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SPECTRAL APPROXIMATIONS BY THE HDG METHOD

J. GOPALAKRISHNAN, F. LI, N.-C. NGUYEN, AND J. PERAIRE

Abstract. We consider the numerical approximation of the spectrum of a
second-order elliptic eigenvalue problem by the hybridizable discontinuous
Galerkin (HDG) method. We show for problems with smooth eigenfunctions
that the approximate eigenvalues and eigenfunctions converge at the rate 2k+1
and k+1, respectively. Here k is the degree of the polynomials used to approx-
imate the solution, its flux, and the numerical traces. Our numerical studies
show that a Rayleigh quotient-like formula applied to certain locally postpro-
cessed approximations can yield eigenvalues that converge faster at the rate
2k + 2 for the HDG method as well as for the Brezzi-Douglas-Marini (BDM)
method. We also derive and study a condensed nonlinear eigenproblem for the
numerical traces obtained by eliminating all the other variables.

1. Introduction

We study the HDG (hybridized discontinuous Galerkin) approximation to the
following eigenproblem: Find eigenvalues λ in R and corresponding nontrivial eigen-
functions u satisfying

(1) −∇ · (α�∇u) = λu in Ω, u = 0 on ∂Ω.

Assumptions are placed on α and Ω in Section 2. Several HDG discretizations
were introduced in [8] to discretize corresponding source problems. The purpose of
this paper is to study the application of one such method to eigenproblems. The
particular HDG method considered here (referred to as the H-LDG method in [8],
but simply as the “HDG method” in this paper) is chosen for our study because
we now have a fairly complete theoretical understanding of its application to the
source problem.

Two well-known advantages of the HDG method, when applied to source prob-
lems, are reduced system size and flexible stabilization. The latter arises due to
a transparent stabilization mechanism in the definition of numerical flux. It al-
lows one to use, for example, polynomials of the same degree k to approximate

the solution u and components of its flux �q = −α�∇u. While use of these spaces
would have resulted in an unstable mixed method, the resulting HDG method is
stable, and provides optimal order approximations for all variables. To discuss the
former, namely the advantage of reduced system size, recall the process of static
condensation, which, for source problems, removes all interior variables to yield a
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“condensed” system for inter-element variables. The HDG condensed system, when
compared to condensed systems from other DG methods, is attractive because of
its smaller size and favorable sparsity patterns. One of the questions we address
in this paper is whether such condensed systems are useful in eigenproblems. Note
that the condensation process, by reducing the system size, also reduces the size
of the spectrum. How much of the spectrum can be approximated despite this
reduction is a question answered in Section 5. There, we also derive the nonlinear
equation that needs to be solved in the reduced dimensions to compute the spectral
approximations.

Apart from these results on the condensed eigenproblem, we prove convergence
results for the HDG eigenproblem in Sections 3 and 4. We show that the approxi-
mate eigenvalues obtained by the HDG method exhibit no spectral pollution. They
converge to the exact eigenvalues at the rate O(h2k+1), under suitable regularity
assumptions, if we use polynomials of degree at most k for all the HDG variables.
We also show, under similar assumptions, that the gap between the correspond-
ing discrete eigenspace and the exact eigenspace in L2(Ω) converges at O(hk+1).
Roughly speaking, this shows that the rate of convergence of eigenfunctions in
L2(Ω) is optimal for the HDG method.

These results compare favorably with many other DG eigenvalue approxima-
tions [2, 13]. The unified presentation of [2] facilitates comparison. They show
that many traditional Hermitian DG methods approximate eigenvalues at the rate
O(h2k). For non-Hermitian DG methods, they find that the eigenvalue convergence
rate is even poorer, in general no better than O(hk). The HDG method, which can
be considered to fall in the Hermitian class, yields eigenvalues that converge faster,
when compared to both the Hermitian and the non-Hermitian DG methods consid-
ered in [2]. However, let us note that the convergence rate of HDG eigenvalues (or,
for that matter, any DG eigenvalues) do not compare favorably with the O(h2k+2)
convergence rate of the mixed hybridized Raviart-Thomas (HRT) method [5,9,16].
Our analysis also points to other differences when comparing the HDG and HRT
eigenproblems. For example, comparing Theorem 5.3 below with [9, Theorem 3.2],
we note that the extent of the spectrum recovered by the condensed system may
be shorter (up to O(1/h)) for the HDG method in comparison to the HRT method
(which is up to O(1/h2)).

The method of convergence analysis in this paper is motivated by the many
early works that developed abstract approaches to analyze approximation of eigen-
problems [6, 11, 16, 17], and in particular, the application of the abstract theory
to DG methods in [2]. The critical new tool that helps push the analysis forward
in the HDG case, and yield better convergence rates than [2], is the projection
operator of [10]. The projection allows our analysis of HDG eigenvalue errors to
proceed along the lines of similar analyses for mixed methods [5]. A few important
differences arise due to the fact that the HDG projection possesses only a weak
analogue of a well-known commutativity property. The analysis in the second as-
pect of this study, involving the condensed system, is motivated by our previous
such analysis [9] for the HRT method.

Reports of extensive numerical experiments are provided in Section 6. Of partic-
ular interest is a local and inexpensive postprocessing presented there. The post-
processed eigenvalues seem to converge at O(h2k+2)-rate thus making the HDG
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method competitive with the mixed method. The intuition behind the construc-
tion of this postprocessing is inherited from our previous experience with the mixed
method [9], where we proved that the postprocessed eigenfunctions have better con-
vergence rates. However, the argument used there to provide a rigorous proof does
not seem to extend to the HDG method.

In the next section, we introduce the HDG eigenproblem and essential notations
used throughout the paper. In Section 3, we show that there is no pollution of
the spectrum when approximating it by the HDG method. This result is improved
in Section 4, where we establish (in Theorem 4.1) the convergence rate of HDG
eigenvalues. Section 5 investigates the condensation (or hybridization) of the HDG
eigenproblem to obtain a smaller condensed nonlinear eigenproblem for the inter-
face variable, otherwise known as the numerical trace. The condensed nonlinear
eigenproblem is given in Theorem 5.3 and a closely related linear eigenproblem is
investigated in Theorem 5.4.

We conclude in Section 6 with the results of our numerical studies and a brief
discussion of the eigenproblem using mixed-degree polynomial spaces.

2. The HDG source and eigenvalue problems

Consider the Dirichlet boundary value problem (rewritten as a first order system)
of finding �q f ∈ H(div,Ω) and uf ∈ L2(Ω), given any “source” f in L2(Ω), such
that

�q f + α �∇uf = 0 on Ω,(2a)

∇ · �q f = f on Ω,(2b)

uf = 0 on ∂Ω.(2c)

All functions, unless explicitly stated otherwise, are real-valued in this paper.
Throughout, Ω ⊂ R

n is a polyhedral domain (n ≥ 2), α : Ω → R
n×n denotes

a variable matrix valued coefficient, which we assume to be symmetric and positive
definite at all points in Ω. We assume that there is a fixed constant that bounds
the norms of α and c = α−1 for all x ∈ Ω, on which dependence is not tracked in
the estimates of this paper. To facilitate our analysis, we introduce notation for
the “solution operator” T : L2(Ω) → L2(Ω), which is defined simply by

(3) Tf = uf .

It is well known that T is compact and self-adjoint. Its spectrum, denoted by σ(T ),
consists of isolated points on the positive real line accumulating at zero. Clearly,
there is a one-to-one correspondence between the eigenvalues of (1) and those of T .
Indeed, μ is an eigenvalue of T if and only if μ = 1/λ for some λ satisfying (1).

2.1. The source problem. The HDG method provides an approximation Th to
T . To understand this approximation, we first describe the HDG source problem
and introduce known results we shall use later. Afterward, we will present the HDG
eigenvalue problem.

The HDG method defines a scalar approximation uh to u and a vector approxi-
mation �qh to �q in the following spaces, respectively:

Wh = {w : for every mesh element K,w|K ∈ Pk(K)},(4)

Vh = {�v : for every mesh element K,�v|K ∈ Pk(K)n}.(5)
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Note that functions in these spaces need not be continuous across element interfaces.
Above and elsewhere, we use Pk(D) to denote the space of polynomials of degree
at most k ≥ 0 on some domain D. The subscript h denotes the mesh size defined
as the maximum of the diameters of all mesh elements.

For any (scalar or vector) function q in Vh or Wh, the trace q|F is, in general, a
double-valued function on any interior mesh face F = ∂K+ ∩ ∂K− shared by the
mesh elements K+ and K−. Its two branches, denoted by [q]K+ and [q]K− , are
defined by [q]K±(�x) = limε↓0 q(�x − ε [�n]K±) for all �x in F . Here and elsewhere, �n
denotes the double-valued function of unit normals on the element interfaces: on
a face F ⊆ ∂K, its branch [�n]K equals the unit normal on ∂K pointing outward
from K. For functions u and v in L2(D), we write (u, v)D =

∫
D
uv dx whenever D

is a domain of Rn, and 〈u, v〉D =
∫
D
uv dx whenever D is a domain of Rn−1. To

simplify the notation, define

(v, w)Th
=

∑
K∈Th

(v, w)K and 〈v, w〉∂Th
=

∑
K∈Th

〈v, w〉∂K ,

where in the latter, we understand that for double-valued v and w, the integral
〈v, w〉∂K is computed using the branches [v]K and [w]K from K. For vector func-
tions �v and �w, the notations are similarly defined with the integrand being the dot
product �v · �w.

