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Abstract

We present a shock capturing method for large-eddy simulation of turbulent flows. The proposed method
relies on physical mechanisms to resolve and smooth sharp unresolved flow features that may otherwise lead
to numerical instability, such as shock waves and under-resolved thermal and shear layers. To that end, we
devise various sensors to detect when and where the shear viscosity, bulk viscosity and thermal conductivity
of the fluid do not suffice to stabilize the numerical solution. In such cases, the fluid viscosities are selectively
increased to ensure the cell Péclet number is of order 1 so that these flow features can be well represented with
the grid resolution. Although the shock capturing method is devised in the context of discontinuous Galerkin
methods, it can be used with other discretization schemes. The performance of the method is illustrated
through numerical simulation of external and internal flows in transonic, supersonic, and hypersonic regimes.
For the problems considered, the shock capturing method performs robustly, provides sharp shock profiles,
and has a small impact on the resolved turbulent structures. These three features are critical to enable
robust and accurate large-eddy simulations of shock flows.
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1. Introduction

The use of computational fluid dynamics (CFD) in industry is severely limited by the inability to accurately
and reliably simulate complex turbulent flows. This is partly due to the current numerical technologies
adopted by industry practitioners, that still rely on steady-tailored techniques, in conjunction with low-
order numerical methods. In fact, the majority of CFD codes have first or second order spatial accuracy
and are based on Reynolds-Averaged Navier-Stokes (RANS) equations or, more recently, detached-eddy
simulation (DES). The use of high-fidelity computer-aided design is still very limited, with large-eddy
simulation (LES) largely confined in the research and development branches of industry, or in academia.
However, with the increase in computing power, LES is becoming a feasible approach to model complex
industrial turbulent flows. At the same time, discontinuous Galerkin (DG) methods are gaining attention for
large-eddy simulation of these flows, as they allow for high-order discretizations on complex geometries and
unstructured meshes. This is critical to accurately propagate small-scale, small-magnitude features, such as
in transitional and turbulent flows, over the complex three-dimensional geometries commonly encountered
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in industrial applications. In addition, DG methods are well suited to emerging computing architectures,
including graphics processing units (GPUs) and other many-core architectures, due to their high flop-to-
communication ratio. The use of DG methods for LES is being further encouraged by successful numerical
predictions [4, 16, 17, 23, 24, 43, 53, 59, 60].

Large-eddy simulations are, by definition, under-resolved computations. As customary, we use the term
‘under-resolved’ to refer to simulations in which the exact solution contains scales that are smaller than the
Nyquist wavenumber of the grid (the so-called subgrid scales, briefly SGS) and thus cannot be captured with
the grid resolution. Two types of under-resolved features can exist in LES. (i) Small-magnitude features
that are lost in the numerical solution due to the filter introduced by the numerics, such as the turbulent
structures that are smaller than the grid size. This type of subgrid scales are accounted for, and stabilized,
by the implicit or explicit SGS model. As customary in the literature, they will be referred to simply as
‘subgrid scales’. (ii) Large-magnitude, sharp features that remain in the discrete solution. A number of
such sharp features may appear in LES, especially in transonic, supersonic and hypersonic flows, including
shock waves, contact discontinuities, strong thermal gradients, and thin shear layers. We shall refer to them
as ‘sharp subgrid-scale features’ or simply ‘sharp features’. Insufficient resolution to capture sharp features
usually leads to Gibbs oscillations and inaccurate results, and may even lead to nonlinear instability and
simulation breakdown.

Despite the large number of works on shock capturing since the dawn of computational fluid dynamics,
numerical simulation of turbulent shock flows remains a challenging problem [29, 41, 56], particularly for
high-order discretization schemes [27]. First, many shock capturing methods have been developed for steady-
state or inviscid problems, but their extension to unsteady viscous flows is not straightforward. Second, the
majority of the existing methods are by construction not able to stabilize sharp features other than shock
waves. This compromises robustness and limits the applicability of the method to some particular types
of flows. In order to enable large-eddy simulation of transonic, supersonic and hypersonic flows, a method
to detect and stabilize all sources of numerical instability is required. While this is referred to as a shock
capturing method for consistency with the common terminology in the literature, we emphasize the need to
deal with other sharp subgrid-scale features in LES.

Prior to describing the proposed shock capturing method, we present an overview of strategies in the
literature for the detection and stabilization of shock waves and other sharp features. As for shock detection,
perhaps the most popular approach is to take advantage of the strong compression that a fluid undergoes
across a shock wave and use the divergence of the velocity field as a shock sensor [3, 42, 44]. An assessment of
dilatation-based shock detection methods is presented in [63]. In our experience, the existing methods in this
category provide non-oscillatory shocks for steady flows, such as laminar and Reynolds-averaged turbulent
flows, but fail for unsteady turbulent flows. Alternatively, a number of methods rely on the non-smoothness
of the numerical solution to detect shocks as well as other sharp features [12, 30, 31, 32, 33, 47, 50, 51].
Among them, the sensor by Krivodonova et al. [33] takes advantage of the theoretical convergence rate
of DG schemes for smooth solutions in order to detect discontinuities. By construction, this sensor is
limited to high-order DG methods, hyperbolic systems of conservation laws such as the Euler equations,
and stabilization mechanisms that do not introduce artificial viscosity. The shock sensor by Persson et
al. [50, 51] is based on the decay rate of the coefficients of the DG polynomial approximation. Like the
sensor by Krivodonova, it requires accuracy orders beyond about 5 to provide accurate results. Other
approaches that rely on high-order derivatives of the solution include [12, 30, 31, 47], but again apply only
to schemes for which such derivatives can be accurately computed, such as spectral-type methods and high-
order finite difference methods on structured meshes and simple geometries. Also, most methods based
on the smoothness of the numerical solution involve user-defined parameters that are flow-dependent and
usually hard to tune for new problems. This compromises the adoption of these methods in industry due to
the high robustness and flexibility that these applications require.

Regarding stabilization of sharp features, most methods lie within one of the following two categories:
Limiters and artificial viscosity. Limiters, in the form of flux limiters [7, 8, 34] or solution limiters [9, 33,
39, 38, 52, 57, 65], are in general not well suited for implicit time integration schemes and additionally pose
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challenges for high-order methods on complex geometries. As for artificial viscosity methods, Laplacian-
based [25, 40, 44, 42, 50, 51] and physics-based [1, 12, 30, 31, 47, 50, 55] approaches have been proposed.
An assessment of artificial viscosity methods for LES is presented in [41]. In general, these methods perform
poorly for unsteady flows and/or require accurate high-order derivatives of the numerical solution.

In this paper, we present a shock capturing method for large-eddy simulation that aims to address the
limitations above. Our approach comprises physics-based sensors to detect shock waves and other sharp
features, as well as physics-based artificial viscosities to stabilize them. Although our approach can be
implemented with other numerical schemes, the hybridized discontinuous Galerkin methods are considered
for illustration purposes. The performance of the method is examined through numerical simulation of
external and internal flows in transonic, supersonic, and hypersonic regimes. A comparative study is con-
ducted between the proposed approach and a Laplacian-based approach, widely used in the DG community,
in order to illustrate the importance of using physical viscosities, as opposed to Laplacian viscosities, for
large-eddy simulation of turbulent flows.

The remainder of the paper is organized as follows. In Section 2, we present the numerical discretization
of the Navier-Stokes equations. Sections 3 and 4 describe the sensors to detect sharp features and the
procedure to stabilize the numerical scheme, respectively. The performance of the shock capturing method
for a number of flow conditions is illustrated in Section 5. We conclude the paper with some remarks and
future work in Section 6.

2. Flow discretization

2.1. Governing equations

Let 𝑡𝑓 > 0 be a final time and let Ω ⊂ R𝑑, 1 ≤ 𝑑 ≤ 3 be an open, connected and bounded physical domain
with Lipschitz boundary 𝜕Ω. We consider the unsteady, compressible Navier-Stokes equations written in
conservation form as

𝑞 −∇𝑢 = 0 , in Ω × (0, 𝑡𝑓 ) , (1a)
𝜕𝑢

𝜕𝑡
+ ∇ · 𝐹 (𝑢) + ∇ ·𝐺(𝑢, 𝑞) = 0 , in Ω × (0, 𝑡𝑓 ) , (1b)

𝐵(𝑢, 𝑞) = 0 , on 𝜕Ω × (0, 𝑡𝑓 ) , (1c)
𝑢− 𝑢0 = 0 , on Ω × {0} . (1d)

Here, 𝑢 = (𝜌, 𝜌𝑣𝑗 , 𝜌𝐸), 𝑗 = 1, ..., 𝑑 is the 𝑚-dimensional (𝑚 = 𝑑+ 2) vector of conserved quantities, 𝑢0 is an
initial condition, 𝐵(𝑢, 𝑞) is a boundary operator, and 𝐹 (𝑢) and 𝐺(𝑢, 𝑞) are the inviscid and viscous fluxes
of dimensions 𝑚× 𝑑,

𝐹 (𝑢) =

⎛⎝ 𝜌𝑣𝑗
𝜌𝑣𝑖𝑣𝑗 + 𝛿𝑖𝑗𝑝
𝑣𝑗(𝜌𝐸 + 𝑝)

⎞⎠ , 𝐺(𝑢, 𝑞) = −

⎛⎝ 0
𝜏𝑖𝑗

𝑣𝑖𝜏𝑖𝑗 − 𝑓𝑗

⎞⎠ , 𝑖, 𝑗 = 1, . . . , 𝑑 , (2)

where 𝑝 denotes the thermodynamic pressure, 𝜏𝑖𝑗 the viscous stress tensor, 𝑓𝑗 the heat flux, and 𝛿𝑖𝑗 is the
Kronecker delta. For a calorically perfect gas in thermodynamic equilibrium, 𝑝 = (𝛾 − 1)

