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We present a high order viscous-inviscid interaction solver for aerodynamic flows. Our
approach is based on a split formulation where the viscous and inviscid effects are solved in
two different domains that overlap near solid walls or the wake centerline and are coupled
using the equivalent mass transpiration proposed by Lighthill. Both the viscous and inviscid
solvers are based on a high order Hybridized Discontinuous Galerkin scheme (HDG). In
the case of the viscous solver, the mesh is extruded on the fly from the surface mesh using a
normal scaling indicator δ, based on integrated boundary layer quantities, that is computed
as part of the solution. Results will be presented to validate the coupled viscous-inviscid
solver in a variety of cases using the Euler equations as well as the full potential equation
as inviscid models.

I. Motivation

The growth in computer power over the last two decades has increased the number of CFD practitioners
in the industry. Numerical simulation tools have been increasingly used as substitutes for expensive and
cumbersome experiments, often reducing the length and cost of a design cycle dramatically.1 In the mean-
time, researchers in the field have put significant effort into advancing the state of the art of the algorithms
so that bigger problems can be solved in less time and with greater accuracy. From the point of view of
the discretization, most of the work has focused on high order schemes in different variants: Discontinuous
Galerkin (DG), Spectral Finite Differences (SD) and Spectral Finite Volumes (SV), etc. Despite their theo-
retical advantages, these schemes have not been widely adopted in the industry for several reasons. Amongst
others:

• They are considered computationally expensive for the levels of accuracy of interest,2 so their higher
cost cannot be leveraged by a faster convergence rate.

• High order anisotropic meshes for cases involving turbulent boundary layers and shocks are hard to
generate in an automated fashion and require significant amount of intervention in the process.

• They are deemed to suffer from robustness issues for certain model equations, especially when there is
not enough resolution to capture relevant features.

The CFD community is well aware of all these shortcomings and is putting effort into alleviating them in
one way or another.2–4 And despite this, it is not clear whether these tools would easily find their way into
all the stages of the design, or rather very detailed and specific cases.

To see why this might be the case, one has to reckon the fact that in certain stages of the design, an
engineer is not looking for a full fledged Navier-Stokes result but rather a quick and reliable solution that has
the right dependency on the parameters of the problem. This helps the engineer build his or her intuition
and make decisions along the way instead of spending time fixing meshes and monitoring convergence. A
very important example of this type of code would be TRANAIR, used throughout the Boeing company1,5

for compressible external aerodynamics. In comparison with some state of the art codes, TRANAIR is
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rather outdated (full potential equation, linear finite element discretization), however, its automatic adaptive
refinement capabilities combined with the robustness of its nonlinear solver make it a perfect example of a
reliable design code. In this case, the user is willing to give away some of the physics to obtain a reasonable
solution within a few minutes. The error associated with this solution will be bounded provided the code
is used within its design envelope. A very similar idea is found behind the Euler solver CART3D that is
widely used at NASA. Both TRANAIR and CART3D have been augmented using a 2D streamline integral
boundary layer method based on the work of Drela et al.6 so that quasi-2D viscous flows can be reasonably
approximated in the same fast and reliable way.

The problem comes when engineers try to use these tools to analyze non-conventional geometries for
future transport aircraft such as the Blended Wing Body or the D8 concepts in which many elements (wing,
body, propulsion, etc.) are highly integrated. In this case, 3D viscous effects might be substantial and the
validity of the results questionable. Several attempts were made at trying to devise 3D integral boundary
layer formulations7,8 with limited success. It seems like a more general approach would be required to
circumvent these issues.

In this work, building on our previous research,9 we will use a differential method based on the solution
of the Navier-Stokes Equations in the viscous layer only. In principle, the restriction of the viscous effects
to a thin layer readily introduces savings in computational cost. Still, the cost can be significant in terms of
pre-process time (mostly mesh generation). In the proposed solver, mesh generation in the viscous domain
is automated to the point where only a surface mesh and extrusion directions are required. Furthermore,
in order to make the most out of the available resolution in the normal direction (that is a function of the
order of the approximation and the number of elements), we use the approach by Allmaras10 and evolve said
mesh on the fly so that it follows the boundary layer thickness in an optimal way.

To deal with the external inviscid flow, we will use a high order solver to discretize the full potential or
Euler equations on a fixed mesh. The choice of inviscid model is flexible and depends on the problem at
hand (subsonic, transonic, etc.). Other options such as a panel method would also be compatible with this
approach but where not implemented in this work.