In addition to the spaces Vh and Wh introduced above, our method also uses
one other discrete space Mh, consisting of functions defined on the mesh faces (or
mesh edges if n = 2), namely

(6) Mh = {μ : for every mesh face F, μ|F ∈ Pk(F ), and if F ⊆ ∂Ω, μ|F = 0}.

The HDG method defines the approximate solution uf
h, the approximate flux �qfh ,

and the numerical trace ηfh , as the functions in Wh, Vh, and Mh, respectively,
satisfying

(c �qfh, �r)Th
− (uf

h,∇ ·�r)Th
+ 〈ηfh , �r · �n〉∂Th

= 0, for all �r ∈ Vh,(7a)

−(�qfh ,
�∇w)Th

+ 〈q̂fh · �n,w〉∂Th
= (f, w)Th

for all w ∈ Wh,(7b)

〈μ, q̂fh · �n〉∂Th
= 0 for all μ ∈ Mh,(7c)

where q̂fh is a double-valued vector function on mesh interfaces defined by

(8) q̂fh = �qfh + τ
(
uf
h − ηfh

)
�n.

Note that this defines all branches, i.e., on the boundary ∂K of every mesh element

K, the value of the branch of q̂fh from K is [q̂fh ]K = [�qfh ]K + [τ ]K
(
[uf

h]K − ηfh
)
[�n]K .

Here τ is a nonnegative penalty function, which is also double-valued on the element
interfaces and [τ ]K above denotes the branch of τ -values from K. For simplicity, we
assume that any branch of τ is a constant function on each mesh edge. It is proved
in [8] that the system (7) is uniquely solvable if [τ ]K is positive on at least one face
of K for every element K. This unique solvability result is assumed throughout

this paper. Given any f in L2(Ω), the component uf
h of the unique solution of (7)

is used to define the discrete version of the operator T in (3), namely

(9) Thf = uf
h.
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We will need a projection Πh(�q, u), into the product space Vh ×Wh, originally
designed in [10]. Its domain is a subspace of H(div,Ω) × L2(Ω) consisting of suf-
ficiently regular functions, e.g., H(div,Ω) ∩ Hs(Ω)n × Hs(Ω) for s > 1/2. When
its components need to be identified, we also write Πh(�q, u) as (Π

V

h �q,Π
W

h u) where
ΠV

h �q and ΠW

h u are the components of the projection in Vh and Wh, respectively.
(Despite this notation, note that ΠV

h �q depends not just on �q, but rather on both �q
and u. The same applies for ΠW

h u.) The components are defined by

(ΠV

h �q, �r)K = (�q, �r)K for all �r ∈ Pk−1(K)n,(10a)

(ΠW

h u,w)K = (u,w)K for all w ∈ Pk−1(K),(10b)

〈ΠV

h �q · �n+ τΠW

h u, μ〉F = 〈�q · �n+ τu, μ〉F for all μ ∈ Pk(F ),(10c)

for all faces F of the simplex K. Let su, sq ∈ (1/2, k + 1]. We recall the following
approximation property, proved in [10, Theorem 2.1] for integer values of su, sq,
and extended to remaining values of su, sq ∈ (1/2, k + 1] in [7]:

For all (�q, u) ∈ H(div,Ω) ∩Hsq (Ω)n ×Hsu(Ω),

‖ΠV

h �q − �q ‖L2(K) ≤ C h
sq
K |�q|Hsq (K) + C hsu

K τ∗K |u|Hsu (K)(11a)

‖ΠW

h u− u‖L2(K) ≤ C hsu
K |u|Hsu (K) + C

h
sq
K

τmax
K

|�q|Hsq (K).(11b)

Above and throughout we use C to denote a generic constant independent of the
mesh element sizes and the stabilization parameter τ . The notations appearing
above are defined as follows, letting Fmax denote the face of K where τ |∂K is
maximum:

τmax
K = max τ |∂K , τ∗K = max τ |∂K\Fmax

, hK = diam(K), h = max
K∈Th

hK .

The following error estimate is known [7, 10].

Theorem 2.1 (see [7]). Let the exact solution (�q f , uf ) of (2) be in H(div,Ω) ∩
Hs(Ω)n ×Hs(Ω) for some s > 1/2. Then,

‖u− uf
h‖Th

≤ C‖u−ΠW

h u‖Th
+ bτC‖�q −ΠV

h �q ‖c,(12)

‖�q − �qfh‖c ≤ 2‖�q −ΠV

h �q ‖c,(13)

where bτ = max{1 + hKτ∗K + hK/τmax
K : K ∈ Th}, and ‖�q ‖c = (c �q, �q )

1/2
∂Th

with c =

α−1.

2.2. The eigenproblem. The HDG discretization of the eigenproblem (1) defines
an approximation to the eigenfunction uh ∈ Wh, an approximation to the eigenflux
�qh ∈ Vh, and an approximation to the eigenfunction trace ηh ∈ Mh, as a nontrivial
set of functions satisfying

(c �qh, �r)Th
− (uh,∇ ·�r)Th

+ 〈ηh, �r · �n〉∂Th
= 0, for all �r ∈ Vh,(14a)

−(�qh, �∇w)Th
+ 〈q̂h · �n,w〉∂Th

= λh (uh, w)Th
for all w ∈ Wh,(14b)

〈μ, q̂h · �n〉∂Th
= 0 for all μ ∈ Mh,(14c)

where q̂h is defined by q̂h = �qh + τ
(
uh − ηh

)
�n, cf. (8). Here, λh ∈ R is the

corresponding discrete eigenvalue.
The unique solvability of the source problem (7) implies that λh is nonzero. One

can easily verify that μh is an eigenvalue of Th if and only if μh = 1/λh for some λh

solving (14). Moreover, λh is positive as can be concluded from the next lemma.
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Lemma 2.2. Th is self-adjoint and positive definite in L2(Ω).

Proof. To show that (f, Thg) = (Thf, g), where (·, ·) denotes the L2(Ω)-inner prod-
uct, we calculate as follows:

(f, Thg) = −(�q f
h , �∇ug

h)Th
+ 〈q̂fh · �n, ug

h〉∂Th
, by (7b) with w = Thg = ug

h

= (∇· �q f
h , ug

h)Th
+ 〈(q̂fh − �q f

h ) · �n, ug
h〉∂Th

by integration by parts

= (c �q g
h , �q f

h )Th
+ 〈ηgh, �q

f
h · �n〉∂Th

+ 〈(q̂fh − �q f
h ) · �n, ug

h〉∂Th
by (7a) with �r = �q f

h

= (c �q g
h , �q f

h )Th
− 〈�q f

h · �n, ug
h − ηgh〉∂Th

+ 〈q̂fh · �n, ug
h − ηgh〉∂Th

by (7c) with μ = ηgh

= (c �q g
h , �q f

h )Th
+ 〈τ(uf

h − ηfh), (u
g
h − ηgh)〉∂Th

by (8).

The last expression is symmetric in f and g and is nonnegative if f = g. This
proves that Th is self-adjoint and positive semidefinite in L2(Ω). As already noted
previously, zero is not an eigenvalue of Th, hence Th is positive definite. �

3. Convergence of the spectrum

The convergence of the discrete eigenvalues to the exact ones is proved by estab-
lishing convergence of Th to T in operator norm. (Recall that T and Th are defined
in (3) and (9), respectively.) Such operator convergence was used as the basis for
the early analyses of spectral approximations using conforming methods [6,16,17].
It has also been used to analyze approximations of eigenvalue problems using older
discontinuous Galerkin methods (like the interior penalty method) [2]. To apply
this technique to the HDG eigenproblem, we need the following basic result.

Theorem 3.1 (Operator convergence). Suppose there is an s > 1/2 such that any
solution (�q f , uf ) of (2) satisfies

(15) ‖�q f‖Hs(Ω) + ‖uf‖Hs(Ω) ≤ C‖f‖L2(Ω),

for all f ∈ L2(Ω). Then

(16) ‖T − Th‖ ≤ cτh
min(s,k+1)

where ‖ · ‖ denotes the L2(Ω)-operator norm and cτ = Cmax{1 + h2
K(τ∗K)4 +

(τmax
K )−2 : K ∈ Th}1/2.

Proof. The convergence results for the HDG source problem imply

‖Tf − Thf‖L2(Ω) ≤ C‖u−ΠW
h u‖Th + bτC‖�q −ΠV

h �q ‖c, by Theorem 2.1, eq. (12),

≤ Ccτh
min(s,k+1)(|q|Hs(Ω) + |u|Hs(Ω)), by (11).

Hence the result follows from (15). �

Note that assumption (15) is a regularity assumption that holds, for example,
when s ≡ 1 and Ω is a polygonal domain (with no cracks) in R

2.
By virtue of Theorem 3.1 and the well-known consequences of operator con-

vergence [1, 12, 17], we conclude that the spectrum of Th approximates that of T ,
i.e., there is no “pollution” of the spectrum when it is approximated by the HDG
method. To formulate the statement of this approximation precisely in a form we
can use later, let us recall some standard terminology. The “gap” between two
subspaces X and Y of L2(Ω) is defined by

δ(X,Y ) = sup
x∈X

dist(x, Y )

‖x‖L2(Ω)
= sup

y∈Y

dist(y,X)

‖y‖L2(Ω)
.
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Now, suppose μ is an eigenvalue of T of multiplicity m and let Γ be a positively
oriented circle, contained in the resolvent set of T , centered at μ, and enclosing no
other eigenvalue of T . Define two operators, EΓ

h and EΓ , both on L2(Ω), by the
following integrals over Γ in the complex plane:

EΓ
h =

1

2πı̂

∮
Γ

(z − Th)
−1dz, EΓ =

1

2πı̂

∮
Γ

(z − T )−1dz.