(︀
𝜌𝐸 − 𝜌 |𝑣|2 /2

)︀
,

where 𝛾 = 𝑐𝑝/𝑐𝑣 > 1 is the ratio of specific heats and in particular 𝛾 ≈ 1.4 for air. 𝑐𝑝 and 𝑐𝑣 are the specific
heats at constant pressure and volume, respectively. For a Newtonian fluid with the Fourier’s law of heat
conduction, the viscous stress tensor and heat flux are given by

𝜏𝑖𝑗 = 𝜇

(︂
𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑣𝑗
𝜕𝑥𝑖

− 2

3

𝜕𝑣𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗

)︂
+ 𝛽

𝜕𝑣𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗 , 𝑓𝑗 = −𝜅
𝜕𝑇

𝜕𝑥𝑗
, (3)
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where 𝑇 denotes temperature, 𝜇 the dynamic (shear) viscosity, 𝛽 the bulk viscosity, 𝜅 = 𝑐𝑝 𝜇/𝑃𝑟 the thermal
conductivity, and 𝑃𝑟 the Prandtl number. In particular, 𝑃𝑟 ≈ 0.71 for air, and additionally 𝛽 = 0 under
the Stokes’ hypothesis.

The numerical examples in Section 5 include inviscid flows, governed by the unsteady compressible Euler
equations. The Euler equations are obtained by dropping the viscous flux in Eq. (1b).

2.2. Numerical discretization

We consider the hybridized discontinuous Galerkin (DG) methods [17], which generalize the Hybridizable
DG (HDG) [45, 48], the Embedded DG (EDG) [49] and the Interior Embedded DG (IEDG) [16] methods,
for the spatial discretization of the unsteady compressible Navier-Stokes equations. The hybridized DG
discretization reads as follows: Find

(︀
𝑞ℎ(𝑡),𝑢ℎ(𝑡), ̂︀𝑢ℎ(𝑡)

)︀
∈ 𝒬𝑘

ℎ × 𝒱𝑘
ℎ ×ℳ𝑘

ℎ such that(︀
𝑞ℎ, 𝑟

)︀
𝒯ℎ

+
(︀
𝑢ℎ,∇ · 𝑟

)︀
𝒯ℎ

−
⟨︀̂︀𝑢ℎ, 𝑟 · 𝑛

⟩︀
𝜕𝒯ℎ

= 0 , (4a)(︁𝜕 𝑢ℎ

𝜕𝑡
,𝑤

)︁
𝒯ℎ

−
(︁
𝐹 (𝑢ℎ) +𝐺(𝑢ℎ, 𝑞ℎ),∇𝑤

)︁
𝒯ℎ

+
⟨ ̂︀𝑓ℎ(̂︀𝑢ℎ,𝑢ℎ) + ̂︀𝑔ℎ(̂︀𝑢ℎ,𝑢ℎ, 𝑞ℎ),𝑤

⟩
𝜕𝒯ℎ

= 0 , (4b)⟨ ̂︀𝑓ℎ(̂︀𝑢ℎ,𝑢ℎ) + ̂︀𝑔ℎ(̂︀𝑢ℎ,𝑢ℎ, 𝑞ℎ),𝜇
⟩
𝜕𝒯ℎ∖𝜕Ω

+
⟨̂︀𝑏ℎ(̂︀𝑢ℎ,𝑢ℎ, 𝑞ℎ),𝜇

⟩
𝜕Ω

= 0 , (4c)

for all (𝑟,𝑤,𝜇) ∈ 𝒬𝑘
ℎ × 𝒱𝑘

ℎ ×ℳ𝑘
ℎ and all 𝑡 ∈ (0, 𝑡𝑓 ), as well as (︀

𝑢ℎ|𝑡=0 − 𝑢0,𝑤
)︀
𝒯ℎ

= 0 , (4d)

for all 𝑤 ∈ 𝒱𝑘
ℎ. The finite element spaces and inner products above are described in Appendix A. The

inviscid and viscous numerical fluxes, ̂︀𝑓ℎ and ̂︀𝑔ℎ, are defined aŝ︀𝑓ℎ(̂︀𝑢ℎ,𝑢ℎ) = 𝐹 (̂︀𝑢ℎ) · 𝑛+ 𝜎(̂︀𝑢ℎ,𝑢ℎ;𝑛) · (𝑢ℎ − ̂︀𝑢ℎ) , (5a)̂︀𝑔ℎ(̂︀𝑢ℎ,𝑢ℎ, 𝑞ℎ) = 𝐺(̂︀𝑢ℎ, 𝑞ℎ) · 𝑛 , (5b)

and 𝑛 is the unit normal vector pointing outwards from the elements. We note that this form of the
numerical flux does not involve an explicit Riemann solver between the left and right states of a given
interface. Instead, it is the so-called stabilization matrix 𝜎(̂︀𝑢ℎ,𝑢ℎ;𝑛) that implicitly defines the Riemann
solver in hybridized DG methods [18], and this in turn provides with an implicit subgrid-scale model in
large-eddy simulation [21, 22]. In this paper, we set 𝜎 = 𝜆𝑚𝑎𝑥(̂︀𝑢ℎ) 𝐼𝑚, where 𝜆𝑚𝑎𝑥 denotes the maximum-
magnitude eigenvalue of 𝐴𝑛 = [𝜕𝐹 /𝜕𝑢] · 𝑛 and 𝐼𝑚 is the 𝑚 × 𝑚 identity matrix, and which leads to a
Lax-Friedrichs type Riemann solver. The hybridized DG discretization of the unsteady compressible Euler
equations is obtained by dropping Eq. (4a) and the viscous terms in Equations (4b)−(4c). For additional
details on the hybridized DG discretization of the Euler and Navier-Stokes equations, the interested reader
is referred to [17, 19].

The semi-discrete system (4) is further discretized in time using high-order, 𝐿-stable diagonally implicit
Runge-Kutta (DIRK) schemes [2]. The use of high-order, 𝐿-stable methods for the temporal discretization
is important for accuracy and robustness when dealing with turbulent shock flows. Also, the use of implicit
time integration schemes allows to examine the impact of the shock capturing method on the conditioning
of the spatial discretization (4) through the ease of solving the nonlinear system of equations arising from
the time discretization. Ill-conditioning of the spatial discretization, which is more difficult to detect with
explicit time integration schemes, may yield large degradation errors1 and deteriorate the accuracy of the
numerical solution.

1The numerical error is given by the contribution of the projection error |𝑢−Πℎ(𝑢)| and the degradation error |Πℎ(𝑢)− 𝑢ℎ|,
where 𝑢 is the exact solution and Πℎ the 𝐿2 projector onto the approximation space. The projection error is due to the
impossibility of representing the exact solution in the approximation space. The degradation error is related to the conditioning
of the discrete problem, and increases in general as the discrete problem becomes ill-conditioned.

4



We emphasize that hybridized DG methods and DIRK methods are considered in this paper for illustration
purposes, but the shock capturing method can be used with other spatial and temporal discretization
schemes.

3. Sensors

In this section, we present physics-based sensors to detect the sharp subgrid-scale features that may appear
in the simulation of unsteady turbulent flows, including shock waves and other high-gradient features such
as shear and thermal layers.

Limiting function

It is critical to ensure the sensors remain bounded below by zero and above by an a priori positive value
throughout the simulation, in order to avoid accuracy and stability issues. The lower bound is required to
ensure that the artificial viscosities are non-negative, while the upper bound is needed to avoid adding an
excessive amount of viscosity. Furthermore, it is important to introduce a shift so that the sensors are active
only whenever they are above some threshold. Suppose that 𝑠min = 0 and 𝑠max > 0 are lower and upper
bounds of the sensor 𝑠. The following function

𝐿0(𝑠; 𝑠max) = min{max{𝑠, 0}, 𝑠max}, (6)

acts as a limiter that strictly enforces the desired property. Shifting the above limiter by 𝑠0, we arrive at
the following function

𝐿(𝑠; 𝑠0, 𝑠max) = min{max{𝑠− 𝑠0, 0} − 𝑠max, 0} + 𝑠max, (7)

where 𝑠0 represents the value of the shift. Since the limiting function (7) is non-smooth in the sense that its
derivative is discontinuous at the points 𝑠0 and 𝑠0+𝑠max, it is not well suited for numerical discretization that
requires calculation of the partial derivatives. Therefore, we introduce the following smooth approximation

ℓ(𝑠; 𝑠0, 𝑠max) = ℓmin(ℓmax(𝑠− 𝑠0) − 𝑠max) + 𝑠max, (8)

where

ℓmax(𝑠) =
𝑠

𝜋
arctan(𝑏𝑠) +

𝑠

2
− 1

𝜋
arctan(𝑏) +

1

2
,

ℓmin(𝑠) = 𝑠− ℓmax(𝑠),
(9)

with 𝑏 = 100. Note that ℓmax(𝑠) is a smooth approximation of the max function max{𝑠, 0}, while ℓmin(𝑠)
is a smooth approximation of the min function min{𝑠, 0}. The function ℓ is smooth, and in particular
continuously differentiable everywhere. This is important for implicit time integration schemes, in which a
nonlinear system of equations needs to be solved at every time step. Discontinuous derivatives can worsen
the conditioning of the system and lead to slow convergence or even the crash of the iterative solver. The
limiting function 𝐿 and its smooth approximation ℓ for a shift 𝑠0 = 1 and an upper bound 𝑠max = 2 are
illustrated in Figure 1. This particular choice of 𝑠0 and 𝑠max will be used for the thermal and shear sensors
presented below.

