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We present a hybridizable discontinuous Galerkin method for the numerical solution the
incompressible Navier-Stokes equations. The method is devised by using the discontinuous
Galerkin approximation with a special choice of the numerical traces and a fully implicit
time-stepping method for temporal discretization. The HDG method possesses several
unique features which distinguish themselves from other discontinuous Galerkin methods.
First, it reduces the globally coupled unknowns to the approximate trace of the velocity and
the mean of the pressure on element boundaries, thereby leading to a signi�cant reduction
in the degrees of freedom. Second, it allows for pressure, vorticity and stress boundary
conditions to be prescribed on di�erent parts of the boundary. Third, it provides, for
smooth viscous-dominated problems, approximations of the velocity, pressure, and velocity
gradient which converge with the optimal order of k+1 in the L2-norm, when polynomials of
degree k � 0 are used for all components of the approximate solution. And fourth, it displays
superconvergence properties that allow us to use the above-mentioned optimal convergence
properties to de�ne an element-by-element postprocessing scheme to compute a new and
better approximate velocity. Indeed, this new approximation is exactly divergence-free,
H(div)-conforming, and converges with order k + 2 for k � 1 and with order 1 for k = 0
in the L2-norm. We present extensive numerical results to demonstrate the accuracy and
convergence properties of the method for a wide range of Reynolds numbers and for various
polynomial degrees.

I. Introduction

This paper presents a brief summary of the methodology and numerical results of our recent work35 on the
development of a hybridizable discontinuous Galerkin (HDG) method for the incompressible Navier-Stokes
equations. The HDG method presented in Ref. [35] is in turn an extension of our previous work6,8, 9, 30{34 on
convection-di�usion problems and Stokes 
ows. The method is devised by using the discontinuous Galerkin
approximation with a special choice of the numerical traces (or numerical 
uxes) for spatial discretization
and a fully implicit time-stepping method for temporal discretization. This results in fully implicit, high-
order accurate methods for simulation of incompressible 
ows. The HDG method not only retains all the
well-known advantages of the DG methods over classical continuous Galerkin �nite element, �nite di�erence
and �nite volume methods (see Ref. [4, 5, 14] and references therein), but also has some attractive features
that make them ideally suited for computational 
uid dynamics. In particular, the HDG method for the
incompressible Navier-Stokes equations have the following distinctive properties:

� Reduced number of degrees of freedom. Unlike all known other DG methods, which result in
a �nal system involving the degrees of freedom of the approximate velocity and pressure, the HDG
method produces a �nal system involving the degrees of freedom of the approximate trace of the velocity
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and the mean of pressure. Since the approximate trace is de�ned on the element borders only and
since the mean of pressure is a piece-constant function, the HDG method has signi�cantly less globally
coupled unknowns than other DG methods, especially for high-degree polynomial approximations.
Moreover, if the augmented Lagrangian method16 is used to solve the linearized system, the globally
coupled unknowns become the approximate trace of the velocity only. This large reduction in the
degrees of freedom leads to signi�cant savings for both computational time and memory storage.

� Optimal convergence. The HDG method provides an approximate velocity, pressure and velocity
gradient converging with the optimal order k + 1 in the L2-norm for viscous-dominated 
ows with
smooth solution; here k is the degree of the polynomials used to represent all components of the
approximate solution. This has to be contrasted with the fact that all known DG methods display the
suboptimal order of convergence of k for the approximate pressure and for the velocity gradient or the
vorticity. This includes, the �rst DG method for the Stokes1 and Navier-Stokes equations,21,22 the
family of local DG methods for the Navier-Stokes equations,11 and the particular cases of those DG
methods presented in Ref. [12, 39{41].

� Superconvergence and local postprocessing. The HDG method has superconvergence properties
for the velocity which, combined with the above-mentioned optimal converge properties, allows us to
use an element-by-element postprocessing, proposed in Ref. [9] for HDG methods for Stokes 
ow, to
obtain a new and better approximation of the velocity. Unlike the original velocity, the postprocessed
velocity is exactly divergence-free, H(div)-conforming, and converges with order k+2 for k � 1. Since
the postprocessing is performed at the element level, the computational cost involved in obtaining the
postprocessed velocity is very small.