Hereon, we omit the superscript Γ in EΓ
h and EΓ as Γ will always be taken as

stated above. A well-known result is that E is a projection onto the eigenspace of
T corresponding to the eigenvalue μ. The discrete analogue of this result for Eh

appears in results collected below. The collection summarizes a few consequences of
operator convergence. The arguments proving these consequences are standard [2,
16, 17], and since they apply to the HDG context with few modifications, we shall
not repeat them. We use R(A) to denote the range of any operator A and Cτ to
denote generic constants independent of h, but dependent on τ .

Corollary 3.2 (Convergence of eigenvalues and eigenfunctions). Let μ and Γ be
as above and let the assumption of Theorem 3.1 hold for some s > 1/2. Then, there
exists hΓ > 0 such that for all h < hΓ the following statements hold:

(1) There are exactly m eigenvalues of Th within Γ , which we count according
to multiplicity and enumerate as μh,1, μh,2, . . . , μh,m.

(2) The operator Eh is a projection onto the span of the eigenfunctions of Th

corresponding to all the eigenvalues μh,j for j = 1, . . . ,m.
(3) The operator Eh converges to E as h → 0 and

(17) ‖E − Eh‖ ≤ C‖T − Th‖ ≤ Cτh
min(s,k+1).

(4) The exact and discrete eigenspaces (of μ and {μh,j}mj=1, respectively) are
R(E) and R(Eh), respectively. The discrete eigenspaces converge in the
sense that

(18) δ(R(E), R(Eh)) ≤ Cτh
min(s,k+1).

(5) If, in addition, the eigenfunctions of μ have a higher regularity index, i.e.,
if

‖�q f‖Hsμ (Ω) + ‖uf‖Hsμ(Ω) ≤ C‖f‖L2(Ω), ∀f ∈ R(E),

with sμ ≥ s, then (17) can be refined to

(19)
∥∥(E − Eh)|R(E)

∥∥ ≤ C
∥∥(T − Th)|R(E)

∥∥ ≤ Cτh
min(sμ,k+1)

and, consequently, (18) can be revised to δ(R(E), R(Eh)) ≤ Cτh
min(sμ,k+1).

4. Rate of convergence of eigenvalues

In this section, we prove that under favorable regularity conditions, the HDG
eigenvalues converge at the rate O(h2k+1) when we use polynomials of degree at
most k ≥ 0 for all variables. To do so, we begin with the setting of Corollary 3.2 and
refine a few estimates through a duality argument. Accordingly, we keep the same
notations as in Corollary 3.2, and tacitly assume throughout this section that the
assumptions in the corollary hold. In particular, recall that R(E) is the eigenspace
of T corresponding to an eigenvalue μ and μh,j are the discrete eigenvalues near μ.
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Theorem 4.1. Suppose there is an sμ > 1/2 such that

(20) ‖�q f‖Hsμ (Ω) + ‖uf‖Hsμ+1(Ω) ≤ C‖f‖L2(Ω), ∀f ∈ R(E).

Then there is an hμ > 0 such that for all h < hμ,

(21) |μ− μh,j | ≤ Chmin(sμ,k+1)+min(sμ,k).

This is the main result of this section, and in the remainder of this section, we
prove it. As we shall see, we are able to apply the needed duality techniques for this
proof, thanks to properties of the projection operator Πh(�q, u) of [10], recalled in
Subsection 2.1. Given any eigenfunction e ∈ R(E), let us denote its corresponding
flux by

(22) �qe = −α�∇e.

Then ΠW

h e is the component of Πh(�qe, e) in Wh. Define

Jhe = EhΠ
W

h e

for all e in R(E). Using these notations, we begin the analysis with the following
two lemmas.

Lemma 4.2. Eh is a self-adjoint operator in L2(Ω).

Proof. By Lemma 2.2, Th is self-adjoint. It is well known that the spectral projec-
tion of any normal operator is self-adjoint [15]. Since Eh is the spectral projection
of Th, the lemma follows. �

From now on, to simplify notation, let us abbreviate the norm ‖·‖L2(Ω) to simply

‖ · ‖, whenever it cannot be confused with the previously defined L2(Ω)-operator
norm, which we continue to also denote by ‖ · ‖.
Lemma 4.3. Suppose (20) holds. Then, there exists an h0 > 0 such that for
all h < h0, the operators Jh : R(E) �−→ R(Eh) and Eh|R(E)

: R(E) �−→ R(Eh) are

bijections, and there are h-independent constants Cτ,j such that

Cτ,1‖e‖ ≤ ‖Jhe‖ ≤ Cτ,2‖e‖,(23)

Cτ,3‖e‖ ≤ ‖Ehe‖ ≤ ‖e‖,(24)

for all e in R(E).

Proof. By item 4 of Corollary 3.2, the gap between R(E) and R(Eh) becomes less
than one when h is small enough and, consequently, dim(R(E)) = dim(R(Eh)) (see,
e.g., [14, Lemma 221]). Therefore, to prove the stated bijectivity, we only need to
prove injectivity.

In preparation, we recall that by Lemma 4.2, Eh is self-adjoint, and by Corol-
lary 3.2(2), Eh is a projector. Hence Eh is an orthogonal projector. Orthogonal
projectors have unit norm, hence

(25) ‖Ehv‖ ≤ ‖v‖, ∀v ∈ L2(Ω).

A second preparatory inequality we need is

(26) ‖e−ΠW

h e‖ ≤ Cτh
r‖e‖, ∀e ∈ R(E),

with r = min(sμ, k + 1). This is a consequence of (11b), by which

‖e−ΠW

h e‖ ≤ Cτh
r(|e|Hsμ(Ω) + |�qe|Hsμ(Ω)),

where �qe is as in (22). Thus, (26) follows from the regularity assumption (20).
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Let us now prove (23), beginning with the lower bound

‖Jhe‖ ≥ ‖e‖ − ‖e− EhΠ
W

h e‖
= ‖e‖ − ‖(Ee− Ehe) + Eh(e−ΠW

h e)‖ since e ∈ R(E)

≥ ‖e‖ − ‖(E − Eh)e‖ − ‖e−ΠW

h e‖ by (25)

≥ (1− Cτh
r)‖e‖ by (26) and (19).

Therefore, the lower bound follows by choosing small enough h. The injectivity
of Jh is an obvious consequence of this lower bound. The upper bound of (23)
immediately follows by combining (26),

‖ΠW

h e‖ ≤ (1 + Cτh
r)‖e‖ ∀e ∈ R(E),

with (25).
To finish the proof, note that the upper bound in (24) is already proved in (25).

The lower bound in (24) (and the consequent injectivity of Eh on R(E)) follows by
an simpler argument similar to the above. �

Proof of Theorem 4.1. As a first step, we define two finite dimensional operators
whose eigenvalues are μ and μh,j . Let h be so small that we can conclude by

Lemma 4.3 that J−1
h : R(Eh)→R(E) exists. Set T̂ =T |R(E) and T̂h=J−1

h ThJh|R(E).
Both the operators

T̂ : R(E) → R(E) and T̂h : R(E) → R(E)

are finite dimensional. T̂ has μ as its (only) eigenvalue of of multiplicity m. More-

over, it is easy to see that μh,j ’s are the eigenvalues of T̂h. Hence, by the Bauer-Fike
theorem [3],

(27) |μ− μh,j | ≤ C‖T̂ − T̂h‖.

The remainder of the proof bounds the above right-hand side appropriately.
To this end, let f ∈ R(E), and consider (T̂ − T̂h)f . Then,

Cτ,1‖(T̂ − T̂h)f‖ ≤ ‖Jh(T̂ − T̂h)f‖ by (23) of Lemma 4.3

= ‖EhΠ
W

h Tf − ThEhΠ
W

h f‖
= ‖Eh(Π

W

h Tf − ThΠ
W

h f)‖ as Th and Eh commute.(28)

We bound the norm in (28) by duality, as follows. By Lemma 4.3, any gh in R(Eh)
can be written as Ehg for some g in R(E). Therefore,

‖Eh(Π
W

h Tf − ThΠ
W

h f)‖ = sup
gh∈R(Eh)

(Eh(Π
W

h Tf − ThΠ
W

h f), gh)

‖gh‖

= sup
g∈R(E)

(Eh(Π
W

h Tf − ThΠ
W

h f), Ehg)

‖Ehg‖

≤ 1

Cτ,3
sup

g∈R(E)

(ΠW

h Tf − ThΠ
W

h f, Ehg)

‖g‖ .(29)

Note that to obtain the numerator above, we used the self-adjointness of Eh given
by Lemma 4.2, while to obtain the denominator, we used Lemma 4.3.
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It will now be convenient to split the numerator in (29) into several terms. With
f and g in R(E), we write

(ΠW

h Tf − ThΠ
W

h f, Ehg) = (ΠW

h Tf − Thf, Ehg) + (Th(f −ΠW

h f), Ehg)