3.1. Shock sensor

The goal of the shock sensor is to identify shock waves. As such, it is to activate in shocks and vanish
elsewhere, including smooth regions of the flow and other sharp features. To this end, we propose a shock
sensor 𝑠𝛽 of the form

𝑠𝛽(𝑥) = ℓ
(︀
𝑠𝛽 ; 𝑠𝛽,0, 𝑠𝛽,max

)︀
, 𝑠𝛽(𝑥) = 𝑠𝜃 · 𝑠𝜔, (10)
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Figure 1: An illustrative example of 𝐿(𝑠; 𝑠0, 𝑠max) and ℓ(𝑠; 𝑠0, 𝑠max) with 𝑠0 = 1 and 𝑠max = 2. The inset figures
show the close-up view at the two singular points of 𝐿(𝑠; 𝑠0, 𝑠max).

where 𝑠𝜃 is a dilatation sensor, 𝑠𝜔 is a vorticity (or, more precisely, ‘anti-vorticity’) sensor, and 𝑥 ∈ Ω
denotes spatial location. The dilatation and vorticity are defined as 𝜃 = ∇ · 𝑣 and 𝜔 = ∇× 𝑣, respectively.
The dilatation sensor is to activate in shock waves. The vorticity sensor is to vanish in vorticity-dominated
regions of the flow, in which |𝜃| ≪ |𝜔|, as well as in non-shocky regions in which (−𝜃) is large due to
under-resolution. In particular, these sensors read as follows

𝑠𝜃(𝑥) = −ℎ𝛽

𝑘

∇ · 𝑣
𝑐*

, 𝑠𝜔(𝑥) =
(∇ · 𝑣)2

(∇ · 𝑣)2 + |∇ × 𝑣|2 + 𝜖𝜔
. (11)

The latter sensor was originally proposed by Ducros in [15]. Here,

ℎ𝛽(𝑥) = ℎ𝑟𝑒𝑓
|∇𝜌|(︀

∇𝜌𝑡 ·𝑀−1
ℎ · ∇𝜌 + 𝜖ℎ

)︀1/2 , (12)

is the characteristic element size along the direction of the density gradient, 𝑘 denotes the polynomial order
of the numerical approximation, 𝑐* = 𝑐*(𝑥) is the critical speed of sound (i.e. the speed of sound at sonic
conditions), | · | denotes the Euclidean norm, 𝑀ℎ = 𝑀ℎ(𝑥) is the metric tensor of the mesh [37, 61], ℎ𝑟𝑒𝑓

the reference element size used in the construction of 𝑀ℎ, and 𝜖𝜔, 𝜖ℎ ∼ 𝜖2𝑚 are constants of order machine
epsilon squared. We note that 𝑠𝛽 is uniformly bounded above for stationary 𝜕(·)/𝜕𝑡 = 0, plane-parallel
𝜕(·)/𝜕𝑦 = 𝜕(·)/𝜕𝑧 = 0 shocks, namely,

𝑠𝑡ℎ𝛽,𝑚𝑎𝑥 = sup
𝑀1𝑛≥1

𝑠𝛽 ≤ sup
𝑀1𝑛≥1

𝑠𝜃 ≈ sup
𝑀1𝑛≥1

−ℎ𝛽/𝑘

𝑐*
∆𝑣𝑛
𝛿𝑠

≈ sup
𝑀1𝑛≥1

ℎ𝛽/𝑘

𝛿𝑠

2𝑀2
1𝑛 − 2

(𝛾 + 1)𝑀1𝑛

√︃
𝛾 + 1

2 + (𝛾 − 1)𝑀2
1𝑛

=
ℎ𝛽/𝑘

𝛿𝑠

2√︀
𝛾2 − 1

≤ 2√︀
𝛾2 − 1

,

(13)

where the superscript 𝑡ℎ stands for theoretical value, 𝑀1𝑛 = 𝑣1𝑛/𝑐1 denotes the normal incident Mach
number, and 𝛿𝑠 is the (dynamic) thickness of the shock in the numerical solution. We take advantage of
this theoretical upper bound by setting 𝑠𝛽,𝑚𝑎𝑥 = 2/

√︀
𝛾2 − 1. Similarly, the use of 𝑠𝛽,𝑚𝑖𝑛 = 0 ensures that

no negative artificial bulk viscosity is introduced in the scheme. Without these upper and lower bounds
in the sensor, numerical oscillations could produce non-physical values of 𝑠𝛽 that positively reinforce the
oscillations and lead to nonlinear instability and the simulation breakdown. Finally, 𝑠𝛽,0 is set to 0.01. This
value usually suffices to avoid introducing artificial bulk viscosity away from shocks, while having a minor
impact in shock waves.
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3.2. Thermal sensor

The purpose of the thermal sensor 𝑠𝜅 is to detect thermal gradients that are larger than possible with the
grid resolution, and may thus lead to nonlinear instability. In this spirit, we define

𝑠𝜅(𝑥) = ℓ
(︀
𝑠𝜅; 𝑠𝜅,0, 𝑠𝜅,𝑚𝑎𝑥

)︀
, 𝑠𝜅(𝑥) =

ℎ𝑟𝑒𝑓

𝑘

|∇𝜉𝑇 |
𝑇𝑡

, (14)

where 𝑇𝑡 = 𝑇𝑡(𝑥) denotes the stagnation temperature, and ∇𝜉𝑇 is the temperature gradient under the
metric of the reference element, that is,

∇𝜉𝑇 =
𝜕𝑇

𝜕𝜉𝑖
=

∑︁
𝑗≤𝑑

𝜕𝑇

𝜕𝑥𝑗

𝜕𝑥𝑗

𝜕𝜉𝑖
= 𝑥𝑡

𝜉 · ∇𝑥𝑇, 𝑖 = 1, . . . , 𝑑. (15)

Also, we set 𝑠𝜅,0 = 1 and 𝑠𝜅,𝑚𝑎𝑥 = 2. The thermal sensor 𝑠𝜅 as a function of 𝑠𝜅 is plotted in Figure 1.
We note that the thermal sensor is active only when 𝑠𝜅 > 𝑠𝜅,0 = 1, i.e. when the thermal gradient cannot
be resolved with the mesh resolution. When 𝑠𝜅 ≤ 1, i.e. when the mesh resolution suffices to resolve the
temperature gradient, the thermal sensor is inactive. In particular, it can be shown that 𝑠𝜅 / 4𝛾/(𝛾+1)2 ≤ 1
in stabilized stationary normal shock waves, regardless of the incident Mach number. Since shocks will be
stabilized by a mechanism that is independent of 𝑠𝜅, namely through artificial bulk viscosity as described
below, it is a desired property that the thermal sensor vanishes in shock waves. The upper bound 𝑠𝜅,𝑚𝑎𝑥 = 2
is used to improve nonlinear stability in a similar way as with the upper bound for the bulk viscosity sensor.

3.3. Shear sensor

Like the thermal sensor, the purpose of the shear sensor is to detect velocity gradients that are larger than
possible with the grid resolution and may lead to nonlinear instability. In this spirit, we define the shear
sensor 𝑠𝜇 as

𝑠𝜇(𝑥) = ℓ
(︀
𝑠𝜇; 𝑠𝜇,0, 𝑠𝜇,𝑚𝑎𝑥

)︀
, 𝑠𝜇(𝑥) =

ℎ𝑟𝑒𝑓

𝑘

||ℒ(𝑣) · 𝑥𝑡
𝜉||2

𝑣𝑚𝑎𝑥
, (16)

where || · ||2 denotes the spectral norm,

ℒ(𝑣) = ∇𝑥𝑣 − diag(∇𝑥𝑣) =
𝜕𝑣𝑖
𝜕𝑥𝑗

(︁
1 − 𝛿𝑖𝑗

)︁
,

and

𝑣𝑚𝑎𝑥(𝑥) =

(︂
|𝑣|2 +

2

𝛾 − 1
𝑐2
)︂1/2

is the maximum isentropic velocity, defined as the velocity the flow if all total energy was converted into
kinetic energy through an isentropic expansion. The presence of the diag(∇𝑥𝑣) term in ℒ(𝑣) is for the shear
sensor to vanish in shock waves, as these will be stabilized through artificial bulk viscosity instead.

For the same reasons as with the thermal sensor, we choose 𝑠𝜇,0 = 1 and 𝑠𝜇,𝑚𝑎𝑥 = 2. The latter improves
nonlinear stability and the former ensures the sensor activates only for sharp shear features that may
potentially lead to numerical instability.

4. Stabilization through artificial viscosities

We increase selected fluid viscosities to resolve sharp features over the smallest distance allowed by the grid
resolution. The bulk viscosity, thermal conductivity and shear viscosity are thus given by the contribution
of the physical (𝛽𝑓 , 𝜅𝑓 , 𝜇𝑓 ) and artificial (𝛽*, 𝜅*, 𝜇*) values, that is,

𝛽 = 𝛽𝑓 + 𝛽*, 𝜅 = 𝜅𝑓 + 𝜅* = 𝜅𝑓 + 𝜅*
1 + 𝜅*

2, 𝜇 = 𝜇𝑓 + 𝜇*.
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Shock waves, thermal gradients, and shear layers are stabilized by increasing the bulk viscosity, thermal
conductivity, and shear viscosity, respectively. Contact discontinuities are stabilized through one or several
of these mechanisms, depending on their particular structure. The thermal conductivity is also augmented
in hypersonic shock waves through the term 𝜅*

1, as discussed below. Our stabilization procedure is consistent
with mathematical and physical arguments that identify these as the mechanisms responsible for stabilizing
these various flow features. Also, it is consistent with our choice of sensors in the sense that the penalty is
imposed directly on the quantities that are used for sensing.