Combining both solvers yields a scheme where some of the physics is simplified. The level of simplification
depends on the coupling conditions between them. In any case, we should expect this scheme to be more
physically correct than integral boundary layer methods since these are a further simplification of the Navier-
Stokes Equations. The main gain of the segregated approach is that each solver takes care of what it does
best. More precisely, we let the external solver deal with inviscid features (such as shocks, wakes, isentropic
flows, etc.) on a mesh that can be very coarse compared to the boundary layer, while we solve for the
viscous effects on a self adapted grid that grows from the surface and is conforming with the boundaries
by construction. We believe that the combination of this philosophy with the advantages of a high order
discretization yields a balanced scheme in terms of accuracy versus computational cost. Throughout this
work we will refer to our scheme as Virtual Grid Navier-Stokes or VGNS.

Our goal is to devise a scheme that is faster than a full Navier-Stokes solver of similar characteristics and
can provide a solution to a transonic turbulent problem with a certain level of reliability. We do expect the
scheme to be able to deal with separation, as will be shown later, broadening the range of applications beyond
clean configurations such as cruise. It would be interesting to see how this kind of solver fits in a multi-fidelity
CFD tool as an intermediate step between an integral boundary layer code and a full Navier-Stokes solver.

In what follows, we will first describe the formulation of the problem. Next, we will say a few words
about the discretization schemes used. We then present some results to validate our approach. Conclusions
and future research directions will be discussed last.

II. Formulation

We are interested in solving the problem of the laminar compressible viscous flow around a geometry of
interest, which can be fully described by the Navier-Stokes equations. This system of conservation laws can
be split into inviscid and viscous terms, of which the latter are negligible away from shear layers. Dropping
the viscous terms yields the Euler equations, which describe the external inviscid flow outside the boundary
layer.

In principle, one could devise a strategy to solve this problem based on a non-overlapping partition of
the domain into viscous and inviscid regions, where the corresponding system of conservation laws is solved.
For this, we require a way to identify these regions (e.g. identifying the boundary layer edge), which is not
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a trivial task.
In this work we will use the opposite approach and assume that the viscous and inviscid domains overlap.

In particular, we will solve the inviscid equations in the whole domain, all the way to the wall, where they
will overlap with the viscous equations, that are solved only in a region adjacent to the wall (or wake). We
will refer to these fields as the Equivalent Inviscid Flow (EIF) and the Real Viscous Flow (RVF) respectively.
A sketch of the velocity profiles for the EIF and RVF in a typical case is included in Figure 1.

η

α

RVF

EIF

Figure 1: EIF and RVF velocity profiles in a typical boundary layer.

In what follows, we will describe the fluid models used for each of them as well as the coupling boundary
conditions that ensure the EIF and the RVF match at the edge of the boundary layer.

A. RVF model

The Real Viscous Flow will be modeled using the Navier-Stokes equations in 2D:

∂u

∂t
+∇ · F = ∇ ·G, (1)

where:

u =


ρ

ρv1

ρv2

ρE

 , F =


ρvi

ρviv1 + pδi1

ρviv2 + pδi2

ρviH

 , G =


0

τ1i

τ2i∑d
j=1 τijuj + qi

 , (2)

τij = µ

(
∂vi
∂xj

+
∂vj
∂xi
− 2

3
δij

∂vk
∂xk

)
, qi = κ

∂T

∂xi
. (3)

Here, ρ represents the density, vi is the i-th component of the velocity, E is the total specific energy and
H = E + p/ρ is the total specific enthalpy. The pressure (p), the density and the temperature (T ) obey
the ideal gas law (p = ρRT ). The coefficients µ and κ are the dynamic viscosity and heat conductivity
respectively. Here, µ is taken to follow Sutherland’s law (µ = µ(T )) and a constant Prandtl number
assumption is used to compute κ: Pr =

cpµ
κ = 0.72.

The most commonly used boundary conditions are the following:

• Far-field: u = u∞, |x| → ∞,

• Subsonic outlet: p = pout, extrapolate ρ and v,

• Isothermal wall: (v1, v2) = 0, T = Tw,

• Adiabatic wall: (v1, v2) = 0, q · n = qw.