� Uni�ed treatment of boundary conditions and the numerical 
uxes. The HDG method
entails a single numerical 
ux formulae containing both the viscous and inviscid numerical 
uxes.
Di�erent boundary conditions can be included in a single framework by de�ning appropriate numerical

uxes on the boundaries of the physical domain. The approach also allows for pressure, vorticity and
stress boundary conditions to be prescribed on di�erent parts of the boundary. This is very useful
when one would like to impose boundary conditions that are not necessarily compatible with the weak
formulation used to de�ne the numerical scheme.

In recent years, several discontinuous Galerkin (DG) methods2,11,12,21,24,25,27,37,40 have been developed
for numerically solving the incompressible Navier-Stokes equations. However, to the best knowledge of the
authors, no other known DG method for the incompressible Navier-Stokes equations has all the above four
properties of the HDG method. As we pointed out in Ref. [33], although there are DG methods which
provide velocities that are divergence-free inside each of the element; however, they do not lie on H(div)
since their normal component has no interelement continuity. Examples are the �rst DG method proposed
for the Stokes system1 and for the Navier-Stokes equations21 and, more recently, the DG methods for the
Stokes equations26 and for the Navier-Stokes equations.27 Note also that there are DG methods that do
provide velocities that are divergence-free and belong to H(div). A wide family DG methods with this
property were introduced in Ref. [11] for the Navier-Stokes equations, even though only a particular case
was treated in detail therein. Other particular cases were developed later in Ref. [12, 39{41]; see also the
DG method proposed in Ref. [3] for the Stokes equations. However, for these DG methods, their velocities
converge with order at most k+ 1 for k � 1, and their pressure and velocity gradient converge with order at
most k. Other DG methods19,20,24 aim to reduce the globally coupled degrees in a DG discretization to the
approximate trace of the �eld variables. However, unlike the HDG method, the approximate trace in these
methods resides in a C0(
) space. Therefore, none of these DG methods has the local conservativity and
superconvergence properties of the HDG method. As a consequence, see Ref. [10], the approximate pressure
and velocity gradient of these DG methods converge with order k and hence their approximate solution can
not be postprocessed to yield better velocity approximation.

The paper is organized as follows. In Section 2 we introduce the HDG method for numerically solving
the incompressible Navier-Stokes equations and extend the method to treat di�erent boundary conditions
involving derivatives of the velocity. In this section, we brie
y describe the implementation of the HDG
method and the local postprocessing proposed in Ref. [9]. In Section 3 we provide numerical results to
assess the convergence and accuracy of the method. Finally, in Section 4 we present some concluding
remarks.
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II. HDG Method for the Incompressible Navier-Stokes Equations

A. Governing Equations

We consider the time-dependent incompressible Navier-Stokes equations

@u

@t
� ��u+rp+r � (u
 u) = f ; in 
� (0; T ];

r � u = 0; in 
� (0; T ];
u = g; on @
� (0; T ];
u = u0; on 
� ft = 0g:

We introduce the velocity gradient tensor L = ru and the identity tensor I, and rewrite the above system
as a �rst order system of equations

L�ru = 0; in 
� (0; T ];
@u

@t
+r � (��L + pI + u
 u) = f ; in 
� (0; T ];

r � u = 0; in 
� (0; T ];
u = g; on @
� (0; T ];
u = u0; on 
� ft = 0g:

(1)

where 
 is a polygonal domain in Rd with Lipschitz boundary @
, T is the �nal time, and � is a kinematic
viscosity. Here u and p are velocity vector and pressure, respectively, and f is a known body force. It is
assumed that the prescribed boundary velocity g satis�es the incompressibility constraint

R
@

g �n = 0. The

pressure is made unique by requiring that
R



p = 0.

To describe the HDG method for solving the above system, we follow the notation used in.9,32 We denote
by Th a collection of disjoint regular elements K that partition 
 and set @Th := f@K : K 2 Thg. For an
element K of the collection Th, F = @K \ @
 is the boundary face if the d � 1 Lebesgue measure of F is
nonzero. For two elements K+ and K� of the collection Th, F = @K+ \ @K� is the interior face between
K+ and K� if the d� 1 Lebesgue measure of F is nonzero. We denote by Eoh and E@h the set of interior and
boundary faces, respectively. We set Eh = Eoh [ E@h . Let n+ and n� be the outward unit normal vectors on
two neighboring elements K+ and K�, respectively. We use (G�;v�; q�) to denote the traces of (G;v; q)
on F from the interior of K�, where G;v; and q are second-order tensorial, vectorial, and scalar functions,
respectively. Then, we de�ne the jumps [[�]] as follows. For F 2 Eoh, we set