We emphasize that shock waves are stabilized through 𝛽* and 𝜅*
1 only. The latter term is used in hypersonic

shocks only, in order to improve nonlinear stability and make the thermal thickness of the shock 𝜃𝑠 of the
same order as the dynamic thickness 𝛿𝑠. Note that 𝜃𝑠 ≈ 𝛿𝑠 is obtained in non-hypersonic shocks even without
𝜅*
1. Also, while artificial shear viscosity can also stabilize shock waves, the bulk viscosity has a much smaller

impact on the dissipation of vortical structures crossing the shock and is thus preferred for LES applications.
Finally, we note that the jump conditions across a shock wave (i.e. the Rankine-Hugoniot conditions) are
given by conservation arguments on a larger scale than the shock wave thickness and do not depend on the
constitutive equation for the viscous stresses inside the shock wave (as these appear inside of the divergence
operator and their contribution vanishes on scales that are larger than the shock wave thickness). Thus, the
jump conditions are not violated by the use of artificial physical viscosities inside the shock wave.

The artificial viscosities are devised such that the cell Péclet number is of order 1 (note the sensors are of
order 1 when active), and in particular are given by

𝛽*(𝑥) = Φ𝛽

[︂
𝜌
𝑘𝛽 ℎ𝛽

𝑘

(︀
|𝑣|2 + 𝑐*2

)︀1/2
𝑠𝛽

]︂
, (17a)

𝜅*(𝑥) = 𝜅*
1 + 𝜅*

2 = Φ𝛽

[︂
𝑐𝑝
𝑃𝑟*𝛽

(︂
𝜌
𝑘𝛽 ℎ𝛽

𝑘

(︀
|𝑣|2 + 𝑐*2

)︀1/2
𝑠𝛽

)︂]︂
+ Φ𝜅

[︂
𝜌 𝑐𝑝

𝑘𝜅 ℎ𝜅

𝑘

(︀
|𝑣|2 + 𝑐*2

)︀1/2
𝑠𝜅

]︂
, (17b)

𝜇*(𝑥) = Φ𝜇

[︂
𝜌
𝑘𝜇 ℎ𝜇

𝑘

(︀
|𝑣|2 + 𝑐*2

)︀1/2
𝑠𝜇

]︂
. (17c)

Here Φ{𝛽,𝜅,𝜇}
[︀
·
]︀

are smoothing operators, 𝑃𝑟*𝛽 is an artificial Prandtl number relating 𝛽* and 𝜅*
1, 𝑘{𝛽,𝜅,𝜇}

are positive constants, and

ℎ𝜅(𝑥) = ℎ𝑟𝑒𝑓
|∇𝑥𝑇 |(︀

∇𝑥𝑇 𝑡 ·𝑀−1
ℎ · ∇𝑥𝑇 + 𝜖ℎ

)︀1/2 , (18a)

ℎ𝜇(𝑥) = ℎ𝑟𝑒𝑓 𝜎𝑚𝑖𝑛(𝑀ℎ) = ℎ𝑟𝑒𝑓 inf
|𝑎|=1

{︀
𝑎𝑡 ·𝑀ℎ · 𝑎

}︀
, (18b)

are the element size in the direction of the temperature gradient and the smallest element size among all
possible directions, respectively. The remaining nomenclature in Equations (17)−(18) was introduced in the
previous sections. Theoretical estimates of 𝑘𝛽 and 𝑃𝑟*𝛽 to optimally resolve a stationary normal shock over
a thickness 𝛿𝑠, 𝜃𝑠 ≈ ℎ𝛽/𝑘 are presented in Appendix B. In particular, we set

𝑘𝛽 = 1.5, 𝑃 𝑟*𝛽(𝑥) = 𝑃𝑟*𝛽,𝑚𝑖𝑛

[︁
1 + exp

(︀
− 2𝛼𝑃𝑟*𝛽

(𝑀 −𝑀𝑡ℎ𝑟)
)︀]︁
, (19)

where 𝑀 = 𝑀(𝑥) denotes the local Mach number, 𝑀𝑡ℎ𝑟 = 3 is a threshold Mach number, 𝑃𝑟*𝛽,𝑚𝑖𝑛 = 0.9,
and 𝛼𝑃𝑟*𝛽

= 2. These constants have been tuned to obtain sharp, non-oscillatory one-dimensional shocks
over a wide range of Mach numbers while using the smallest possible amount of artificial viscosity. Note
that 𝑃𝑟*𝛽 = 0.9 would also lead to well-resolved shocks at the expense of introducing unnecessary thermal
conductivity in non-hypersonic shocks. Also, the local Mach number in Eq. (19) can be replaced by a
(constant) reference Mach number, such as the freestream Mach number in the case of external flows. This
simpler choice makes the 𝑃𝑟*𝛽 field constant in the computational domain but could negatively impact the
weak shock waves that may spontaneously appear in highly compressible turbulent flows. Finally, we set
𝑘{𝜅,𝜇} = 1.0.
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Smoothing operators

Large inter-element jumps in the numerical solution, as it occurs in under-resolved sharp features, lead to
large discontinuouties in the artificial viscosity fields. According the previous results in the literature [3, 51]
and our own experience, this may degrade the accuracy of the solution and lead to numerical stability issues.
Hence, we equip the artificial viscosities with smoothing operators Φ{𝛽,𝜅,𝜇} that map onto a 𝒞𝛼-continuous
space (𝛼 ≥ 0). In our experience, further smoothness beyond 𝛼 = 0 does not provide additional stability.
This is consistent with the fact that the artificial viscosities only enter in the discrete system (4) through the
terms (𝐹 +𝐺,∇𝑤)𝒯ℎ

, ⟨ ̂︀𝑓ℎ + ̂︀𝑔ℎ,𝑤⟩𝜕𝒯ℎ
, ⟨ ̂︀𝑓ℎ + ̂︀𝑔ℎ,𝜇⟩𝜕𝒯ℎ∖𝜕Ω and ⟨̂︀𝑏ℎ,𝜇⟩𝜕Ω, and the notion of 𝒞𝛼-continuity

for 𝛼 > 0 is thus lost upon discretization. (Indeed, even a weaker condition that continuity would suffice
for the purpose of the smoothing operator.) Also, positivity of Φ{𝛽,𝜅,𝜇}, in the functional analysis sense, is
important to ensure the artificial viscosities are pointwise non-negative.

Convolution with a truncated Gaussian filter [12], projection onto a lower dimensional continuous approx-
imation space, and elementwise reconstruction procedures [42] are examples of smoothing operators. The
appropiate choice of smoothing operator depends on the type and accuracy order of the numerical scheme.
In this paper, we employ an elementwise linear reconstruction procedure analogous to that introduced in
[42] for the element size. Devising new smoothing operators is beyond the scope of this work.

Other comments and practical suggestions

∙ In the context of implicit time integration schemes, the artificial viscosities can be computed using
the solution at the end of the previous time step (or, in the case of multi-stage methods, at the end
of the previous time stage) or using the solution at the end of the current time step (or time stage in
multi-stage methods). For the small time-step sizes required in large-eddy simulation, no significant
differences have been observed between both approaches. The former one is adopted for the numerical
results in Section 5.

∙ If the latter approach was used, negative thermodynamic quantities, such as negative density and
pressure, could be potentially encountered during the iterative procedure used to solve the system of
equations arising from the discretization. For this reason, we suggest replacing the thermodynamic
quantities involved in the evaluation of the sensors and artificial viscosities by smooth strictly positive
surrogates, e.g. by limiting functions similar to those introduced in Section 3.

∙ For the simulation of inviscid flows, we suggest suppressing the artificial viscosities near slip walls in
order to ensure well-posedness of the discretization.

5. Numerical results

We examine the performance of the shock capturing method for unsteady flows in transonic, supersonic and
hypersonic regimes. The robustness, shock resolution and impact of the model on the turbulent structures
and acoustic waves are investigated. Two-dimensional and three-dimensional problems, as well as different
accuracy orders, are considered. All results are presented in non-dimensional form. 𝑃𝑟𝑓 = 𝑐𝑝 𝜇𝑓/𝜅𝑓 = 0.71,
𝛽𝑓 = 0 and 𝛾 = 1.4 are assumed in all the test problems.