= t1 + t2 + t3 + t4

where

t1 = (ΠW

h Tf − Thf, Ehg − g),

t2 = (ΠW

h Tf − Thf, g),

t3 = (Th(f −ΠW

h f), Ehg − g),

t4 = (Th(f −ΠW

h f), g),

and proceed to estimate the ti’s, beginning with t1. Let r1 = min(sμ, k + 1). We
use Theorem 2.1 and (19) to get

t1 = (ΠW

h uf − uf
h, (Eh − E)g)

≤ Cτh
r1(|uf |Hr1 (Ω) + |qf |Hr1(Ω))h

r1‖g‖
≤ Cτh

2r1‖f‖ ‖g‖,

by (20).
Next, for t2, we use a previously known duality identity [10, Lemma 4.1] by

which

t2 = (ΠW

h uf − uf
h, g) = (c (�q f − �q f

h ), Π
V

h �q
g − �q g) + (�q f −ΠV

h �q
f , �∇ug − �∇wh)Th

for any wh ∈ Wh. The first term on the right-hand side can be bounded by
Cτh

2r1‖f‖ ‖g‖ using (11) and Theorem 2.1. For the second term, we use the
standard result

inf
wh∈Wh

‖�∇ug − �∇wh‖ ≤ Chr0 |ug|Hr0+1(Ω)

with r0 = min(sμ, k), to get

t2 ≤ Cτh
2r1‖f‖ ‖g‖+ Cτh

r1(|uf |Hr1 (Ω) + |qf |Hr1 (Ω)) h
r0 |ug|Hr0+1(Ω)

≤ Cτ (h
2r1 + hr1+r0)‖f‖ ‖g‖

by the regularity assumption (20).
Now consider t3. Since T is a bounded operator in L2(Ω), by Theorem 3.1, we

have

(30) ‖Thv‖ ≤ Cτ‖v‖ ∀v ∈ L2(Ω).

Hence,

t3 = (Th(f −ΠW

h f), (Eh − E)g) ≤ Cτ‖f −ΠW

h f‖ Chr1‖g‖

by (19) and (20). To control f−ΠW

h f let us first note that uf = μf since f ∈ R(E).
Hence absorbing the μ-dependence into Cτ , we can write

(31) ‖f −ΠW

h f‖ ≤ Cτh
r1(|uf |Hr1 (Ω) + |qf |Hr1 (Ω)).

Using the regularity assumption (20) again, we conclude that

t3 ≤ Ch2r1‖f‖ ‖g‖.
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Finally, consider t4. By Lemma 2.2, Th is self-adjoint, so

t4 = (f −ΠW

h f, ug
h)

= (f −ΠW

h f, ug
h − ug

h,k−1)(32)

where ug
k−1 ∈ L2(Ω) is the solution of the HDG method using polynomials of degree

k − 1 in place of k for all k ≥ 1, while when k = 0, we set ug
k−1 = 0. We may

introduce ug
k−1 in (32) because of (10b). By Theorem 2.1 and (20),

‖ug
h − ug

h,k−1‖ ≤ ‖ug
h − u‖+ ‖u− ug

h,k−1‖ ≤ Cτh
r0‖g‖.

Hence, using (31) also, we find that

t4 ≤ Cτh
r0+r1‖f‖ ‖g‖.

Combining the estimates for all ti to bound the right-hand side of (29), we find
from (28) that

‖(T̂ − T̂h)f‖ ≤ Cτh
r0+r1‖f‖.

Using this in (27) the proof is finished. �

5. The hybridized eigenproblem

The main advantage the HDG method possesses over other DG methods, in

source problems, is that one can eliminate (all) the interior variables (uf
h, �q

f
h ) to

obtain a single equation for the Lagrange multiplier ηfh . Since η
f
h is defined on mesh

faces of dimension n− 1, the reduced system for ηfh can be significantly smaller in
size for high degrees k. It is natural to ask if this reduction in system size can be
carried over to the eigenproblem. In this section we study this issue. The analysis
here is modeled after [9].

First, let us review the above mentioned elimination result for the source prob-

lem. Define local solution operators �Q : Mh → Vh, U : Mh → Wh, �QW : L2(Ω) → Vh,
UW : L2(Ω) → Wh, element by element, by the following two systems: For any K
in Th,

(c �Qμ,�r)K − (Uμ,∇·�r)K = −〈μ,�r · �n〉∂K for all �r ∈ Vh,(33a)

(w,∇· �Qμ)K + 〈τ (Uμ− μ), w〉∂K = 0 for all w ∈ Wh(33b)

and

(c �QWf, �r)K − (UWf,∇ ·�r)K = 0 for all �r ∈ Vh,(34a)

(w,∇ · �QWf)K + 〈τUWf, w〉∂K = (f, w)K for all w ∈ Wh.(34b)

The properties of these operators are amply discussed in [7, 8] and will not be

repeated. Let ah(η, μ) = (c �Qη, �Qμ)Th
+ 〈τ (Uη − η), (Uμ− μ)〉∂Th

and bh(μ) =
(f,Uμ)Th

.

Theorem 5.1 (The reduced source problem; see [8, Theorem 2.1]). The functions

�q f
h ∈ Vh, u

f
h ∈ Wh, and ηfh ∈ Mh satisfy (7) if and only if ηfh is the unique function

in Mh satisfying

ah(η
f
h , μ) = bh(μ) for all μ ∈ Mh,(35)

�q f
h = �Qηfh + �QWf and uf

h = Uηfh + UWf.(36)
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Our aim is to obtain an analogue of Theorem 5.1 for the eigenproblem. To this
end, we will need the next lemma. Let

dKhτ = 1 + (τmax
K hK)−1/2, cKhτ = 1 + (τ∗KhK)1/2, ‖μ‖2h,K = ‖μ‖2L2(∂K)

|K|
|∂K| .

We assume throughout this section there is a mesh-independent C∗ > 0 such that

(dKhτ )
2hK ≤ C∗ and cKhτ ≤ C∗.

This certainly holds for the most commonly used choice of τ ≡ 1.

Lemma 5.2. The local solution operators satisfy the following bounds: There are
positive constants C0 and C1 (independent of hK) such that

‖UWf‖L2(K) ≤ C0(d
K
hτ )

2h2
K‖f‖L2(K) ∀ f ∈ L2(K),(37)

‖Uμ‖L2(K) ≤ C1c
K
hτ‖μ‖h,K ∀ μ ∈ Mh.(38)

Moreover, whenever 0 < κ < 1/(C0(d
K
hτ )

2h2
K), the operator I − κUW is invertible

and

‖(I − κUW )−1f‖L2(K) ≤
1

1− κC0(dKhτ )
2h2

K

‖f‖L2(K) ∀ f ∈ L2(K).(39)

Proof. The estimates (37) and (38) are proved in [7]. To prove (39), we use (37),
by which

‖κUWf‖L2(K) ≤ γ‖f‖L2(K),

where γ = κ(dKhτ )
2C0h

2
K . By the given assumption γ < 1, so the L2(Ω)-operator

norm of κUW is less than one. Consequently, I − κUW is invertible and the norm of
the inverse is less than (1− γ)−1. �
Theorem 5.3. Let 0 < C3 < (C0C∗)

−1 and let λh be any positive number less than
C3/h. Then I − λhUW is invertible, and moreover, λh satisfies

(40) ah(ηh, μ) = λh ((I − λhUW )−1Uηh,Uμ)Th
∀μ ∈ Mh

with some nontrivial ηh in Mh, if and only if the number λh and the functions

(41) ηh, uh = (I − λhUW )−1Uηh, and qh = �Qηh + λh
�QWuh

together solve the HDG eigenproblem (14).

Proof. The argument proceeds as in [9], so we will be brief. Setting f = λhuh in (7)
and applying Theorem 5.1, (36), we get uh = Uηh + UW (λhuh). Hence,

(42) uh = (I − λhUW )−1Uηh,

where the inverse exists by Lemma 5.2, whenever λh < 1/(C0(d
K
hτ )

2h2
K). Note

that the later inequality is satisfied whenever λh < C3/h because λhC0d
K
hτh

2
K ≤

λhC0C∗hK ≤ λhC0C∗h < C3C0C∗ < 1. Now, using (42) in the right-hand side
of (35) and proceeding as in [9], the proof is finished. �

Theorem 5.3 is the analogue of Theorem 5.1 for the eigenproblem. It shows,
roughly speaking, that the reduced form of the eigenproblem, namely (40), does
not lose eigenvalues up to O(1/h). In particular, the physically important lower
range of the spectrum is preserved. The difficulty with (40) is that in spite of being
a smaller system (14), it is a nonlinear eigenvalue problem. Fortunately, the result
we present next shows that good initial guesses for the nonlinear eigenproblem (40)
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can be calculated by solving a standard symmetric generalized eigenproblem. This
standard eigenproblem is to find an eigenvalue λ̃h > 0 and a corresponding eigen-
function η̃h �≡ 0 in Mh satisfying

(43) ah(η̃h, μ) = λ̃h(Uη̃h,Uμ)Th
∀μ ∈ Mh

and algorithms for solving (43) are well developed. Although λ̃h may not equal λh,
it is a good approximation to λh (see Theorem 5.4) and hence can be used as an
initial iterate for iterative algorithms (such as those studied in [9]) for the nonlinear
eigenproblem.