[[Gn]] = G+n+ + G�n�

[[v � n]] = v+ � n+ + v� � n�

[[qn]] = q+n+ + q�n�:

Here � is either � or 
 which denote the usual dot product and tensor product, respectively.
Let Pk(D) denote the space of polynomials of degree at most k on a domain D and let L2(D) be the space

of square integrable functions on D. We set Pk(D) = [Pk(D)]d, Pk(D) = [Pk(D)]d�d, L2(D) = [L2(D)]d,
and L2(D) = [L2(D)]d�d. We introduce the following discontinuous �nite element approximation spaces for
the gradient, velocity, and pressure:

Gh = fG 2 L2(Th) : GjK 2 Pk(K); 8 K 2 Thg;
Vh = fv 2 L2(Th) : vjK 2 Pk(K); 8 K 2 Thg;
Ph = fq 2 L2(Th) : qjK 2 Pk(K); 8 K 2 Thg:

In addition, we introduce a �nite element approximation space for the approximate trace of the velocity

Mh = f� 2 L2(Eh) : �jF 2 Pk(F ); 8 F 2 Ehg;

and set Mh(g) = f� 2 Mh : � = P@g on @
g, where P@ is the L2(@
) projection into the space
f�j@
; 8� 2 Mhg. Note that Mh consists of functions which are continuous inside the faces (or edges)
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F 2 Eh and discontinuous at their borders. We further denote by 	h the set of functions in L2(@Th) that
are constant on each @K for all elements K

	h = fr 2 L2(@Th) : r 2 P0(@K); 8 K 2 Thg:

The mean of our approximate pressure will belong to this space. Here the mean is de�ned as follows. For a
given function q in L2(@Th), the mean of q on @K is given by qj@K = 1

j@Kj
R
@K

q. Obviously, we have q = q

for any q in 	h.
Finally, we de�ne various inner products for our �nite element spaces. We write (w; v)Th

:=
P
K2Th

(w; v)K ;
where (w; v)D denotes the integral of w v over the domain D � Rd for w; v 2 Ph. We also write (w;v)Th

:=Pd
i=1(wi; vi)Th

and (N;Z)Th
:=
Pd
i;j=1(Nij ;Zij)Th

; forw;v 2 Vh and N;Z 2 Gh. We then write h�; �i@Th
:=P

K2Th
h�; �i@K and h�; �i@Th

:=
Pd
i=1h�i; �ii@Th

; for �; � 2 Mh, where h�; �iD denotes the integral of � �
over the domain D � Rd�1.

B. Fully Discrete System

We directly discretize the system (1) in time by using the Backward-Euler method and in space by using
the HDG method proposed in Ref. [9, 32]. In particular, we �rst compute

(u0
h;v)Th

= (u0;v)Th
; 8v 2 Vh;

at time level t0 = 0. At time level tn =
Pn
j=1 �tj we seek an approximation (Lnh;u

n
h; p

n
h; bunh; �nh) 2 Gh �

Vh � Ph �Mh(g)�	h such that

(Lnh;G)Th
+ (unh;r � G)Th

� hbunh;Gni@Th
= 0;� unh

�tn
;v
�
Th

+ (�Lnh � pnhI� unh 
 unh;rv)Th

+ h(��Lnh + pnhI + bunh 
 bunh)n+ sh(unh; bunh);vi@Th
= (f ;v)Th

+
�un�1

h

�tn
;v
�
Th
;

�(unh;rq)Th
+ hbunh � n; q � qi@Th

= 0;

pnh � �nh;  

�
@Th

= 0;

h(��Lnh + pnhI + bunh 
 bunh)n+ sh(unh; bunh);�i@Th
= 0;
bunh � n;  �@Th
= 0;

(pnh; 1)Th
= 0;

(2)

for all (G;v; q;�;  ) 2 Gh�Vh�Ph�Mh(0)�	. Here sh(unh; bunh) is the stabilization vector-valued function
which has the form

sh(unh; bunh) = S(unh; bunh)(unh � bunh); (3)

where S(unh; bunh) is the stabilization tensor which may depend on unh and bunh.
The choice of the stabilization tensor S(unh; bunh) is crucial since it does have an important e�ect on both

the stability and accuracy of the method. Following Ref. [30, 31], we select the stabilization tensor S of the
form

S =

 
� 0
0 �

!
;

where � is some positive constant de�ned on Eh and typically chosen such that

� � �

‘
+ junhj: (4)

Here ‘ is a representative length scale and junhj is the magnitude of the approximate velocity. This choice
is based on dimensional analysis which requires that � has the same dimension unit as the velocity and the
ratio �=‘.