5.1. Inviscid strong-vortex/shock-wave interaction

5.1.1. Case description and numerical discretization

We consider the two-dimensional inviscid interaction between a strong vortex and a shock wave. The
problem domain is Ω = (0, 2𝐿) × (0, 𝐿) and a stationary normal shock wave is located at 𝑥𝑠 = 𝐿/2. A
counter-clockwise rotating vortex is initially located upstream of the shock and advected downstream by
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Figure 2: Non-dimensional density 𝜌/𝜌∞ (left) and pressure 𝑝/(𝜌∞𝑢2
∞) (right) fields of the strong-vortex/shock-wave

interaction problem at times 𝑡1 = 0.35 𝛾1/2𝐿𝑢−1
∞ (top) and 𝑡2 = 1.05 𝛾1/2𝐿𝑢−1

∞ (bottom). After the shock wave and
the vortex meet, strong acoustic waves are generated and propagate on the downstream side of the shock.

the inflow velocity. In particular, the inflow Mach number is 𝑀∞ = 1.5 and the vortex is initially radius
𝑏 = 0.175𝐿 and centered at (𝑥, 𝑦) = (𝐿/4, 𝐿/2). The top and bottom boundaries are slip adiabatic walls.
The initial velocity, temperature, density and pressure fields upstream the shock are given by

𝑣(𝑟) = 𝑣𝜃(𝑟) + 𝑢∞ 𝑒𝑥, 𝑣𝜃(𝑟) = 𝑢𝑚 𝑒𝜃 ·

⎧⎪⎪⎨⎪⎪⎩
𝑟
𝑎 if 𝑟 ≤ 𝑎,

𝑎
𝑎2−𝑏2

(︁
𝑟 − 𝑏2

𝑟

)︁
if 𝑎 ≤ 𝑟 ≤ 𝑏,

0 if 𝑏 ≤ 𝑟,

(20a)

𝑇 (𝑟) =

{︃
𝑇∞ −

∫︀ 𝑏

𝑟
1
𝑐𝑝

|𝑣𝜃(𝑟
′)|2

𝑟′ 𝑑𝑟′ if 𝑟 < 𝑏,

𝑇∞ if 𝑏 ≤ 𝑟,
, 𝜌 (𝑟) = 𝜌∞

(︂
𝑇 (𝑟)

𝑇∞

)︂ 1
𝛾−1

, 𝑝 (𝑟) = 𝑝∞

(︂
𝑇 (𝑟)

𝑇∞

)︂ 𝛾
𝛾−1

, (20b)

where 𝑎 = 0.075𝐿 is a constant, 𝑟 denotes the distance to the vortex center, 𝑢𝑚 = 3𝑢∞ / 5 is the maximum
tangential velocity of the vortex, 𝑢∞ the inflow velocity magnitude, 𝑇∞ the inflow temperature, and 𝑒𝑥 and
𝑒𝜃 are unit vectors along the 𝑥- and the tangential (around the vortex center) directions, respectively. The
initial condition downstream the shock wave is given by one-dimensional stationary shock wave theory. This
completes the non-dimensional description of the problem. While not turbulent, this unsteady laminar flow
serves as a preliminary test case to examine the performance of the shock capturing method.

The problem domain is partitioned into 400 × 200 uniform quadrilateral elements, and the time-step size is
set to ∆𝑡 = 3.00 ·10−4 𝐿𝑢−1

∞ . Sixth-order IEDG and third-order DIRK(3,3) schemes are used for the spatial
and temporal discretization, respectively. Slip, adiabatic wall boundary conditions are imposed on the top
and bottom surfaces, whereas the characteristics-based, non-reflecting boundary condition in [17] is used on
the inflow and outflow.

5.1.2. Numerical results

Figure 2 shows the density and pressure fields at the times 𝑡1 = 0.35 𝛾1/2𝐿𝑢−1
∞ and 𝑡2 = 1.05 𝛾1/2𝐿𝑢−1

∞ .
When the shock wave and the vortex meet, the former is distorted and the latter split into two separate
vortical structures. Strong acoustic waves are then generated from the moving vortex and propagate on the
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Figure 3: Mach number field of the strong-vortex/shock-wave interaction problem at times 𝑡1 = 0.35 𝛾1/2𝐿𝑢−1
∞ (top)

and 𝑡2 = 1.05 𝛾1/2𝐿𝑢−1
∞ (bottom). Zooms around the shock wave are shown on the right images. The shock is

non-oscillatory and resolved within one element.

Figure 4: Snapshot of the non-dimensional artificial bulk viscosity 𝛽*𝜌−1
∞ 𝑢−1

∞ 𝐿−1 (left), artificial thermal conductivity
𝜅*
2 𝜌

−1
∞ 𝑢−1

∞ 𝑐−1
𝑣 𝐿−1 (center) and artificial shear viscosity 𝜇*𝜌−1

∞ 𝑢−1
∞ 𝐿−1 (right) fields of the strong-vortex/shock-wave

interaction problem at times 𝑡1 = 0.35 𝛾1/2𝐿𝑢−1
∞ (top) and 𝑡2 = 1.05 𝛾1/2𝐿𝑢−1

∞ (bottom). Note 𝛽* vanishes outside
the shock, including the strong vortex and acoustic waves.
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downstream side of the shock. The Mach number fields, together with zooms around the shock wave and
the details of the computational mesh, are shown in Figure 3. The shock is non-oscillatory and resolved
within one element.

The artificial bulk viscosity 𝛽*, artificial thermal conductivity 𝜅*
2 and artificial shear viscosity 𝜇* fields at

the target times are shown in Figure 4. Despite the strong pressure waves and the correspondingly large
negative velocity divergence at 𝑡2, the artificial bulk viscosity vanishes everywhere outside the shock wave.
Similarly, it is active only in the shock wave at 𝑡1 despite the strong interaction between the vortex and the
shock at this time. Note there are no other sharp features than the shock wave in this problem and thus 𝜅*

2

and 𝜇* vanish in the entire domain.

5.2. Two-dimensional hypersonic cylinder

5.2.1. Case description and numerical discretization

The second numerical example is the hypersonic flow around a two-dimensional adiabatic cylinder at
Reynolds number 𝑅𝑒∞ = 𝜌∞ 𝑢∞ 𝑑/𝜇 = 376, 930 and Mach number 𝑀∞ = 𝑢∞/𝑐∞ = 17.605, where 𝜌∞,
𝑢∞, 𝑐∞, and 𝑑 denote the freestream density, freestream velocity, freestream speed of sound, and cylinder
diameter, respectively. The computational domain spans 2.5 diameters away from the center of the cylinder
and is discretized using an isoparametric O-mesh with 16,000 quadrilateral elements. The time-step size is
set to ∆𝑡 = 10−3 𝑑/𝑢∞. Forth-order HDG and third-order DIRK(3,3) schemes are used in this example.

5.2.2. Numerical results

Figure 5 shows the time-averaged pressure (left) and skin friction (right) coefficients on the upstream half
of the cylinder. Snapshots of the temperature, velocity magnitude and vorticity fields are shown in Figure
6. A zoom of the Mach number field around the center of the shock, together with the computational
mesh, are shown in the bottom right of this figure. Despite the high incident Mach number, the shock is
non-oscillatory and resolved within three elements.

Figure 7 shows a snapshot of the artificial thermal conductivity 𝜅*
2 and artificial shear viscosity 𝜇* fields.

Both viscosities vanish in the shock wave. Unlike in the strong-vortex/shock-wave interaction problem, the
artificial thermal conductivity is non-zero in a small region downstream the cylinder. This corresponds to a
strong thermal gradient that cannot be stabilized with a shock capturing only approach. Indeed, removing
𝜅*
2 from the model leaded to the simulation breakdown. The use of artificial thermal conductivity stabilizes

this feature without affecting the shock wave. This exemplifies the need to stabilize other under-resolved
sharp features than shock waves for the simulation of high Reynolds, high Mach number unsteady flows.

5.3. Transonic T106C low-pressure turbine

5.3.1. Case description and numerical discretization

We consider next the three-dimensional transonic flow over the T106C linear low-pressure turbine (LPT) in
off-design conditions. The isentropic Reynolds and Mach numbers on the outflow are 𝑅𝑒2,𝑠 = 100, 817 and
𝑀2,𝑠 = 0.987, whereas the angle between the inflow velocity and the longitudinal direction is 𝛼1 = 50.54 deg.
The extrusion length in the spanwise direction is 10% of the blade chord 𝑐𝑏. The computational mesh consists
of 712,080 isoparametric tetrahedral elements and the time-step size is ∆𝑡 = 6.94 · 10−3 𝑐𝑏

√︀
𝜌𝑡,1/𝑝𝑡,1, where

𝑝𝑡,1 and 𝜌𝑡,1 are the inlet stagnation pressure and inlet stagnation density. Third-order HDG and DIRK(3,3)
schemes are used for the discretization. A no-slip, adiabatic wall boundary condition is imposed on the blade
surface, and a characteristics-based, non-reflecting boundary condition [17] is used on inflow and outflow.
Periodicity is imposed on the tangential and spanwise directions.
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Figure 5: Time-averaged pressure (left) and skin friction (right) coefficients on the upstream half of the hypersonic
cylinder.

Figure 6: Snapshot of the non-dimensional temperature 𝑐𝑣 𝑇/𝑢
2
∞ (top left), velocity magnitude |𝑣|/𝑢∞ (top right)

and vorticity 𝑑𝜔/𝑢∞ (bottom left) fields for the hypersonic cylinder. A zoom of the Mach number field around
the center of the shock is shown in the bottom right image. The shock is non-oscillatory and resolved within three
elements.
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Figure 7: Snapshot of the non-dimensional artificial thermal conductivity 𝜅*
2 𝜌

−1
∞ 𝑢−1

∞ 𝑐−1
𝑣 𝑑−1 (left) and artificial shear

viscosity 𝜇*𝜌−1
∞ 𝑢−1

∞ 𝑑−1 (right) fields for the hypersonic cylinder. Note 𝜅*
2 is non-zero in a small region downstream

the cylinder. This corresponds to a sharp thermal feature that cannot be stabilized with a shock capturing only
approach.
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Figure 8: Isentropic Mach number 𝑀𝑠 (left) and skin friction coefficient 𝐶𝑓 (right) on the T106C low-pressure
turbine blade. The stagnation pressure at inlet is used for non-dimensionalization of the skin friction coefficient.