Theorem 5.4. Let 0 < C3 < (C0C∗)
−1 and consider any eigenvalue λh of (14)

satisfying λh < C3/h. Then there are two constants, h0 > 0 (depending on λh)

and C > 0 (independent of λh), such that for all h ≤ h0, there is an eigenvalue λ̃h

of (43) satisfying

(44)
|λh − λ̃h|

λh
≤ C λhλ̃h h.

Proof. The idea, as in [9], is to compare two operators which have λh and λ̃h as

eigenvalues. The operators are S
(κ)
h : Mh → Mh and S̃h: Mh → Mh defined by

ah(S
(κ)
h μ, γ) = ((I − κUW )−1Uμ,Uγ)Th

∀γ ∈ Mh,

ah(S̃hμ, γ) = (Uμ,Uγ)Th
∀γ ∈ Mh.

We will use S
(κ)
h with κ = λh, noting that the inverse of I − λhUW appearing

in the definition of S
(λh)
h exists since λh < C3/h (due to Lemma 5.2; see also

proof of Theorem 5.3). Both operators are self-adjoint in the ah(·, ·)-inner product:
The self-adjointness of S̃h is obvious. It is also easy to see that (f,UWg)K =

(c �QWg, �QWf)K + 〈τUWf,UWg〉∂K due to (33), so UW in self-adjoint in the L2(Ω)-

inner product. Therefore, S
(λh)
h is self-adjoint in the ah(·, ·)-inner product.

Now, (40) and (43) imply, respectively, that

λ−1
h ∈ σ(S

(λh)
h ) and λ̃−1

h ∈ σ(S̃h),

hence, by Weyl’s theorem [19] on eigenvalues of self-adjoint operators, we conclude
that

(45)
∣∣∣λ−1

h − λ̃−1
h

∣∣∣ ≤ ‖S(λh)
h − S̃h‖a ≡ sup

0�=γ,μ∈Mh

ah((S
(λh)
h − S̃h)γ, μ)

ah(γ, γ)1/2ah(μ, μ)1/2
.

In the remainder of the proof, we bound the right-hand side.
By Lemma 5.2, choosing h0 appropriately small, we have, for all h ≤ h0,

ah((S
(λh)
h − S̃h)γ, μ) = (λhUW (I − λhUW )−1Uγ,Uμ)

≤ λhC0C∗hK

1− λhC0C∗hK
‖Uγ‖ ‖Uμ‖ by (37) and (39),

≤ Cλhh‖Uγ‖ ‖Uμ‖
≤ Cλhh‖γ‖h‖μ‖h by (38),

where ‖μ‖2h =
∑

K ‖μ‖2h,K . We now use the Poincaré-type estimate [7, Theo-

rem 3.4], ‖μ‖2h ≤ Cah(μ, μ) to conclude that

ah((S
(λh)
h − S̃h)γ, μ) ≤ Cλh h ah(γ, γ)

1/2ah(μ, μ)
1/2.

Returning to (45) and using this estimate, the theorem is proved. �
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6. Numerical experiments

In this section, we present numerical results to illustrate the theoretical results
of the previous sections. We consider model eigenproblems on a square and an
L-shaped domain and compute the spectral approximations using the HDG dis-
cretization. The model problems are the same as those considered in [9] so as
to facilitate comparison with the HRT mixed method. We also present a local
postprocessing technique that enhances the eigenfunction and eigenvalue accuracy
beyond the convergence orders predicted by the theory. We begin by describing
this postprocessing in the next subsection and present the numerical results in the
later subsections.

6.1. Local postprocessing. To postprocess the eigenfunction, we are motivated
by the theoretical results that show that the approximate gradient �qh converges at
the same order as the approximate eigenfunction uh. Accordingly, following [18],
we define (element by element) the postprocessed eigenfunction u∗

h ∈ Pk+1(K) by

(�∇u∗
h, �∇w)K = −(c �qh, �∇w)K , ∀w ∈ Pk+1(K),(46a)

(u∗
h, 1)K = (uh, 1)K ,(46b)

for all elementsK ∈ Th. A convergence theory for this postprocessing (that predicts
that u∗

h converges at the rate O(hk+2) for k ≥ 1) is available for solutions of the
source problem [18] and for the HRT mixed eigenproblem [9]. Next, we define a
postprocessed eigenflux �q ∗

h as the unique element of [Pk(K)]n + �xPk(K) satisfying

〈(�q ∗
h − q̂h) · �n, μ〉F = 0, ∀μ ∈ Pk(F ), ∀F ⊆ ∂K,

(�q ∗
h − �qh, �v )K = 0, ∀�v ∈ [Pk−1(K)]d if k ≥ 1,

(47)

for all elements K ∈ Th. Note that �q ∗
h is H(div,Ω)-conforming.

Using this postprocessed eigenfunction and eigenflux, we are now motivated by
the Rayleigh quotient to define the following expression for computing an approxi-
mate eigenvalue:

(48) λ∗
h =

(α�∇u∗
h,

�∇u∗
h)Th

+ 〈�q ∗
h · �n, u∗

h〉∂Th

(u∗
h, u

∗
h)Th

.

As the numerical results below indicate, this postprocessed eigenvalue λ∗
h can be a

superior approximation to λh.

6.2. Square domain. We consider the domain Ω = (0, π) × (0, π). In this case,
the exact eigenvalues and eigenfunctions are given by λmn = m2 + n2 and umn =
sin(mx) sin(nx), respectively, for m,n ∈ N+. Clearly, the eigenfunctions are in-
finitely smooth, so the convergence rates should be limited only by the degrees of
the approximating polynomials. We obtain an initial mesh by subdividing Ω into
a uniform grid of 4 × 4 squares and splitting each square into two triangles by its
positively sloped diagonal. Successively finer meshes are obtained by subdividing
each triangle into four smaller triangles. The mesh at “level �” is obtained from the
initial mesh by � refinements. We compute the solution of the HDG eigenproblem
in each of these meshes. The results obtained are collected below.
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Table 1. Convergence of the approximate eigenvalues λh for τ = 1.

degree mesh first mode second mode fourth mode sixth mode
k � error order error order error order error order

0 4.49e-2 −− 1.26e-0 −− 3.03e-0 −− 4.58e-0 −−
1 3.45e-2 0.38 7.11e-1 0.82 1.86e-0 0.70 3.00e-0 0.61

0 2 2.05e-2 0.75 3.82e-1 0.90 1.07e-0 0.79 1.78e-0 0.75
3 1.11e-2 0.89 1.99e-1 0.94 5.84e-1 0.88 9.81e-1 0.86
4 5.74e-3 0.95 1.01e-1 0.97 3.06e-1 0.93 5.16e-1 0.93

0 5.97e-3 −− 1.40e-1 −− 7.35e-1 −− 1.77e-0 −−
1 8.44e-4 2.82 1.58e-2 3.14 9.52e-2 2.95 2.36e-1 2.91

1 2 1.10e-4 2.94 1.84e-3 3.11 1.11e-2 3.10 2.65e-2 3.15
3 1.39e-5 2.98 2.20e-4 3.06 1.32e-3 3.07 3.08e-3 3.10
4 1.75e-6 2.99 2.69e-5 3.03 1.61e-4 3.04 3.71e-4 3.06

0 1.38e-4 −− 3.65e-3 −− 4.15e-2 −− 1.27e-1 −−
1 4.53e-6 4.93 1.04e-4 5.13 1.26e-3 5.04 3.51e-3 5.18

2 2 1.43e-7 4.98 3.12e-6 5.06 3.82e-5 5.05 1.02e-4 5.10
3 4.50e-9 4.99 9.52e-8 5.03 1.17e-6 5.03 3.06e-6 5.06
4 1.41e-10 5.00 2.94e-9 5.02 3.60e-8 5.02 9.37e-8 5.03

Table 2. Convergence of the postprocessed eigenvalues λ∗
h for τ = 1.

degree mesh first mode second mode fourth mode sixth mode
k � error order error order error order error order

0 3.42e-1 −− 1.79e-0 −− 3.56e-0 −− 5.23e-0 −−
1 2.04e-1 0.75 1.13e-0 0.66 2.42e-0 0.55 3.69e-0 0.50

0 2 1.09e-1 0.90 6.40e-1 0.82 1.48e-0 0.71 2.28e-0 0.70
3 5.62e-2 0.96 3.40e-1 0.91 8.25e-1 0.84 1.28e-0 0.83
4 2.84e-2 0.98 1.75e-1 0.96 4.36e-1 0.92 6.78e-1 0.92

0 2.64e-3 −− 2.75e-2 −− 1.93e-1 −− 5.04e-1 −−
1 1.51e-4 4.12 1.03e-3 4.74 6.60e-3 4.87 1.20e-2 5.39

1 2 8.95e-6 4.08 4.88e-5 4.39 2.56e-4 4.69 3.79e-4 4.98
3 5.42e-7 4.05 2.65e-6 4.20 1.18e-5 4.44 1.57e-5 4.60
4 3.33e-8 4.02 1.54e-7 4.10 6.17e-7 4.25 7.73e-7 4.34

0 5.40e-5 −− 7.03e-4 −− 1.06e-2 −− 2.14e-2 −−
1 8.04e-7 6.07 9.39e-6 6.23 1.43e-4 6.20 2.14e-4 6.64

2 2 1.11e-8 6.18 1.09e-7 6.43 2.01e-6 6.16 2.73e-6 6.29
3 1.28e-10 6.44 1.32e-9 6.37 2.74e-8 6.20 3.34e-8 6.35
4 1.56e-12 6.35 2.19e-11 5.91 3.3e-10 6.38 2.88e-10 6.86

In Table 1, the error and order of convergence of the approximate eigenvalues
for τ = 1 is presented. We see that the approximate eigenvalues λh converge to the
exact values at the rate of O(h2k+1). This is in good agreement with the theoretical
result of Theorem 4.1. To compare with the HRT result, see [9, Table 1], which
shows that the HRT eigenvalues converge faster at the rate O(h2k+2).