The implementation of the first two conditions requires a Riemann decomposition at the boundary, described
by Peraire et al.11 The coupling boundary condition with the EIF is not included here and will be described
in Section C.
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B. Inviscid models

The VGNS solver can accommodate a variety of models for the inviscid flow. In this work we will use both
the full potential equation as well as the Euler equations. Both models are commonly used in external
aerodynamics.

1. Euler equations

The Euler Eq. are derived from the Navier-Stokes Eq. by dropping the viscous fluxes G and read:

∂ui

∂t
+∇ · F(ui) = 0. (4)

Here, ui is a vector field for the same conserved variables as the original Navier-Stokes, this is, density,
momentum, and total energy (see Eq. 2). Throughout this paper we will use the subscript (·)i to denote
inviscid or EIF quantities. As in Navier-Stokes, the ideal gas law is used to relate density, temperature
and pressure. In terms of the conserved variables, one can obtain pressure using the expression: pi =
(γ − 1)(ρEi − 1

2ρi(vi · vi)).
The Euler equations lack a physical mechanism to set zero velocity at the wall. Instead, a non-penetration

boundary condition needs to be used:

• Solid wall: vi · n = 0, extrapolate ρi, vi · t and ρEi.

We postpone the discussion of the coupling boundary condition between the RVF and the EIF to the next
section.

2. Full Potential equation

The full potential equation is a simplification of the Euler equations where the flow is considered isentropic
and irrotational. Under these conditions, a velocity potential can be introduced so that the velocity field
can be related to the gradient of said potential, which in turn is related to the thermodynamic state of the
fluid through the isentropic flow relationships. Here we will use this model for subsonic steady flows. The
nonlinear PDE to solve reads:

∇ · (ρi(vi)vi) = 0, (5)

vi −∇φ = 0, (6)

where the density is given by:

ρi(vi) = ρ∞

(
1 +

(γ − 1)M2
∞

2
(1− vi · vi)

)1/(γ−1)

. (7)

The most relevant boundary conditions for the full potential equation can be summarized as:

• Far-field: φ = v∞ · x, |x| → ∞,

• Solid Wall: ∇φ · n = 0,

• Inflow: ∇φ · n = v∞ · n,

• Parallel velocity outflow: φ = 0.

The coupling with the viscous solver happens through a transpiration term that will be discussed in the
next section. As we will see later, a recovery of the EIF state (density, specific momentum and specific total
energy) into the RVF domain is required for coupling purposes. The first two follow directly from Eq. 6 and
Eq. 7. The last one can be easily constructed using the isentropic relation for the pressure:

pi = p∞

(
ρi

ρ∞

)γ
, (8)

and the definition of total energy:

ρEi =
pi

γ − 1
+

1

2
ρi(vi · vi). (9)
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C. Coupling the RVF and the EIF

In principle, solving the EIF and RVF separately on overlapping domains introduces flexibility in terms of
mesh generation for the boundary layer. This comes at the cost of a more complicated coupling to guarantee
that both solutions coincide outside the shear layer.

1. Approximation of the EIF inside the RVF domain

A key factor in this coupling is the availability of a reasonable approximation of the EIF profile inside the
viscous domain. For a fixed viscous mesh, one could come up with an interpolation scheme to do this
only once. Unfortunately, we are interested in evolving the RVF mesh on the fly, which would require a
re-evaluation at each iteration. To avoid this, we introduce a surrogate of the EIF denoted by ũi that we
hope is close enough to the actual EIF.

The simplest approach is to use a constant value for it across the boundary layer taken from the wall,
ũi = ui|wall. All the results presented in this work were computed this way. We expect this to be a very
reasonable approximation when the boundary layer is thin or curvature is not too strong. Higher order
surrogates would include reconstructions based on the gradients at the wall (available for the kind of Euler
solvers we will use) or an irrotationality condition (when full potential is used). As we will see later in the
results, some of the cases we present might benefit from this.

2. Boundary conditions for the EIF

To take into account the effect of the boundary layer on the external flow, certain boundary conditions
need to be imposed at the wall. These conditions cannot be deduced directly from physical principles, since
the EIF is not a physical solution inside the shear layer. In this work, we will use the well known mass
transpiration analogy proposed by Lighthill,12 that gives the required mass flux at the wall (or wake center)
so that the EIF matches the RVF:

ρvi · n|η=0 =
∂

∂α

ˆ ηedge

0

(ρv − ρ̃vi)αdη. (10)

Here, (α, η) is a system of curvilinear coordinates for which η = 0 at the wall (see Figure 1).
In the case of the full potential equation, mass transpiration is enough to produce the desired effect.