We note that using higher-order backward di�erent formulas (BDF) or diagonally implicit Runge-Kutta
methods would yield a discrete system similar to (2). As a result, the HDG method for spatial discretization
can be used with these implicit high-order time-stepping schemes to numerically solve the time-dependent
incompressible Navier-Stokes system (1). In fact, we employ the second-order and third-order BDF schemes
to discretize the time derivative for our numerical examples presented in Section 3.
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C. Implementation

In the remainder of this section, we shall drop the superscript n in the approximate solution to simplify the
notation. We consider the Newton-Raphson method for solving the nonlinear system (2). Given the mth

current iterate (Lmh ;u
m
h ; p

m
h ; bumh ; �mh ), we �nd an increment (�Lmh ; �u

m
h ; �p

m
h ; �bumh ; ��mh ) 2 Gh � Vh � Ph �

Mh(0)�	h such that

(�Lmh ;G)Th
+ (�umh ;r � G)Th

� h�bumh ;Gni@Th
= r1(G);��umh

�t
;v
�
Th

+ (��Lmh � �pmh I� �umh 
 umh � umh 
 �umh ;rv)Th

+ h(���Lmh + �pmh I + �bumh 
 bumh + bumh 
 �bumh )n;vi@Th

+ h@1sh(umh ; bumh )�umh + @2sh(umh ; bumh )�bumh ;vi@Th
= r2(v);

�(�umh ;rq)Th
+ h�bumh � n; qi@Th

= r3(q);

�pmh � ��mh ;  

�
@Th

= r4( );

h(���Lmh + �pmh I + �bumh 
 bumh + bumh 
 �bumh )ni@Th

+ h@1sh(umh ; bumh )�umh + @2sh(umh ; bumh )�bumh ;�i@Th
= r5(�);


�bumh � n;  �@Th
= r6( );

(�pmh ; 1)Th
= 0;

(5)

for all (G;v; q;�;  ) 2 Gh � Vh � Ph �Mh(0) � 	, where the right-hand side residuals are obtained by
substituting the current iterate into (2). Note that @1sh and @2sh denote the partial derivatives of sh(�; �)
with respect to the �rst and second arguments, respectively.

At �rst sight, the system (5) appears very expensive to solve since it involves too many unknowns.
However, by using the hybridization technique proposed in Ref. [32] we can reduce it to solving a global
linear system in terms of (�bumh ; ��mh ) only. In particular, the �rst four equations of (5) de�ne the local solver
which can be used to eliminate (�Lmh ; �u

m
h ; �p

m
h ) by inserting them into the last three equations of (5). This

results in the reduced system in terms of (�bumh ; ��mh ). Once (�bumh ; ��mh ) is obtained by solving the global
reduced system, (�Lmh ; �u

m
h ; �p

m
h ) can be computed inexpensively in an element-by-element fashion. Since

�bumh is de�ned on the element faces and ��mh has one degree of freedom per element, the HDG method reduces
signi�cantly the number of the globally coupled unknowns. In practice, we implement the HDG method
by using the augmented Lagrangian approach16 which involves a sub-iteration of solving for the degrees of
freedom of �bumh only. We refer to Ref. [32] for detailed implementation aspects of the HDG method.

D. Local Postprocessing

We apply the element-by-element postprocessing proposed in Ref. [9] to obtain a new approximate velocity
which is exactly divergence-free and H(div)-conforming. It is important to note that we need to perform
the local postprocessing only at those time levels for which an enhanced velocity approximation is desired.