5.3.2. Numerical results

Figure 8 shows the time- and spanwise-averaged isentropic Mach number (left) and skin friction coefficient
(right) on the blade surface. The stagnation pressure at inlet 𝑝𝑡,1 is for non-dimensionalization of the skin
friction coefficient. The time-averaged (left) and instantaneous (right) pressure, temperature and Mach
number fields are shown in Figure 9. Several unsteady shocks that oscillate around a baseline position
are present in this flow, as illustrated by the smoother shock profiles in the average fields compared to
the instantaneous fields. These unsteady shocks are resolved within one element. Also, from the spanwise
vorticity fields in Figure 10, the shock capturing method has a negligible impact on the vortical structures
across the shock. As discussed before, this is justified by the minor role of the bulk viscosity on the vorticity
equation and will be further supported by the numerical results in Sections 5.4 and 5.5. Finally, we emphasize
that both 𝜅*

2 and 𝜇* are necessary to stabilize sharp thermal and shear features in this flow, such as the
strong thermal gradient when the pressure and suction side boundary layers merge after the trailing edge.
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Figure 9: Pressure (top), temperature (center) and Mach number (bottom) fields for the transonic T106C LPT.
Time-averaged and instantaneous fields are shown on the left and right images, respectively. The unsteady shocks
involved are resolved within one element.
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Figure 10: Time-averaged (left) and instantaneous (right) spanwise vorticity fields for the transonic T106C LPT.
The shock capturing method has a negligible impact on the vortical structures across the shock.

5.4. Inviscid Taylor-Green vortex

5.4.1. Case description and numerical discretization

The goal of this test problem is to examine the impact of the shock capturing method on the ‘solution
quality’ for severely under-resolved, shock-wave-free turbulence. The dissipation of kinetic energy, vortical
structures and acoustic waves due to the shock capturing method is investigated. Not dissipating these
features is critical to accurately simulate turbulent flows away from shocks. To this end, we perform large-
eddy simulation of the inviscid Taylor-Green vortex (TGV) [58]. The TGV problem describes the evolution
of an inviscid fluid in a cubic domain Ω = [−𝐿𝜋,𝐿𝜋)3 with triple periodic boundaries, starting from the
smooth initial condition

𝜌 = 𝜌0,

𝑣1 = 𝑉0 sin
(︁ 𝑥

𝐿

)︁
cos

(︁ 𝑦

𝐿

)︁
cos

(︁ 𝑧

𝐿

)︁
,

𝑣2 = −𝑉0 cos
(︁ 𝑥

𝐿

)︁
sin

(︁ 𝑦

𝐿

)︁
cos

(︁ 𝑧

𝐿

)︁
,

𝑣3 = 0,

𝑝 = 𝑃0 +
𝜌0 𝑉

2
0

16

(︂
cos

(︁2𝑥

𝐿

)︁
+ cos

(︁2𝑦

𝐿

)︁)︂ (︂
cos

(︁2𝑧

𝐿

)︁
+ 2

)︂
,

(21)

where 𝜌0, 𝑉0 and 𝑃0 are positive constants, and 𝑣 = (𝑣1, 𝑣2, 𝑣3) denotes the velocity vector. The reference
Mach number is 𝑀0 = 𝑉0/𝑐0 = 0.1, where 𝑐0 is the speed of sound at temperature 𝑇0 = 𝑃0/(𝛾−1) 𝑐𝑣 𝜌0. This
completes the non-dimensional description of the problem. The flow is nearly incompressible and shock-wave
free. The large-scale eddy in the initial condition leads to smaller and smaller structures through vortex
stretching, until the vortical structures eventually break down and the flow transitions to turbulence2. Due
to the lack of viscous dissipation, the smallest turbulent length and time scales in the exact solution become
arbitrarily small as time evolves.

Third-order EDG and DIRK schemes are used for the discretization of the Euler equations. The computa-
tional domain is partitioned into a uniform grid with 64 × 64 × 64 hexahedra; which leads to severe spatial
under-resolution for this problem. The time-step size is ∆𝑡 = 3.68 · 10−2 𝐿/𝑉0 and the numerical solution
is computed from 𝑡0 = 0 to 𝑡𝑓 = 10𝐿/𝑉0. Three different phases can be distinguished in the simulation.
Before 𝑡 ≈ 4𝐿/𝑉0, the flow is laminar and with no subgrid scales. This is followed by an under-resolved
laminar phase that lasts until 𝑡 ≈ 7 − 9𝐿/𝑉0. From then on, the flow is turbulent and under-resolved.

2While no temporal chaos (chaotic attractor) exists in the inviscid Taylor-Green vortex, we use the term ‘turbulence’ to
refer to the phase of spatial chaos (spatial decoherence) that takes place after 𝑡 ≈ 8− 9𝐿/𝑉0.
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Figure 11: Temporal evolution of mean kinetic energy, mean-square vorticity, temperature variance and dilatation
variance for the TGV problem. The ref subscript denotes the reference solution with no shock capturing, and ⟨ · ⟩
denotes spatial averaging.

5.4.2. Numerical results

The results with our physics-based method are compared to the results with no shock capturing (reference
solution) and with the Laplacian-based method presented in [42]. The goal of the comparison with the
Laplacian method in this and in the next test problem is to illustrate the importance of accurately detecting
sharp features, as well as using only the physical viscosity that is required to stabilize the sharp feature, for
large-eddy simulation of turbulent flows.

Figure 11 shows the temporal evolution of the mean kinetic energy, mean-square vorticity, variance of
temperature and variance of dilatation. The semi-analytical solution for the mean-square vorticity by
Brachet et al. [6] is shown as well. While ⟨𝜃⟩ = 0 in the exact solution due to periodicity in all directions,
where ⟨ · ⟩ denotes spatial averaging, we note this does not hold exactly, and thus variance of dilatation and
mean-square dilatation are different ⟨𝜃′ 𝜃′⟩ ̸= ⟨𝜃 𝜃⟩, in the discrete solution. When the flow is well-resolved
and with no subgrid scales, i.e. before 𝑡 ≈ 4𝐿/𝑉0, both shock capturing methods agree with the reference
solution; which in turn matches the semi-analytical data for the mean-square vorticity. As subgrid scales
appear and the simulation becomes under-resolved, the physics-based method continues to have a minor
impact on the numerical solution, whereas the Laplacian-based method dissipates all the compressible modes
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Figure 12: Kinetic energy spectrum at times 𝑡 = 5𝐿/𝑉0 (left) and 𝑡 = 10𝐿/𝑉0 (right) for the TGV problem. The
Nyquist wavenumber of the grid is 𝑘𝑁 = 96/𝐿. The theoretical −5/3 slope of decay of the inertial range of turbulence
is shown in purple on the right figure.

(i.e. vortical, entropy and acoustic modes). The superior performance of the physics-based method is mainly
due to improved detection of sharp features by the sensors in Section 3. We emphasize that, while some
small oscillations can be expected in under-resolved computations, particularly with high-order methods,
the sensors should activate only for sharp features that cannot be resolved with the grid resolution and may
lead to numerical instability.

Figure 12 shows the one-dimensional kinetic energy spectrum at times 𝑡 = 5𝐿/𝑉0 (left) and 𝑡 = 10𝐿/𝑉0

(right). Note the Laplacian viscosity damps mostly the smallest resolved scales, as illustrated by the lower
kinetic energy near the Nyquist wavenumber of the grid at 𝑡 = 10𝐿/𝑉0. The Nyquist wavenumber is defined
as 𝑘𝑁 = 𝜋/}, where } is the distance between high-order nodes, and corresponds to the smallest resolvable
scales. The larger damping of the small scales is consistent with the second-order behavior of the Laplacian
operator in wavenumber space, i.e. the decay rate of a signal is proportional to the square of its wavenumber.

5.5. Compressible isotropic turbulence

5.5.1. Case description and numerical discretization

The goal of this test case is to investigate the robustness and the impact of the shock capturing method on
the numerical solution for under-resolved compressible turbulence simulations. To this end, we consider the
decay of compressible, homogeneous, isotropic turbulence with eddy shocklets [36]. The problem domain
is a cube Ω = [−𝐿𝜋,𝐿𝜋)3 with triple periodic boundaries. The initial density, pressure and temperature
fields are constant, and the initial velocity is solenoidal and with kinetic energy spectrum satisfying 𝐸(𝑘) ∼
𝑘4 exp[−2 (𝑘/𝑘𝑀 )2], where 𝑘𝑀 corresponds to the most energetic wavenumber and is set to 𝑘𝑀 = 4/𝐿. The
details of the procedure to generate the initial velocity field are described in [29]. The initial turbulent Mach
number and Taylor-scale Reynolds number are

𝑀𝑡,0 =

√︀
⟨𝑣𝑖,0 𝑣𝑖,0⟩
⟨𝑐0⟩

= 0.6, 𝑅𝑒𝜆,0 =
⟨𝜌0⟩ 𝑣𝑟𝑚𝑠,0 𝜆0

⟨𝜇0⟩
= 100,

where the zero subscript denotes the initial value, ⟨ · ⟩ denotes spatial averaging, and

𝑣𝑟𝑚𝑠 =

√︂
⟨𝑣𝑖 𝑣𝑖⟩

3
, 𝜆 =

√︃
⟨𝑣21⟩

⟨(𝜕1𝑣1)2⟩
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are the root mean square velocity and the Taylor microscale, respectively. Also, the shear viscosity is
assumed to follow a power-law of the form

𝜇 = 𝜇0

(︂
𝑇

𝑇0

)︂3/4

. (22)

This completes the non-dimensional description of the problem. Due to the imbalance in the initial condition,
strong vortical, entropy and acoustic modes develop and persist throughout the simulation. Weak shock
waves (eddy shocklets) appear spontaneously from the turbulent motions as well.