Curiously, however, we found that the simple local postprocessing (48) can give
eigenvalues competitive with the HRT eigenvalues. In Table 2, we present the error
and order of convergence of the postprocessed eigenvalues λ∗

h. There is no change
in the convergence order for k = 0 as both the approximate and postprocessed
eigenvalues converge linearly. However, observe that when k ≥ 1, the postpro-
cessed eigenvalues converge at a faster rate of O(h2k+2). Presently, we do not have
a rigorous proof for this convergence rate. This seems to be the fastest rate we
can expect. Indeed, we also observed, in unreported experiments, that when the
postprocessing (48) is applied to the HRT method, no further improvement in the
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Table 3. Convergence of the approximate (uh) and postprocessed
(u∗

h) eigenfunctions for τ = 1.

eigenmode first fourth

degree mesh ‖u− uh‖Th
‖u− u∗

h‖Th
‖u− uh‖Th

‖u− u∗
h‖Th

k � error order error order error order error order

0 4.19e-2 −− 8.65e-2 −− 5.55e-1 −− 6.11e-1 −−
1 1.97e-2 1.09 2.72e-2 1.67 1.68e-1 1.73 1.91e-1 1.68

0 2 9.46e-3 1.06 1.03e-2 1.40 6.83e-2 1.30 7.27e-2 1.40
3 4.62e-3 1.03 4.65e-3 1.15 3.09e-2 1.14 3.14e-2 1.21
4 2.28e-3 1.02 2.27e-3 1.04 1.47e-2 1.07 1.47e-2 1.09

0 5.02e-2 −− 8.84e-3 −− 3.21e-1 −− 7.84e-2 −−
1 1.26e-2 2.00 1.14e-3 2.96 8.10e-2 1.99 9.23e-3 3.09

1 2 3.14e-3 2.00 1.44e-4 2.98 1.92e-2 2.07 1.13e-3 3.03
3 7.85e-4 2.00 1.82e-5 2.99 4.67e-3 2.04 1.39e-4 3.02
4 1.96e-4 2.00 2.28e-6 2.99 1.15e-3 2.02 1.72e-5 3.01

0 5.28e-3 −− 8.36e-4 −− 6.98e-2 −− 1.31e-2 −−
1 6.70e-4 2.98 5.29e-5 3.98 8.10e-3 3.11 7.26e-4 4.17

2 2 8.41e-5 2.99 3.32e-6 4.00 9.78e-4 3.05 4.37e-5 4.06
3 1.05e-5 3.00 2.07e-7 4.00 1.20e-4 3.02 2.70e-6 4.02
4 1.32e-6 3.00 1.30e-8 4.00 1.49e-5 3.01 1.68e-7 4.00

Table 4. Convergence of |λh − λ̃h| to 0 for τ = 1.

degree mesh first mode second mode fourth mode sixth mode
k � error order error order error order error order

0 6.29e-1 −− 2.83e-0 −− 6.65e-0 −− 8.95e-0 −−
1 2.70e-1 1.22 1.40e-0 1.01 3.36e-0 0.99 4.72e-0 0.92

0 2 1.25e-1 1.11 7.07e-1 0.99 1.72e-0 0.96 2.54e-0 0.89
3 5.99e-2 1.06 3.56e-1 0.99 8.85e-1 0.96 1.34e-0 0.92
4 2.93e-2 1.03 1.79e-1 0.99 4.50e-1 0.97 6.94e-1 0.95

0 6.21e-2 −− 5.26e-1 −− 1.85e-0 −− 3.33e-0 −−
1 1.41e-2 2.13 1.05e-1 2.33 3.38e-1 2.45 6.01e-1 2.47

1 2 3.37e-3 2.07 2.30e-2 2.19 6.70e-2 2.33 1.12e-1 2.42
3 8.23e-4 2.03 5.37e-3 2.10 1.47e-2 2.19 2.39e-2 2.24
4 2.03e-4 2.02 1.30e-3 2.05 3.44e-3 2.10 5.48e-3 2.12

0 3.23e-2 −− 2.09e-1 −− 5.86e-1 −− 9.78e-1 −−
1 8.11e-3 1.99 5.10e-2 2.03 1.32e-1 2.15 2.09e-1 2.23

2 2 2.04e-3 1.99 1.28e-2 2.00 3.28e-2 2.02 5.13e-2 2.03
3 5.12e-4 1.99 3.20e-3 2.00 8.20e-3 2.00 1.28e-2 2.00
4 1.28e-4 2.00 8.02e-4 2.00 2.05e-3 2.00 3.21e-3 2.00

convergence rate beyond the O(h2k+2)-rate was obtained. To conclude the discus-
sion on the postprocessing, see Table 3, where the error and order of convergence
of the approximate and postprocessed eigenfunctions is presented. We see that the
convergence rate of the approximate eigenfunctions is O(hk+1), while the conver-
gence rate of the postprocessed eigenfunctions is O(hk+2) for k ≥ 1 and O(hk+1)
for k = 0. These results illustrate that the local postprocessing is effective for
k ≥ 1 as it increases the convergence rate of both the eigenvalue and eigenfunction
approximations by one order.

In Table 4, we display the absolute value of difference between the approximate
eigenvalues λh and the perturbed eigenvalues λ̃h of Section 5, namely |λh− λ̃h|. We

see that the numbers λ̃h can serve as good approximations of λh. The difference
|λh− λ̃h| is seen to decrease with h at the rate O(h) for k = 0. This is in accordance
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Table 5. Convergence of the approximate eigenvalues λh for τ = h.

degree mesh first mode second mode fourth mode sixth mode
k � error order error order error order error order

0 1.42e-1 −− 1.72e-0 −− 3.76e-0 −− 5.45e-0 −−
1 3.74e-1 −1.39 2.01e-0 −0.22 4.15e-0 −0.14 5.82e-0 −0.09

0 2 4.33e-1 −0.21 2.09e-0 −0.05 4.27e-0 −0.04 5.91e-0 −0.02
3 4.48e-1 −0.05 2.11e-0 −0.01 4.30e-0 −0.01 5.93e-0 −0.01
4 4.52e-1 −0.01 2.11e-0 0.00 4.31e-0 0.00 5.94e-0 −0.00

0 1.29e-2 −− 2.45e-1 −− 1.31e-0 −− 2.47e-0 −−
1 4.44e-3 1.54 9.15e-2 1.42 5.57e-1 1.23 1.24e-0 0.99

1 2 1.38e-3 1.69 2.55e-2 1.84 1.76e-1 1.66 4.64e-1 1.42
3 3.62e-4 1.93 6.56e-3 1.96 4.73e-2 1.90 1.37e-1 1.76
4 9.15e-5 1.98 1.65e-3 1.99 1.20e-2 1.97 3.60e-2 1.93

0 1.81e-4 −− 6.85e-3 −− 7.60e-2 −− 2.19e-1 −−
1 1.57e-5 3.53 6.21e-4 3.46 7.18e-3 3.40 1.89e-2 3.54

2 2 1.25e-6 3.65 4.24e-5 3.87 4.93e-4 3.87 1.26e-3 3.90
3 8.23e-8 3.92 2.70e-6 3.97 3.15e-5 3.97 8.01e-5 3.98
4 5.21e-9 3.98 1.70e-7 3.99 1.98e-6 3.99 5.02e-6 3.99

Table 6. Convergence of the approximate eigenvalues λh for τ = 1/h.

degree mesh first mode second mode fourth mode sixth mode
k � error order error order error order error order

0 2.53e-1 −− 7.42e-1 −− 2.19e-0 −− 3.57e-0 −−
1 5.73e-1 −1.18 7.76e-1 −0.07 8.88e-1 1.30 6.80e-1 2.39

0 2 6.68e-1 −0.22 1.33e-0 −0.78 2.18e-0 −1.29 2.75e-0 −2.01
3 6.92e-1 −0.05 1.49e-0 −0.16 2.56e-0 −0.23 3.39e-0 −0.30

4 6.99e-1 −0.01 1.53e-0 −0.04 2.66e-0 −0.05 3.56e-0 −0.07

0 1.46e-2 −− 5.70e-2 −− 3.88e-1 −− 2.92e-1 −−
1 5.84e-3 1.32 1.95e-2 1.55 5.78e-2 2.75 9.51e-2 1.62

1 2 1.59e-3 1.88 6.75e-3 1.53 2.33e-2 1.31 3.05e-2 1.64
3 4.06e-4 1.97 1.80e-3 1.91 6.36e-3 1.87 8.70e-3 1.81
4 1.02e-4 1.99 4.57e-4 1.98 1.62e-3 1.97 2.24e-3 1.96

0 2.78e-4 −− 1.12e-3 −− 1.76e-2 −− 2.47e-2 −−
1 2.55e-5 3.45 1.82e-4 2.62 1.11e-3 3.99 2.10e-3 3.57

2 2 1.72e-6 3.89 1.51e-5 3.59 1.02e-4 3.44 1.42e-4 3.87
3 1.10e-7 3.97 1.00e-6 3.91 6.89e-6 3.89 9.97e-6 3.83
4 6.88e-9 3.99 6.34e-8 3.98 4.39e-7 3.97 6.40e-7 3.96

with the estimate of Theorem 5.3. However, the same difference decreases at the
rate O(h2) for k ≥ 1, which is one order higher than that predicted by Theorem 5.3.