However, when the Euler equations are used, this is not the case anymore. Other researchers investigated
the coupling10,13 and concluded that as long as the dividing streamline is right, little more is relevant since
the EIF is fictitious and non-unique inside the shear layer. One can then take advantage of this and impose
boundary conditions that do not penalize the numerics, this is, that produce smooth EIF profiles in the
overlap region. In this work, we will use the following boundary conditions:13

• ∂vi·t
∂η = 0, ∂Hi

∂η = 0, extrapolate p.

3. Boundary Conditions for the RVF

The EIF computed using the previous boundary conditions is used as a driver for the viscous flow at the
edge of the RVF domain. In particular, the following boundary conditions are imposed there:

ρ = ρ̃i, (11)

ρv · t = ρ̃vi · t, (12)

H = H̃i, (13)

ρv · n = free, (14)

where extrapolation of mass flux at the edge is required since the approximation of the EIF (ũi) inside the
viscous domain does not exactly satisfy the governing equations.

D. Real Viscous Flow Geometry

The coupling conditions just presented ensure that the EIF and the RVF match outside the boundary layer,
which in turn allows the RVF domain to be truncated a certain distance away from the wall. This introduces
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potential savings in computational cost provided the mesh is properly adapted to the solution, in which case
the high order discretization quickly leverages its asymptotic convergence properties. Here, we will perform
this adaptation on the fly by means of an evolution of the thickness of the boundary layer mesh, what we
call the normal scaling δ.

Our proposed approach for this is to extrude the domain from the wall outwards following a predefined
direction n̂ that does not necessarily need to coincide with the normal to the surface. The length of the
extrusion is dictated by the field δ(α), that lives over the surface of interest. The transformation from
reference coordinates (α, η) to physical ones x is then given by an explicit mapping G : (α, η) 7→ (x, y)
defined as:

x = gsurf(α) + δ(α)× η × n̂(α), (15)

where gsurf is the parametric representation of the wall.
Of the two parameters that define the extrusion, n̂ can be generated a priori based on the geometric

features of the surface. This only leaves the normal scaling to be computed simultaneously with the flow.
For this, δ will be evolved on the surface according to the following surface reaction-diffusion equation:10

∂δ

∂t
=
δspec(u, δ)− δ

τ
+ ∆Γ(εδ), (16)

where ∆Γ is the Laplace-Beltrami operator14 and the parameters τ and ε are constants that control the
smoothness of the solution. For the cases computed here we set τ = ∆t/5 and µ = h2/τ , where h is the
surface element size. Notice the first quotient on the right hand side forces δ to follow the target value
δspec(u, δ), which represents a measure of the thickness of the boundary layer. In this work we will use a
well tested function proposed by Drela for 2D flows:6

δspec(u, δ) = c0 + c×
(
δ∗k + θk

(
3.15 +

1.72

Hk − 1

))
. (17)

Here, δ∗k is the kinematic displacement thickness, θk is the kinematic momentum thickness and Hk =
δ∗k
θk

is the shape factor. The constants c0 and c are set so that the solution is a few times bigger than the
indicator alone and bounded away from zero. All the results presented here used c0 = 10−4 and c = 2.
Notice this definition of the normal scaling target requires an integration across the boundary layer that
can be easily performed thanks to the extruded character of the RVF domain. The boundary conditions
for this equation are only required at the edges of the surface. For all the results presented here we used
homogeneous Neumann conditions.

E. Arbitrary Lagrangean-Eulerian formulation

As it stands, our proposed formulation consists of three systems of equations (RVF, EIF and Normal Scaling)
that have to be solved simultaneously. Of these, the RVF has to be solved on a mesh that will change
implicitly with the solution at each iteration. To converge this very nonlinear problem, some kind of time
relaxation will be required. This means the RVF is solved on a deformable domain in time which requires the
use of an Arbitrary Lagrangean-Eulerian description (ALE) to enforce conservation and prevent unphysical
states. Here we will loosely follow the ALE formulation introduced by Persson et al.15

To write the ALE form of our system, all we need is a mapping from our reference domain (r) to the
physical domain (x): x = G(r, t), for which the gradients:

