sim-
plicity we present the mapping for only one ring of radius R and gap width w , although the extension to multiple rings 
is straightforward. We therefore have two parameters θ = (θ1, θ2) that specify the modified radius R + θ1 and gap width 
θ2, see Fig. B.9. To derive the mapping, we resort to polar coordinates for the reference domain (ρr, ϕr) and the physical 
domain (ρ, ϕ). Furthermore, we have ϕr = ϕ since modifications occur only in the radial direction.

The physical coordinates relate to the reference coordinates as

x = G1(xr) = ρ(xr) cosϕ(xr), y = G2(xr) = ρ(xr) sinϕ(xr), z =G3(xr) = zr.

Fig. B.9. Reference and physical domain with relevant parameters.
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In order to obtain ρ(xr) we will first compute ρ(ρr, zr) and then apply the chain rule to compute the required derivatives. 
We propose to determine ρ using C2 cubic splines [12] in the radial direction, which enable us to parametrize the curved 
geometry exactly without introducing additional approximations. For both reference and physical domains in Fig. B.9, the 
gray zones correspond to regions that remain fixed, that is ρ = ρr , thus avoiding the singularity at the origin.

We then use splines in the remaining regions that interpolate the knots

{(ρr,i,ρi)}4
i=1 = {(R0, R0), (R1, R1 + θ1), (R1 + w, R1 + θ1 + θ2), (R2, R2)},

using cubic polynomials ci for each pair (ρr,i−1, ρi−1) and (ρr,i, ρi) such that ρ = ci(ρr), i = 1, 2, 3. To retrieve the coef-
ficients of the cubics we impose continuity of their first and second derivatives (besides knot interpolation), rendering a 
spline that minimizes curvature. The extra condition to ensure a smooth blending with the gray zones is to prescribe unit 
slope at R0, R2, that is c′

1(R0) = c′
3(R2) = 1.

After solving a small 4x4 system and recovering the spline coefficients, the expression for the radial component can 
be compactly written as ρ := {ci(ρr,i)}4

i=1. Nonetheless, this geometry modification is constant along the vertical direction, 
thus the mapping far from the scatterer (where radiation conditions are applied) is no longer the identity. One approach 
to circumvent this limitation is to use linear piecewise function S that equals one in the region of the film and gradually 
vanishes as we move away from it, and express the map ρ(ρr, zr) as a convex combination of the spline and the identity, 
that is

ρ(ρr, zr) := S(zr){ci(ρr,i)}4
i=1 + (1 − S(zr))ρr.

Finally, the required derivatives are computed invoking the chain rule, for instance

∂x

∂xr
= ∂ρ

∂ρr

∂ρr

∂xr
cosϕ + ρ

∂ cosϕ

∂xr
=

[
S(zr){c′

i(ρr,i)}4
i=1 + 1 − S(zr)

] xr

ρr
cosϕ + ρ sinϕ

yr

ρr
.

It is then immediate to compute the Jacobian Gi j = ∂xr, jGi(xr), its determinant g and the required symmetric tensor G =
g−1GTG .
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