These results show that by solving a standard generalized eigenproblem for λ̃h, we
obtain very effective initial iterates for nonlinear iterative algorithms to solve the
condensed nonlinear eigenproblem for λh. At the same time, we note that λ̃h by
itself does not converge to the exact eigenvalue λ at as fast a rate as λh.

Next, we examine the performance of the HDG method for different choices of
τ . In particular, we show the error and order of convergence of the approximate
eigenvalues for τ = h in Table 5 and for τ = 1/h in Table 6. We observe in both cases
that the approximate eigenvalues converge at the rate O(h2k). This convergence
rate is one order less than the convergence rate of the approximate eigenvalues for
τ = 1. A theoretical explanation for this phenomena follows from (11): When either
τ = h or τ = 1/h, one of the bounds in (11) deteriorate by one order in h. When

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1054 J. GOPALAKRISHNAN, F. LI, N.-C. NGUYEN, AND J. PERAIRE

Table 7. Convergence of the approximate (λh) and postprocessed
(λ∗

h) eigenvalues for the L-shaped domain problem.

eigenmode first third

degree mesh |λ− λh| |λ− λ∗
h| |λ− λh| |λ− λ∗

h|
k � error order error order error order error order

0 3.48e-0 −− 4.20e-0 −− 1.06e-9 −− 1.12e-9 −−
1 2.12e-0 0.72 2.71e-0 0.63 7.39e-0 0.52 8.10e-0 0.46

0 2 1.18e-0 0.84 1.56e-0 0.80 4.64e-0 0.67 5.21e-0 0.64
3 6.24e-1 0.92 8.34e-1 0.90 2.66e-0 0.80 3.02e-0 0.79
4 3.19e-1 0.97 4.29e-1 0.96 1.44e-0 0.89 1.64e-0 0.88

0 5.04e-1 −− 1.24e-1 −− 4.04e-0 −− 7.98e-1 −−
1 1.02e-1 2.31 5.93e-2 1.07 5.68e-1 2.83 4.43e-2 4.17

1 2 2.82e-2 1.85 2.36e-2 1.33 6.19e-2 3.20 2.35e-3 4.24
3 9.85e-3 1.52 9.37e-3 1.33 7.10e-3 3.12 1.39e-4 4.08
4 3.77e-3 1.39 3.73e-3 1.33 8.50e-4 3.06 8.15e-6 4.09

0 6.93e-2 −− 5.78e-2 −− 3.03e-1 −− 3.91e-2 −−
1 2.35e-2 1.56 2.36e-2 1.29 7.73e-3 5.29 3.48e-4 6.81

2 2 9.32e-3 1.33 9.41e-3 1.33 2.19e-4 5.14 4.48e-6 6.28
3 3.73e-3 1.32 3.75e-3 1.33 6.50e-6 5.07 6.13e-8 6.19
4 1.49e-3 1.33 1.49e-3 1.33 1.98e-7 5.04 7.9e-10 6.28

these revised estimates are used in the ensuing eigenvalue convergence analysis, we
obtain the reduced O(h2k)-rate.

6.3. L-shaped domain. To study the limitations imposed by singularities of eigen-
functions, we consider the L-shaped domain Ω = Ω0\Ω1, where Ω0 ≡ (0, 2)× (0, 2)
and Ω1 ≡ (1, 2) × (1, 2) are the square domains. This domain has both singular
and smooth eigenfunctions, so offers an interesting example to study the changes
in convergence rates due to singularities. As before, we consider triangular meshes
that are successive uniform refinements of an initial uniform mesh. The initial mesh
is obtained as in the previous example using a 4× 4 uniform grid of Ω0, except we
now omit all triangles in Ω1.

Since Ω has a reentrant corner at the point (1, 1), some eigenfunctions are sin-
gular. Specifically, we may only expect Theorem 4.1 to hold with sλ = 2

3 − ε for
an arbitrarily small ε > 0 for singular eigenfunctions. For this L-shaped domain
the first eigenmode is singular and the corresponding eigenvalue is calculated in [4]
as λ1 = 9.63972384464540. It is interesting to note that the third eigenmode is
smooth and the third eigenvalue is known exactly as λ3 = 2π2.

The errors and resulting order of convergence for the approximate and post-
processed eigenvalues are reported in Table 7 for the first and third eigenmodes.
We observe that the convergence rate of the approximate smallest eigenvalue is at
most O(h4/3) which agrees with the a priori error estimate given by Theorem 4.1.
Furthermore, the postprocessed smallest eigenvalue also converges at the same or-
der 4/3 for k ≥ 1. However, for the third eigenmode, the approximate eigenvalue
converges at order O(h2k+1) and the postprocessed eigenvalue converges at order
O(h2k+2) for k ≥ 1.

6.4. Other polynomial spaces. So far the presentation focused on the case when
the same polynomial degree k is employed to approximate the solution, the flux,
and the trace. It is interesting to examine the case of mixed degrees. Since Mh

determines the size of the global system, let us hold Mh fixed as set in (6) consisting
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Table 8. Summary of convergence rates for smooth eigenfunctions

Method Convergence rates

λh λ∗
h �qh uh u∗

h

HDG, equal degree k ≥ 0, τ = 1 2k + 1 2k + 2 k + 1 k + 1 k + 2− δk0
HDG, equal degree k ≥ 1, τ = h 2k 2k + 2 k + 1 k k + 2
HDG, equal degree k ≥ 1, τ = 1/h 2k 2k k k + 1 k + 1
HDG, Case 1, k ≥ 1, τ = 1 2k − 1 2k k k k + 1
HDG, Case 2, k ≥ 1, τ = 1 2k − 1 2k − δk1 k k k + 1
Interior penalty DG [2], k ≥ 1 2k – – k + 1 –
HRT [9] (k ≥ 0, τ = 0) 2k + 2 2k + 2 k + 1 k + 1 k + 2

BDM (Case 1, k ≥ 1, τ = 0) 2k 2k + 2 k + 1 k k + 2

of functions of degree k on the element interfaces, while varying the degrees of Wh

and Vh as follows:

Case 1. [τ ]K ≥ 0 on ∂K for all K ∈ Th, k ≥ 1, and

Wh = {w : for every mesh element K,w|K ∈ Pk−1(K)},
Vh = {�v : for every mesh element K,�v|K ∈ Pk(K)n}.

Case 2. [τ ]K > 0 on ∂K for all K ∈ Th, k ≥ 1, and

Wh = {w : for every mesh element K,w|K ∈ Pk(K)},
Vh = {�v : for every mesh element K,�v|K ∈ Pk−1(K)n}.

These cases are interesting because the source problem (7) is uniquely solvable [8,
see eq. (3.5) and Proposition 3.2]. One can now follow the same techniques in [7,
Lemma 3.2 and Theorem 3.1] to obtain a bound for the norm of the operator UW ,
leading to results analogous to Theorem 5.3 for the reduced eigenproblem in both
of these cases. On the other hand, rigorous proofs of eigenvalue convergence rates
for general τ are yet to be developed for these cases: Ingredients (of Section 4)
that need generalization include the projection satisfying (11) and the τ -explicit
estimates (12)–(13).

Nevertheless, numerical results are not encouraging in these cases. Returning to
the eigenproblem on the square described in §6.2, the convergence of approximate
and postprocessed eigenvalues in both cases, obtained with τ = 1, are presented
in Tables 9–12. We observe that the approximate eigenvalues converge at the rate
O(h2k−1) in both cases. It also appears that the postprocessed eigenvalues converge
at the rate O(h2k), except in Case 2 with k = 1, where λ∗

h converges at the same
rate as λh. Comparing the results from approximation spaces of mixed and equal
degree, we find that the equal-degree spaces give two orders faster convergence rate,
so is clearly preferable in the eigenvalue context.

The special case of τ ≡ 0 deserves further remarks. In this case, if Vh is changed
to the (larger) piecewise Raviart-Thomas space, then the resulting HDG eigenprob-
lem is the same as the hybridized Raviart-Thomas eigenproblem. This case is fully
studied in [9]. Next, consider the special case of τ ≡ 0 in Case 1. Then, the HDG
formulation reduces to the (hybridized) mixed Brezzi-Douglas-Marini (BDM) eigen-
problem, for which a complete convergence theory is available in [5]. In particular,
it follows from their results that the BDM eigenvalue convergence rate is O(h2k).
However, the postprocessing of §6.1 provides a way to make the BDM eigenvalues
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more competitive: We observe, in Table 13, that postprocessed BDM eigenvalues
converge at O(h2k+2), the rate also observed for the HRT and HDG eigenvalues
after the same postprocessing.