In the three dimensional case, we de�ne the postprocessed approximate velocity u?h on the tetrahedron
K 2 Th as the element of Pk+1(K) such that

h(u?h � buh) � n; �iF = 0 8 � 2 Pk(F ); (6a)

h(n�r)(u?h � n)� n� ( ffLthggn); (n�r)�iF = 0 8 � 2 Pk+1(F )?; (6b)

for all faces F of K, and such that

(u?h � uh;rw)K = 0 8 w 2 Pk(K); (6c)
(r� u?h �wh; (r� v) BK)K = 0 8 v 2 Sk(K): (6d)

In (6b),
Pk+1(F )? := f� 2 Pk+1(F ) : h�; e�iF = 0; 8e� 2 Pk(F )g;
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n�r is the tangential gradient and the function ffLthgg is the single-valued function on Eh equal to ((Lth)+ +
(Lth)�)=2 on the set Eh n @
 and equal to Lth on @
. In (6d),

wh := (L32h � L23h;L13h � L31h;L21h � L12h)

is the approximation to the vorticity and BK is the so-called symmetric bubble matrix introduced in,7 namely,

BK :=
3X
‘=0

�‘�3�‘�2�‘�1r�‘ 
r�‘;

where �i are the barycentric coordinates associated with the tetrahedron K, the subindices being counted
modulo 4. Finally, Sk(K) :=

Pk
‘=1 S‘(K) where S‘ is the space of vector-valued homogeneous polynomials

v of degree ‘ such that v � x = 0.28,29

In the two dimensional case, the postprocessing is de�ned by the above equations if n � r is replaced
by the tangential derivative n2 @1 + n1 @2, n � a is replaced by n1a2 � n2a1, if r � u is replaced by
r� u := @1u2 � @2u1, and if equation (6d) is replaced by

(r� u?h � wh; w bK)K = 0 8 w 2 Pk�1(K);

where bK := �0�1�2 and wh := L21h � L12h.

E. Other Boundary Conditions

We end this section by extending the method to treat boundary conditions of the form

Bn = gN ; on @
N ; (7)

where @
N is a part of the boundary @
 such that @
N [ @
D = @
 and @
N \ @
D = ;. Here B is a
linear trace operator that depends on (L;u; p). Examples of the form of B are given in Table 1. Note that
the third and fourth examples in Table 1 provide boundary conditions on the vorticity. Indeed, we have that
(L� Lt)n = ! � n, where ! = (L32 � L23;L13 � L31;L21 � L12) is the vorticity vector.

In order to incorporate the above boundary condition, we rede�ne Mh(g) as

Mh(g) = f� 2Mh : � = P@g on @
Dg; (8a)

and, for the fourth example in Table 1, as

Mh(g) = f� 2Mh : � = P@
D
g on @
D and � � n = P@
N

g � n on @
Ng; (8b)

where P@
D
and P@
N

denote the L2 projections on @
D and @
N , respectively.
We then seek an approximation (Lh;uh; ph; buh; �h) 2 Gh � Vh � Ph �Mh(g)�	h such that

(Lh;G)Th
+ (uh;r � G)Th

� hbuh;Gni@Th
= 0;�uh

�t
;v
�
Th

+ (�Lh � phI� uh 
 uh;rv)Th

+ h(��Lh + phI + buh 
 buh)n+ sh(uh; buh);vi@Th
= (f ;v)Th

+
�un�1

h

�t
;v
�
Th
;

�(uh;rq)Th
+ hbuh � n; q � qi@Th

= 0;

ph � �h;  

�
@Th

= 0;

h(��Lh + phI + buh 
 buh)n+ sh(uh; buh);�i@Th
+
DbBhn;�

E
@
N

= hgN ;�i@
N
;
buh � n;  �@Th

= 0;

(ph; 1)Th
= 0;

(9)

for all (G;v; q;�;  ) 2 Gh � Vh � Ph �Mh(0) � 	. Here bBh is an approximate trace operator shown in
Table 1. Recall that the superscript n was dropped for the sake of notation simpli�cation.
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Condition Type B bBh

stress+pressure ��(L + Lt) + pI ��(Lh + Lth) + phI + sh(uh; buh)
 n
stress� ��(L + Lt) ��(Lh + Lth) + sh(uh; buh)
 n

vorticity+pressure ��(L� Lt) + pI ��(Lh � Lth) + phI + sh(uh; buh)
 n
vorticity�;y ��(L� Lt) ��(Lh � Lth) + sh(uh; buh)
 n

gradient+pressure ��L + pI ��Lh + phI + sh(uh; buh)
 n
gradient� ��L ��Lh + sh(uh; buh)
 n

Table 1. Examples of other boundary conditions for the incompressible Navier-Stokes equations. Note that
the asterisk symbol � indicates that the average pressure condition (ph; 1)
 = 0 is also imposed. The dagger
symbol y indicates that a Dirichlet boundary condition for the normal component of the velocity has also to
be provided.