Third-order EDG and DIRK(3,3) schemes are used for the discretization. The computational domain is
partitioned into a uniform 32×32×32 Cartesian grid; which leads to severe spatial under-resolution for this
problem. In order for the space discretization error to dominate the time discretization error, the time-step
size is ∆𝑡 = 1.183·10−2 𝜏0, where 𝜏0 = 𝜆0/𝑣𝑟𝑚𝑠,0 denotes the initial eddy turn-over time. This corresponds to
a CFL number based on the initial mean-square velocity of 𝑣𝑟𝑚𝑠,0 ∆𝑡/ℎ = 0.02. The simulation is performed
from 𝑡0 = 0 to 𝑡𝑓 = 4 𝜏0.

5.5.2. Numerical results

We present results for the physics-based method, the Laplacian-based method [42], and a simulation with no
shock capturing (reference solution). In addition, we consider the three following variations of the physics-
based method. First, we set 𝑃𝑟*𝛽 = 0.9 instead of using Eq. (19). This will introduce some artificial thermal
conductivity in shock waves through the term 𝜅*

1. Note that in the standard version of the model 𝑃𝑟*𝛽 ≫ 1,
and thus 𝜅*

1 ≈ 0, for the Mach numbers in this problem. Second, we take 𝑘{𝜅,𝜇} = 0 so that the terms
𝜅*
2 and 𝜇* vanish by construction. Third, we combine the two previous modifications and set 𝑃𝑟*𝛽 = 0.9

and 𝑘{𝜅,𝜇} = 0. We finally consider the direct numerical simulation (DNS) data from Hillewaert et al. [27].
The grid resolution } in DNS is such that the Péclet number 𝑃𝑒},0 = ⟨𝜌0⟩ 𝑣𝑟𝑚𝑠,0 }/⟨𝜇0⟩ is approximately
3.3. While this suffices to stabilize the shock waves, it may not suffice to accurately resolve them and it
is therefore unclear whether the DNS results are grid converged. Some differences between unfiltered DNS
solutions computed with a finite-volume code and a DG code are indeed reported in [27].

Figure 13 shows the temporal evolution of the mean-square velocity and vorticity, as well as the variance
of temperature and dilatation, for all the methods considered. Since it is not obvious from these figures,
we note that the two solutions with 𝑃𝑟*𝛽 = 0.9 display the same time evolutions, and the same is true for
the two solutions with 𝑃𝑟*𝛽 as given by Eq. (19). The reference simulation is unstable and breaks down
at 𝑡 ≈ 0.450 𝜏0. A time refinement study confirmed the breakdown occurs independently of the time-step
size, and it is therefore due to the lack of stability in the spatial discretization with no shock capturing. As
discussed in Section 1, the role of the shock capturing method is to stabilize sharp features while having
a small impact on the resolved turbulence and acoustic waves, and it is the role of the implicit or explicit
SGS model to account for the effect of the subgrid scales. Hence, the solution with shock capturing should
remain as close as possible to the reference solution without shock capturing, whenever the latter is stable.
Note that no agreement with the DNS solution is expected a priori due to under-resolution, especially for
quantities involving spatial derivatives of the numerical solution. The results in Figure 13 can be summarized
as follows:

∙ Except for dilatation variance, the physics-based method agrees with the reference solution before the
latter breaks down, that is, it does not affect the numerical solution when no stabilization is required.

∙ The dilatation in the reference solution suffers from severe Gibbs oscillations before the crash of the
simulation, and this is in turn responsible for the breakdown. The physics-based method stabilizes the
scheme by damping the Gibbs oscillations in dilatation. On the one hand, it does so without affecting
the other compressible modes (i.e. the vortical and entropy modes). On the other hand, the damping
of acoustic modes is excessive at that time compared to the DNS data. As discussed previously, it is
unclear whether the DNS predictions, particularly of dilatation variance, are grid converged, and it is
therefore challenging to infer additional conclusions from this figure.
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Figure 13: Temporal evolution of mean-square velocity, mean-square vorticity, temperature variance and dilatation
variance for the compressible isotropic turbulence problem. The zero subscript denotes the initial value and ⟨ · ⟩
denotes spatial averaging.

∙ The physics-based method dissipates significantly less kinetic energy, vortical structures, temperature
fluctuations and acoustic waves than the Laplacian-based method. The smaller impact on vortical,
entropy and acoustic modes is critical for large-eddy simulation. In particular, shock stabilization
through bulk viscosity, as opposed to shear viscosity or Laplacian viscosity, is key in order not to
dissipate vortical structures across shock waves.

∙ Overall, the physics-based method shows very good agreement with the DNS data, particularly when
compared to the LES results with other shock stabilization methods [27, 29] and despite the slightly
lower resolution in the simulations in this paper.

∙ If 𝑃𝑟*𝛽 is set to 0.9, the term 𝜅*
1 damps temperature fluctuations. If 𝑃𝑟*𝛽 is as in Eq. (19), 𝜅*

1 vanishes
and the scheme is still stable. This justifies the proposed form for 𝑃𝑟*𝛽 in Eq. (19): Large for low
and moderate Mach numbers (i.e. when 𝜅*

1 is not necessary) and asymptoting to 0.9 for large Mach
numbers (i.e. when it is required for stability and to obtain thermal and dynamic shock thicknesses of
the same order).

∙ No differences are observed between setting 𝑘{𝜅,𝜇} = 1.0 (the default value) and 𝑘{𝜅,𝜇} = 0. This
shows that the thermal and shear sensors succeed to vanish in this problem, in which there are no
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sharp features other than shock waves.

6. Conclusions

We presented a physics-based shock capturing method for large-eddy simulation of turbulent flows. The
proposed method performed robustly and provided sharp shock profiles for the transonic, supersonic, and
hypersonic flows considered. Numerical results also indicated the method has a negligible impact on vortical
structures, temperature fluctuations and dissipation of kinetic energy, both near and away from shocks. The
impact on acoustic waves is negligible away from shocks, but some damping was observed near shocks. How
to further improve the model to minimize the dissipation of acoustic modes across shocks is the subject of
ongoing research.

All the previous features are critical to enable robust and accurate large-eddy simulations of shock flows.
From our experience, the key ingredients towards this end include: i) Shock stabilization through artificial
bulk viscosity. This is an efficient mechanism to stabilize shock waves while having a negligible impact on the
vortical structures across the shock. ii) Introducing also a small amount of artificial thermal conductivity
in hypersonic shocks, required for stability and optimal shock resolution in hypersonic flows. iii) Accurate
shock detection via dilatation- and vorticity-based sensors. iv) Artificial thermal conductivity and artificial
shear viscosity to stabilize other under-resolved sharp features, such as strong thermal and shear layers. v)
Accurate thermal and shear sensors that are active only in regions where the thermal and shear gradients
are larger than possible with the grid resolution and may lead to numerical instability. vi) Smoothing the
artificial viscosity fields to make them 𝒞0 continuous; which is critical for robustness. vii) Accounting for
mesh anisotropy.
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Appendix A. Notation used for the hybridized DG discretization

Finite element mesh

Let Ω ⊂ R𝑑, 1 ≤ 𝑑 ≤ 3 be an open, connected and bounded physical domain with Lipschitz boundary 𝜕Ω.
We denote by 𝒯ℎ a collection of disjoint, non-singular, 𝑝-th degree curved elements 𝐾 that partition Ω, and
set 𝜕𝒯ℎ := {𝜕𝐾 : 𝐾 ∈ 𝒯ℎ} to be the collection of the boundaries of the elements in 𝒯ℎ. For an element 𝐾
of the collection 𝒯ℎ, 𝐹 = 𝜕𝐾 ∩ 𝜕Ω is a boundary face if its 𝑑 − 1 Lebesgue measure is nonzero. For two
elements 𝐾+ and 𝐾− of 𝒯ℎ, 𝐹 = 𝜕𝐾+ ∩ 𝜕𝐾− is the interior face between 𝐾+ and 𝐾− if its 𝑑− 1 Lebesgue
measure is nonzero. We denote by ℰ𝐼

ℎ and ℰ𝐵
ℎ the set of interior and boundary faces, respectively, and we

define ℰℎ := ℰ𝐼
ℎ ∪ ℰ𝐵

ℎ as the union of interior and boundary faces. Note that, by definition, 𝜕𝒯ℎ and ℰℎ are
different. More precisely, an interior face is counted twice in 𝜕𝒯ℎ but only once in ℰℎ, whereas a boundary
face is counted once both in 𝜕𝒯ℎ and ℰℎ.
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Finite element spaces

Let 𝒫𝑘(𝐷) denote the space of polynomials of degree 𝑘 on a domain 𝐷 ⊂ R𝑛, let 𝐿2(𝐷) be the space of
Lebesgue square-integrable functions on 𝐷, and 𝒞0(𝐷) the space of continuous functions on 𝐷. Also, let
𝜓𝑝

𝐾 denote the 𝑝-th degree parametric mapping from the reference element 𝐾𝑟𝑒𝑓 to an element 𝐾 ∈ 𝒯ℎ in
the physical domain, and 𝜑𝑝

𝐹 be the 𝑝-th degree parametric mapping from the reference face 𝐹𝑟𝑒𝑓 to a face
𝐹 ∈ ℰℎ in the physical domain. We then introduce the following discontinuous finite element spaces

𝒬𝑘
ℎ =

{︀
𝑟ℎ ∈ [𝐿2(𝒯ℎ)]𝑚×𝑑 : (𝑟ℎ ∘𝜓𝑝

𝐾)|𝐾 ∈ [𝒫𝑘(𝐾𝑟𝑒𝑓 )]𝑚×𝑑 ∀𝐾 ∈ 𝒯ℎ
}︀
, (A.1a)