We conclude with a summary of the convergence rates in Table 8. Its entries
are based on the observed and known convergence rates in various cases for the
first eigenpair of the square domain example in §6.2. Note that, as before, the
convergence of all functions is measured in the L2(Ω)-norm.

Table 9. Convergence of the approximate eigenvalues λh for (the
mixed-degree) Case 1 with τ = 1.

degree mesh first mode second mode fourth mode sixth mode
k � error order error order error order error order

0 1.12e-0 −− 2.68e-0 −− 4.90e-0 −− 7.05e-0 −−
1 5.78e-1 0.96 1.33e-0 1.01 2.50e-0 0.97 3.64e-0 0.95

1 2 2.93e-1 0.98 6.53e-1 1.03 1.23e-0 1.03 1.67e-0 1.12
3 1.48e-1 0.99 3.23e-1 1.02 6.05e-1 1.02 7.91e-1 1.08
4 7.41e-2 0.99 1.60e-1 1.01 3.00e-1 1.01 3.84e-1 1.04

0 3.41e-2 −− 1.54e-1 −− 5.39e-1 −− 8.13e-1 −−
1 4.72e-3 2.85 2.13e-2 2.85 7.93e-2 2.76 1.12e-1 2.85

2 2 6.18e-4 2.93 2.76e-3 2.95 1.03e-2 2.94 1.43e-2 2.98
3 7.90e-5 2.97 3.49e-4 2.98 1.30e-3 2.99 1.78e-3 3.00
4 9.99e-6 2.98 4.38e-5 2.99 1.62e-4 3.00 2.22e-4 3.01

0 5.81e-4 −− 4.88e-3 −− 3.56e-2 −− 5.23e-2 −−
1 1.99e-5 4.87 1.76e-4 4.80 1.31e-3 4.76 1.87e-3 4.80

3 2 6.44e-7 4.95 5.68e-6 4.95 4.25e-5 4.95 5.97e-5 4.97
3 2.04e-8 4.98 1.79e-7 4.99 1.33e-6 4.99 1.86e-6 5.00
4 6.43e-10 4.99 1.13e-8 3.99 4.16e-8 5.00 5.78e-8 5.01

Table 10. Convergence of the postprocessed eigenvalues λ∗
h for

(the mixed-degree) Case 1 with τ = 1.

degree mesh first mode second mode fourth mode sixth mode
k � error order error order error order error order

0 1.20e-1 −− 3.54e-1 −− 7.98e-1 −− 1.06e-0 −−
1 3.74e-2 1.68 9.45e-2 1.90 2.57e-1 1.64 1.98e-1 2.43

1 2 1.07e-2 1.81 2.51e-2 1.91 7.70e-2 1.74 3.22e-2 2.62
3 2.88e-3 1.89 6.55e-3 1.94 2.11e-2 1.86 6.26e-3 2.36
4 7.51e-4 1.94 1.68e-3 1.96 5.52e-3 1.94 1.39e-3 2.17

0 5.98e-3 −− 2.80e-2 −− 1.13e-1 −− 1.50e-1 −−
1 4.86e-4 3.62 2.22e-3 3.65 8.95e-3 3.66 1.21e-2 3.63

2 2 3.46e-5 3.81 1.54e-4 3.85 6.03e-4 3.89 8.41e-4 3.85
3 2.31e-6 3.91 1.00e-5 3.94 3.87e-5 3.96 5.40e-5 3.96
4 1.49e-7 3.95 6.39e-7 3.97 2.44e-6 3.99 3.39e-6 3.99

0 7.95e-5 −− 6.94e-4 −− 6.15e-3 −− 8.36e-3 −−
1 1.42e-6 5.80 1.25e-5 5.79 1.05e-4 5.87 1.46e-4 5.84

3 2 2.37e-8 5.91 2.04e-7 5.94 1.64e-6 6.00 2.24e-6 6.02
3 3.77e-10 5.97 3.23e-9 5.98 2.55e-8 6.01 3.45e-8 6.02
4 6.08e-12 5.95 5.04e-11 6.00 3.77e-10 6.08 5.14e-10 6.07
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Table 11. Convergence of the approximate eigenvalues λh for (the
mixed-degree) Case 2 with τ = 1.

degree mesh first mode second mode fourth mode sixth mode
k � error order error order error order error order

0 3.89e-1 −− 1.92e-0 −− 3.88e-0 −− 6.18e-0 −−
1 2.15e-1 0.85 1.19e-0 0.69 2.61e-0 0.57 3.88e-0 0.67

1 2 1.12e-1 0.94 6.60e-1 0.85 1.54e-0 0.76 2.35e-0 0.72
3 5.73e-2 0.97 3.47e-1 0.93 8.45e-1 0.87 1.31e-0 0.85
4 2.89e-2 0.99 1.78e-1 0.96 4.44e-1 0.93 6.89e-1 0.92
0 1.75e-2 −− 3.33e-1 −− 1.19e-0 −− 2.18e-0 −−
1 2.19e-3 3.00 4.28e-2 2.96 1.64e-1 2.86 3.39e-1 2.68

2 2 2.69e-4 3.03 5.08e-3 3.08 1.88e-2 3.12 3.83e-2 3.15
3 3.32e-5 3.02 6.12e-4 3.05 2.23e-3 3.08 4.44e-3 3.11
4 4.12e-6 3.01 7.50e-5 3.03 2.70e-4 3.04 5.32e-4 3.06
0 2.78e-4 −− 8.57e-3 −− 8.97e-2 −− 2.19e-1 −−
1 8.71e-6 4.99 2.52e-4 5.09 2.52e-3 5.15 5.67e-3 5.27

3 2 2.70e-7 5.01 7.54e-6 5.06 7.36e-5 5.10 1.60e-4 5.15
3 8.36e-9 5.01 2.30e-7 5.04 2.21e-6 5.06 4.75e-6 5.08
4 2.6e-10 5.01 7.08e-9 5.02 6.77e-8 5.03 1.44e-7 5.04

Table 12. Convergence of the postprocessed eigenvalues λ∗
h for

(the mixed-degree) Case 2 with τ = 1.

degree mesh first mode second mode fourth mode sixth mode
k � error order error order error order error order

0 3.77e-1 −− 1.87e-0 −− 3.80e-0 −− 6.24e-0 −−
1 2.13e-1 0.83 1.17e-0 0.68 2.56e-0 0.57 3.83e-0 0.70

1 2 1.12e-1 0.93 6.55e-1 0.83 1.53e-0 0.74 2.33e-0 0.72
3 5.72e-2 0.97 3.46e-1 0.92 8.42e-1 0.86 1.30e-0 0.84
4 2.89e-2 0.99 1.78e-1 0.96 4.43e-1 0.93 6.89e-1 0.92
0 2.26e-4 −− 1.95e-3 −− 1.01e-2 −− 2.36e-2 −−
1 3.18e-5 2.83 5.02e-4 1.96 1.66e-3 2.61 3.05e-3 2.95

2 2 2.58e-6 3.62 4.48e-5 3.48 1.34e-4 3.63 2.15e-4 3.83
3 1.80e-7 3.84 3.20e-6 3.81 1.08e-5 3.62 1.52e-5 3.82
4 1.18e-8 3.93 2.12e-7 3.92 7.40e-7 3.87 1.01e-6 3.92
0 4.92e-6 −− 1.20e-4 −− 3.98e-3 −− 1.11e-2 −−
1 4.93e-8 6.64 7.34e-7 7.35 1.77e-5 7.82 7.32e-5 7.25

3 2 5.53e-10 6.48 5.59e-9 7.04 1.44e-7 6.94 8.61e-7 6.41
3 5.63e-12 6.62 4.44e-11 6.97 1.69e-9 6.41 1.25e-8 6.11
4 1.04e-13 5.76 4.01e-13 6.79 2.40e-11 6.14 1.71e-10 6.19
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Table 13. Convergence of the postprocessed BDM eigenvalues λ∗
h

obtained using the implementation of mixed-degree Case 1 with
τ = 0.

degree mesh first mode second mode fourth mode sixth mode
k � error order error order error order error order

0 8.30e-4 −− 2.40e-2 −− 1.35e-1 −− 2.32e-1 −−
1 3.33e-5 4.64 1.17e-3 4.35 9.96e-3 3.76 1.47e-2 3.98

1 2 1.65e-6 4.33 6.63e-5 4.15 6.43e-4 3.95 9.44e-4 3.96
3 9.31e-8 4.15 3.98e-6 4.06 4.02e-5 4.00 5.92e-5 4.00
0 6.54e-5 −− 1.37e-3 −− 1.33e-2 −− 2.03e-2 −−
1 1.12e-6 5.86 2.62e-5 5.71 2.71e-4 5.62 4.76e-4 5.41

2 2 1.80e-8 5.97 4.31e-7 5.93 4.53e-6 5.90 8.60e-6 5.79
3 2.82e-10 5.99 6.82e-9 5.98 7.21e-8 5.98 1.39e-7 5.95
0 5.73e-7 −− 1.97e-5 −− 5.21e-4 −− 7.91e-4 −−
1 2.32e-9 7.95 2.30e-7 6.42 2.33e-6 7.80 3.66e-6 7.75

3 2 7.82e-12 8.21 9.08e-10 7.99 9.36e-9 7.96 1.47e-8 7.96
3 3.12e-14 7.97 1.89e-12 8.91 3.15e-11 8.22 5.24e-11 8.13
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