III. Numerical Results

We present numerical results to assess the performance of the HDG method for several test cases including
the Taylor vortex 
ow,37 lid-driven cavity 
ow,18 channel expansion 
ow,36 and natural convective 
ow in a
cavity.17

A. Taylor Vortex Problem

The Taylor vortex problem37 is a well-known example of the unsteady incompressible Navier-Stokes equa-
tions. We use this example to examine the convergence properties of the HDG method since the exact
solution is available as

ux = � cos(�x) sin(�y) exp
�
�2�2t
Re

�
;

uy = sin(�x) cos(�y) exp
�
�2�2t
Re

�
;

p = � 1
4 (cos(2�x) + cos(2�y)) exp

�
�4�2t
Re

�
;

where Re = 1=� is the Reynolds number. We consider the above problem on 
 = (0; 1)2 with Reynolds
number Re = 20 and �nal time T = 1. We take the Dirichlet boundary condition for the velocity as the
restriction of the exact solution to the domain boundary and the initial condition as an instantiation of the
exact solution at t = 0.

We consider triangular meshes that are obtained by splitting a regular n�n Cartesian grid into a total of
2n2 triangles, giving uniform element sizes of h = 1=n. We use the third-order backward di�erence formula
(BDF3) for the temporal discretization. The stabilization parameter � is set to 1 on @Th.

We �rst look at the convergence and accuracy in terms of both k and h re�nements. For this purpose, we
select a small constant timestep of �t = 0:005, so that the spatial error is dominant and the temporal error
is negligible. We present in Table 2 the history of convergence of the HDG method at the �nal time t = 1.
We observe that the approximate velocity, pressure, and velocity gradient converge with the optimal order
k + 1 for k = 1; 2; 3. The fact that the HDG method yields optimal convergence for both the approximate
pressure and velocity gradient is a very important advantage since all known DG methods provide suboptimal
convergence of order k for the approximate pressure and velocity gradient.

Equally important is the fact that the postprocessed velocity u�h converges with the order k+ 2, which is
one order higher than the original approximate velocity uh. Furthermore, we emphasize that u�h is an exactly
divergence-free and H(div)-conforming velocity �eld. To visualize the e�ect of the local postprocessing,
we show in Figure 1 the plots of the approximate velocity and the postprocessed velocity for k = 2 on
the grid h = 1=2. We observe that the local postprocessing does provide a signi�cant improvement in the
approximation of the velocity �eld, since u�h is clearly superior to uh. Moreover, since the local postprocessing
is performed at the element level and only at the timestep where higher accuracy is desired, it adds very
little to the overall computational cost. As a result, with the HDG method, the (k+ 2)-convergent velocity,
(k + 1)-convergent pressure, and (k + 1)-convergent velocity gradient can be computed at the cost of a DG
approximation using polynomials of degree k.
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degree mesh ku� uhkTh
kp� phkTh

kL� LhkTh
ku� u?

hkTh

k 1=h error order error order error order error order

4 4:73e-2 �� 3:44e-2 �� 3:29e-1 �� 3:40e-2 ��
8 1:27e-2 1:89 8:59e-3 2:00 1:26e-1 1:39 8:04e-3 2:08

1 16 2:94e-3 2:11 2:14e-3 2:01 3:85e-2 1:71 1:34e-3 2:59
32 6:95e-4 2:08 5:38e-4 1:99 1:07e-2 1:84 1:89e-4 2:82
64 1:70e-4 2:03 1:36e-4 1:99 2:85e-3 1:91 2:50e-5 2:92

4 1:14e-2 �� 6:67e-3 �� 1:04e-1 �� 8:35e-3 ��
8 1:26e-3 3:17 8:43e-4 2:98 1:72e-2 2:60 6:12e-4 3:77

2 16 1:51e-4 3:06 1:07e-4 2:98 2:60e-3 2:73 4:07e-5 3:91
32 1:87e-5 3:01 1:33e-5 3:00 3:64e-4 2:84 2:70e-6 3:91
64 2:33e-6 3:00 1:67e-6 3:00 4:85e-5 2:91 1:76e-7 3:94

2 1:81e-3 �� 1:00e-3 �� 2:01e-2 �� 1:22e-3 ��
4 1:08e-4 4:06 7:00e-5 3:84 1:72e-3 3:54 4:67e-5 4:70

3 8 6:59e-6 4:04 4:33e-6 4:01 1:29e-4 3:74 1:63e-6 4:84
16 4:08e-7 4:01 2:68e-7 4:01 8:92e-6 3:85 5:48e-8 4:89
32 2:55e-8 4:00 1:67e-8 4:00 5:88e-7 3:92 1:82e-9 4:91

Table 2. History of convergence of the HDG method for the Taylor vortex problem when the Dirichlet condition
is applied on the entire boundary.