G =
∂G
∂r
, (18)

vG =
∂G
∂t
, (19)

are available. Given these, we can transform a general conservation law in the physical domain Ωx:

∂u

∂t
+∇ ·A(u,Q) = s, (20)

Q−∇u = 0, (21)
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into an equivalent conservation law in the reference domain Ωr:

∂gu

∂t
+∇r ·

{
gG−1

(
A(u,G−1Qr)− u⊗ vG

)}
= gs, (22)

Qr −∇ru = 0, (23)

where g = det(G) and the divergence and gradient operators work on the reference coordinates r. In this
work, the reference coordinates will be the curvilinear system (α, η) introduced before (see Figure 1). In the
reference coordinates, the mesh is fixed and uniform as shown in Figure 2.

r

x

x = G(r, t)

Figure 2: comparison between the physical and reference domains. Arrows denote extra connectivities at
the assembly level to treat the wake.

In cases where the transient evolution is the subject of study (e.g. flapping flight), an extra condition
is required to guarantee a fully conservative solution. This is known in the literature as the geometric
conservation law.15 Since our interest is steady state solutions, we did not implement it in our solver.
Convergence of the cases shown later seems unaffected by this absence.

III. Discretization and solution

All the equations presented in the previous sections are discretized using a variety of Finite Element
techniques. In this section, we will say a few words about them.

A. EIF Discretization

To discretize the EIF (Eq. 4 or Eqs. 5-6) we use the high order Hybridizable Discontinuous Galerkin scheme
introduced by Peraire et al.11 The HDG method requires two sets of unknowns: the approximation to the
solution inside the elements (denoted by uhi) and the numerical trace at the faces of the mesh (denoted
by ũhi). Both uhi and ũhi consist of piecewise polynomials of order k, discontinuous across their support
(elements for uhi and faces for ũhi). In HDG, stability in the convective regime relies on a special form of
the trace fluxes, that requires the so called stabilization matrix An. For all the cases presented here, it was
taken to be An = 1

M∞
I.

The EIF meshes used here were generated with Distmesh.16 The EIF mesh is fixed in time, hence there
is no need to reformulate the problem in ALE form.

Details on the implementation of HDG for the Euler and Navier-Stokes equations, including a discussion
on boundary conditions and the choice of the stabilization matrix can be found in the literature.11 For the
case of the full potential solver, a similar discussion can be found for elliptic problems.17

B. RVF Discretization

To discretize the RVF system (Eq. 1-3) we use the same kind of HDG scheme. Given the deformable nature
of the RVF mesh, and ALE reformulation is used to express the system in the reference mesh. Similar
approximation spaces are introduced for the solution uh and the trace ũh. In the case of the RVF, the
space of the solution is a tensor product of polynomials on the surface and 1D polynomials in the normal
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direction. We will take advantage of this property and use sum-factorization18 to reduce the cost of the
assembly. A local Lax-Friedrichs stabilization matrix is used, properly modified to account for the effects of
the mapping.11,15

The surface mesh for the RVF, which is a discrete version of the surface parametrization gsurf(α) (see
Eq. 15) is extracted from the boundaries of the EIF mesh where viscous effects are required. The extrusion
direction ñ at the vertices of the surface mesh is computed using an averaging of the normal vector between
neighboring elements and propagated linearly into the element. This ensures the RVF mesh is conforming,
even though it is never explicitly formed. Instead, the gradients of the mapping are evaluated and the ALE
formulation is solved on a reference mesh that contains the right logic to deal with neighbors on the surface
and across the wake (see Figure 2)

C. Normal Scaling discretization

The normal scaling equation is discretized on the surface using a Continuous Galerkin Surface Finite Ele-
ment Method (SFEM).14 The approximation space for the discrete normal scaling δh consists of continuous
piecewise linear polynomials on the surface that defines the wall or wake. The continuous piecewise linear
approximation fulfills several requirements: it produces conforming meshes since δh is continuous, allows for
a simple check of unphysical meshes (δh < 0) and introduces very little new unknowns.

In this work we will deviate from the original method by Dziuk14 and use a high order representation
of the surface geometry where the PDE is solved. This does not introduce extra complexity or cost since a
high order surface mesh was already extracted to generate the RVF geometry.