𝒱𝑘
ℎ =

{︀
𝑤ℎ ∈ [𝐿2(𝒯ℎ)]𝑚 : (𝑤ℎ ∘𝜓𝑝

𝐾)|𝐾 ∈ [𝒫𝑘(𝐾𝑟𝑒𝑓 )]𝑚 ∀𝐾 ∈ 𝒯ℎ
}︀
, (A.1b)

ℳ𝑘
ℎ =

{︀
𝜇ℎ ∈ [𝐿2(ℰℎ)]𝑚 : (𝜇ℎ ∘ 𝜑𝑝

𝐹 )|𝐹 ∈ [𝒫𝑘(𝐹𝑟𝑒𝑓 )]𝑚 ∀𝐹 ∈ ℰℎ, and 𝜇ℎ|ℰE
ℎ
∈ [𝐶0(ℰE

ℎ )]𝑚
}︀
, (A.1c)

where ℰE
ℎ is a subset of ℰℎ, and 𝑚 denotes the number of equations of the conservation law, i.e. 𝑚 = 𝑑 + 2

for the Euler and Navier-Stokes systems. Note that ℳ𝑘
ℎ consists of functions which are continuous on ℰE

ℎ

and discontinuous on ℰH
ℎ := ℰℎ∖ℰE

ℎ . Different choices of ℰE
ℎ lead to different discretization methods that

have different properties in terms of accuracy, stability, and number of globally coupled unknowns [17].
In particular, the Hybridizable DG (HDG), Embedded DG (EDG) and Interior Embedded DG (IEDG)
methods are obtained by setting ℰE

ℎ = ∅, ℰE
ℎ = ℰℎ and ℰE

ℎ = ℰ𝐼
ℎ, respectively. Further discussion on this

family of schemes is presented in [17, 19].

It remains to define inner products associated with these finite element spaces. For functions 𝑎 and 𝑏 in
[𝐿2(𝐷)]𝑚, we denote (𝑎, 𝑏)𝐷 =

∫︀
𝐷
𝑎 · 𝑏 if 𝐷 is a domain in R𝑑 and ⟨𝑎, 𝑏⟩𝐷 =

∫︀
𝐷
𝑎 · 𝑏 if 𝐷 is a domain in

R𝑑−1. Likewise, for functions 𝐴 and 𝐵 in [𝐿2(𝐷)]𝑚×𝑑, we denote (𝐴,𝐵)𝐷 =
∫︀
𝐷

tr(𝐴𝑇𝐵) if 𝐷 is a domain
in R𝑑 and ⟨𝐴,𝐵⟩𝐷 =

∫︀
𝐷

tr(𝐴𝑇𝐵) if 𝐷 is a domain in R𝑑−1, where tr (·) is the trace operator of a square
matrix. We finally introduce the following inner products

(𝑎, 𝑏)𝒯ℎ
=

∑︁
𝐾∈𝒯ℎ

(𝑎, 𝑏)𝐾 , (𝐴,𝐵)𝒯ℎ
=

∑︁
𝐾∈𝒯ℎ

(𝐴,𝐵)𝐾 , ⟨𝑎, 𝑏⟩𝜕𝒯ℎ
=

∑︁
𝐾∈𝒯ℎ

⟨𝑎, 𝑏⟩𝜕𝐾 .

Appendix B. Theoretical estimate of the optimal value of 𝑘𝛽

We present an estimate of the value of 𝑘𝛽 to optimally resolve a stationary normal shock wave with the grid
resolution. First, let us define a modified viscosity 𝜇̃ = 4𝜇/3+𝛽 and a modified Prandtl number ̃︁𝑃𝑟 = 𝑐𝑝 𝜇̃/𝜅,
where (𝛽, 𝜅, 𝜇) are the sum of the physical and artificial viscosities. For a Newtonian, calorically perfect gas
in thermodynamic equilibrium3, the entropy production across a stationary normal shock can be shown to
be approximately given by

𝑠2 − 𝑠1 ≈ 2

𝜌𝑣𝛿𝑠

𝜇̃
𝑣2
1

𝑇1

(︀
𝑣2
𝑣1

− 1
)︀2

+ 2𝜅
(︀
𝑇2

𝑇1
− 1

)︀2(︀𝑇2

𝑇1
+ 1

)︀−1(︀
𝑇2

𝑇1
+ 1

)︀ , (B.1)

where the subscripts 1 and 2 denote the upstream and downstream conditions, and 𝛿𝑠 is the dynamic
thickness of the shock. We have assumed the dynamic and thermal thicknesses are of the same order
𝛿𝑠 ≈ 𝜃𝑠; which is the case for example if ̃︁𝑃𝑟 is of order 1. In addition, the following approximations have
been used inside the shock

𝑑𝑣

𝑑𝑥
(𝑥) ≈ 𝑣2 − 𝑣1

𝛿𝑠
,

𝑑𝑇

𝑑𝑥
(𝑥) ≈ 𝑇2 − 𝑇1

𝛿𝑠
, 𝑇 (𝑥) ≈ 𝑇1 + 𝑇2

2
. (B.2)

3Although these assumptions may not hold inside an actual shock wave, these are the physical models used for the numerical
discretization and therefore those to be used to estimate the value of 𝑘𝛽 .
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Alternatively, the entropy jump can be expressed in terms of the density and temperature ratios using Gibbs’
equation, namely,

𝑠2 − 𝑠1 = 𝑐𝑣 ln

[︂
𝑇2

𝑇1

(︂
𝜌1
𝜌2

)︂𝛾−1]︂
. (B.3)

Combining Equations (B.1) and (B.3), it follows that

𝜌𝑣𝛿𝑠
𝜇̄

≈
2𝛾 (𝛾 − 1)𝑀2

1

(︁
𝜌1

𝜌2
− 1

)︁2

+ 4𝛾 ̃︁𝑃𝑟
−1

(︁
𝑇2

𝑇1
− 1

)︁2(︁
𝑇2

𝑇1
+ 1

)︁−1

(︁
𝑇2

𝑇1
+ 1

)︁
ln
[︁
𝑇2

𝑇1

(︁
𝜌1

𝜌2

)︁𝛾−1]︁ =: ℱ(𝑀1, 𝛾, ̃︁𝑃𝑟). (B.4)

Moreover, 𝛽* ≫ 𝛽𝑓 , 𝜇𝑓 , 𝜇
* in a shock wave with our method, and thus 𝜇̃ ≈ 𝛽*. Further assuming 𝑃𝑟*𝛽 is set

to be of order 1, it follows that 𝜅* ≫ 𝜅𝑓 , ̃︁𝑃𝑟 ≈ 𝑃𝑟*𝛽 and

𝛽* ≈ 𝜌𝑣𝛿𝑠
ℱ(𝑀1, 𝛾, 𝑃𝑟*𝛽)

. (B.5)

Note that 𝑃𝑟*𝛽 ≈ 1 in turn ensures the previous assumption 𝛿𝑠 ≈ 𝜃𝑠 holds.

The artificial bulk viscosity in a stationary normal shock is

𝛽*(𝑥) ≈ 𝑘𝛽
ℎ2
𝛽

𝑘2
𝜌𝑣

𝛿𝑠
ℋ
(︀
𝑀(𝑥),𝑀1, 𝛾

)︀
, (B.6)

where

ℋ(𝑀,𝑀1, 𝛾) :=
2𝑀2

1 − 2

(𝛾 + 1)𝑀1

(︂
2

2 + (𝛾 − 1)𝑀2
1

(︁
𝛾 +

1

𝑀2

)︁)︂1/2

. (B.7)

Note that the artificial bulk viscosity is a function of the position 𝑥 due to the 𝑀(𝑥) term. From Equations
(B.5) and (B.6), an estimate of the value of 𝑘𝛽 to optimally resolve the shock with the grid resolution, i.e.
𝛿𝑠, 𝜃𝑠 ≈ ℎ𝛽/𝑘, is given by

𝑘†𝛽 =
[︁
ℱ
(︀
𝑀1, 𝛾, 𝑃𝑟*𝛽

)︀
ℋ
(︀
𝑀1,𝑀1, 𝛾

)︀]︁−1

, (B.8)
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Figure B.14: Estimate of the value of 𝑘𝛽 , denoted by 𝑘†
𝛽 , to optimally resolve a stationary normal shock wave. The

case 𝛾 = 1.4 and 𝑃𝑟*𝛽 = 0.9 is shown.
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which needs to be used in conjunction with 𝑃𝑟*𝛽 ≈ 1. Figure B.14 plots 𝑘†𝛽 for the particular case of 𝛾 = 1.4

and 𝑃𝑟*𝛽 = 0.9. While 𝑘†𝛽 is between 0.1 and 0.2 for incident Mach numbers below 30, our experience
from numerical experiments is that 𝑘𝛽 ≈ 1 is required for stability in practice. The difference between the
theoretical estimate and the value required in practice is mostly attributed to the approximations used in
the derivation of 𝑘†𝛽 . Numerical experiments also indicate that 𝑃𝑟*𝛽 ≈ 1 is only necessary in practice for
hypersonic shocks. This justifies the proposed form for 𝑃𝑟*𝛽 in Eq. (19); which is large for low and moderate
Mach numbers (i.e. when 𝜅*

1 is not necessary) and asymptotes to 0.9 for large Mach numbers (i.e. when it is
required to stabilize the scheme and to obtain thermal and dynamic shock thicknesses of the same order).
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