B. Lid-driven Cavity Flow

The lid-driven cavity 
ow has been widely used as a validation case for numerical methods of the incompress-
ible Navier-Stokes equations. The problem has simple geometry and boundary conditions. The standard
case is 
uid contained in a square domain 
 = (0; 1)�(0; 1) with homogeneous Dirichlet boundary conditions
on all sides except on the upper side, where the velocity is prescribed as (1; 0). Despite its simple geometry,
the lid-driven cavity problem poses some di�culties for any numerical method due to the singularity of the
solution at the upper corners, the rapid change of the 
ow at high Reynolds number, and the appearance of
rotating vortices with signi�cantly di�erent sizes.

Figure 2 shows a computational mesh 32�32 on which our numerical solutions are obtained for Reynolds
numbers Re = 1000 and Re = 5000. The grid is re�ned and thus dense along the wall in order to capture
the boundary layer and the complex 
uid structure near the wall. The stabilization parameter � = 1 is used
for all cases.

We present the pro�les of the velocity along the centerlines for Re = 1000 and Re = 5000 in Figure 3. The
horizontal velocity pro�les exhibit a kink near the upper wall y = 1, while a similar behavior is observed for
the vertical velocity pro�les near the right wall x = 1. We further show in Figure 4 the streamline contours of
the postprocessed velocity u�h for Re = 1000 and Re = 5000. We clearly observe the typical structure of the
steady-state solution for the lid-driven cavity 
ow: there are various secondary vortices near the corners and
the size of the secondary vortices increases with the Reynolds number. Moreover, these structures remain
clearly observed for k = 1 even though our mesh 32� 32 is signi�cantly coarser than the meshes (129� 129
and 257� 257) used in the previous calculation.18 We note however that our local postprocessing is not as
e�ective as it was in the previous example in improving the accuracy of the velocity approximation. This is
due to the presence of singularities at the corners as well as to the relatively high Reynolds numbers.

C. Laminar Flow in a Channel Expansion

Laminar 
ow in a channel expansion has also been studied by many authors as a test for numerical schemes.
We choose the same geometry and boundary conditions given in36 in order to compare our results with
those presented in.36 The channel geometry and computational mesh are shown in Figure 5. The governing
equations are given by

� 1
Re�u+rp+r � (u
 u) = 0; in 
;

r � u = 0; in 
;
u = (0; 0); on �wall;

u = (1� y2; 0); on �in;
1
Rerun� pn = (0; 0); on �out:
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Figure 1. The approximate velocity uh (left) and the postprocessed velocity u�h (right) obtained using k = 2 on
the grid h = 1=2 for the Taylor vortex problem. The horizontal velocity is placed at the top, while the vertical
velocity at the bottom.

These equations are nondimensionalized with respect to the inlet channel half-width H and the maximum
velocity at in
ow U0. The Reynolds number is de�ned as Re = U0H=�. The approximate solution of the
corresponding Stokes problem is used as an initial solution in the HDG method for solving the governing
equations. The numerical results are obtained for Re = 109:5 with the stabilization parameter being set to
� = 1.

We present in Figure 6 the contour of the approximate pressure and its zoom near the step corner for
k = 2 and k = 3, and in Figure 7 the contour of the streamline of the postprocessed velocity. We observe
that the high pressure at the step and the e�ect of recirculation on the vorticity distribution in the corner are
all consistent with physical intuition. Moreover, we see that the reattachment point is located at the point
(xr; yr) = (5;�2). This �gure is the same as the value reported in.36 We also �nd that the streamfunction
attains its minimum at the center of the vortex, which is (xm; ym) = (1:5;�1:4). This �gure agrees with
the experimental value and numerical value obtained using �nite di�erences.15 In Figure 8 we display the
streamwise velocity pro�les at several locations downstream of the step. The agreement with36 is very good.

D. Natural Convection in a Rectangular Cavity

Finally, we consider the natural convective 
ow in a laterally heated cavity presented in.17 The geometry
and boundary conditions are depicted in Figure 9. We investigate the numerical solution of this problem by
the HDG method for the Prandtl number Pr = 0 and Grashof number Gr = 106. In this case the governing
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Figure 2. Finite element mesh for the lid-driven cavity 
ow.
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Figure 3. The u- and v- components of the approximate velocity uh along the horizontal and vertical centerlines
for Re = 1000 (left) and Re = 5000 (right) on the grid 32� 32 for the lid-driven cavity 
ow.
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Figure 4. Streamline of the postprocessed velocity for Re = 1000 (left) and Re = 5000 (right) using k = 1 (top),
k = 2 (middle), and k = 3 (bottom) on the grid 32� 32 for the lid-driven cavity 
ow.
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Figure 5. Geometry con�guration and computational mesh for the channel expansion.

Figure 6. Plots of the approximate pressure and its zoom near the step corner for k = 2 (left) and k = 3 (right)
for the channel expansion 
ow. It is clearly seen that the result for k = 3 is better than that for k = 2.

Figure 7. Plots of the postprocessed streamline for k = 2 (left) and k = 3 (right) for the channel expansion

ow.
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Figure 8. A plot of the streamwise velocity pro�les for k = 2 (left) and k = 3 (right) for the channel expansion

ow.

equations are given by

@u

@t
��u+rp+r � (u
 u) = Gr � ey; in 
� (0; T ];

r � u = 0; in 
� (0; T ];
u = 0; on @
� (0; T ];
u = 0; on 
� ft = 0g;

where � = 1�x=4 is the temperature distribution in the rectangular cavity and ey = (0; 1) is the unit vector
in the vertical direction. Here the �nal time is T = 0:1.

In this example, since the magnitude of the velocity scales like
p
Gr we choose the stabilization parameter

� =
p
Gr, in agreement with (4). Furthermore, we use the second-order backward di�erence formula (BDF2)

for the temporal discretization and take the timestep to be �t = 2� 10�4. The �nite element mesh shown
in Figure 9 is uniform with h = 0:1, giving the cell Peclet number about 100. Because this mesh is relatively
coarse for the Grashof number Gr = 106, we compute the numerical solution by using high polynomial
degrees k = 3 and k = 4.

We present in Figure 10 the postprocessed approximate velocity for k = 3; 4 at the spatial point (2; 0:8).
We observe the onset of oscillatory instability in the 
ow and that the 
ow becomes periodic unstable after
t = 0:08. Note that for Pr = 0 considered here, the temperature is not perturbed at all. Hence, the
instability is of purely hydrodynamic origin. Figure 11 shows the streamline of the approximate velocity at
di�erent time levels. We see that the periodic unstable 
ows consists of three primary convective rolls. As
seen from the streamline patterns, the oscillations of the streamlines are most noticeable between the primary
rolls. This indicates that the oscillatory instability is caused by a hydrodynamic interaction between the
rolls. These general observations agree well with the previous calculations based on the standard Galerkin
and �nite-volume methods.17

IV. Conclusions

We have presented a hybridizable discontinuous Galerkin method for the numerical solution of the incom-
pressible Navier-Stokes equations. As indicated in the Introduction, the method holds important advantages
over many existing DG methods in terms of the reduction of the number of globally-coupled degrees of free-
dom, in the convergence and accuracy properties of the approxiamtion and in the ability to handle a wide
variety of boundary conditions. The numerical results show that the HDG method is e�cient for solving the
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(4, 0)

θ = 1 θ = 0

Figure 9. Geometry, boundary conditions, and �nite element mesh for the natural convective 
ow in a laterally
heated cavity.
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Figure 10. The postprocessed approximate velocity for k = 3; 4 at the spatial point (2; 0:8) as a function of t
for the natural convective 
ow. The horizontal velocity is shown on the left, and the vertical velocity on the
right.
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Figure 11. Streamline of the postprocessed approximate velocity for k = 4 at time t = 0:095 (a), t = 0:096 (b),
t = 0:097(c), and t = 0:098 (d) for the natural convective 
ow.
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steady and unsteady incompressible Navier-Stokes equations.
We are currently developing e�cient iterative methods for solving the linear system arising from appli-

cation of the Newton-Raphson procedure. The problems being addressed include natural convection 
ows,
boundary layers, stability and transition in general curved geometries. The theoretical analysis of the method
also constitutes the subject of ongoing work.
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