D. Solution procedure

The discretization of the three models (EIF, RVF and Normal Scaling) is carried out on a system of grids
that is conformal only at the surface. This is depicted in Figure 3. The result of this discretization is a
coupled system of nonlinear differential-algebraic equations in time. To time-march this system towards
steady state, a suitable discretization of the time derivatives is required. Given our interest in steady state
solutions, we are willing to sacrifice time accuracy for numerical stability. For this reason, a backwards Euler
scheme (BDF1) is used here.

α
η

δ

Figure 3: EIF ( ), RVF ( ) and Normal scaling ( ◦ ) meshes used to discretize the problem. All the
meshes conform at the wall.

At each time-step of BDF1, a system of nonlinear algebraic equations needs to be solved. For this, we
use Newton’s method combined with a backtracking line-search to select the update step.19 In this work, the
Jacobian required by the Newton iteration is computed explicitly and enters a linear system that is solved
using sparse direct techniques.

To initialize the flow, first the EIF is solved alone without interaction. Then, the RVF is initialized
following the EIF on the surface and assuming no variation in η. Last, the normal scaling is initialized using
an analogy to the problem of an impulsive plate so that δh = O(

√
∆t/Re). At this point the time-stepping

is started. The first time step can be hard to converge due to the strong interaction between the normal
scaling and the RVF solution. We have found that freezing the normal scaling evolution for the first time-step
prevents this from happening. The time step ∆t is multiplied or divided by a fixed fraction (typically 2)
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depending on the number of Newton iterations required to converge the current step. A final steady state
solution is attempted once ∆t is big enough or the total accumulated time is greater than a set value (usually
greater than the convective time for the length of the domain).

IV. Results

In this section we present the cases used to verify the implementation of VGNS, which will be performed
in two stages. In the first one, we present results for the RVF solver alone. Both steady and unsteady cases
will be used to asses the proper implementation of the ALE formulation through grid convergence studies.
In the second stage, we will apply the whole viscous-inviscid solver to a variety of problems and compare it
against a full Navier-Stokes discretization as well as an integral boundary layer method.

A. Verification of the RVF solver: Convection-Diffusion

The first case we would like to discuss is that of the linear convection-diffusion transport of a scalar quantity
released steadily at a point x0. We will use this case to assess the implementation of the ALE formulation
and the RVF solver. The PDE that governs this problem reads:

∂u

∂x
−Dx

∂2u

∂x2
−Dy

∂2u

∂y2
= δ(x− x0), (24)

where Dx and Dy are the diffusion coefficients in the x and y direction respectively. In the case of an infinite
domain, an analytical solution exists:20

u = exp

(
x− x0

2Dx

)
K0

1

2

√(
x− x0

Dx

)2

+
y2

DxDy

 , (25)

where K0 is the modified Bessel function of the second kind and zero-th order. We can use this result to
impose Dirichlet boundary conditions on a truncated deformable domain where we solve the ALE version of
Eq.24. By comparison with the analytical solution, we can easily compute the error in our solver.

First, we present a grid convergence study for the steady problem with parametersDx = 1 andDy = 10−3.
In these cases the normal scaling was held fixed ∂δ

∂t = 0. The sequence of meshes was obtained by uniform
refinement of the initial coarse mesh. An example of mesh and solution field is shown in Figure 4. The
computed errors for different polynomial approximation orders (k = 1 to k = 4) are summarized in Figure
5. We experience optimal k + 1 convergence rates in the solution field uh and the gradient qh.

(a) Mesh. (b) Solution field uh.

Figure 4: sample mesh (left) and solution (right) for the steady convection-diffusion convergence study.

Next, we would like to asses the error in the unsteady ALE formulation. To do this, we prescribed δspec:

δspec = 0.1 + 0.05 sin
(π

2
(x− t)

)
, (26)

and run the problem on the same surface mesh as in the steady case using polynomials of order k = 3. The
Dirichlet boundary conditions were set with the help of Eq. 25, effectively restricting the free-space solution
to the computational domain even though this deformed in time. The evolution of the error with time is
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(a) Error in the solution uh compared to asymp-
totic estimates (O(hk+1)).

10
−2

10
−1

10
−6

10
−4

10
−2

10
0

10
2

1/
√
Nelem

||q
h
−
q
e
|| 2

 

 

k = 1
k = 2
k = 3
k = 4
k = 5

(b) Error in the gradient qh compared to asymp-
totic estimates (O(hk+1)).

Figure 5: grid convergence studies for the convection-diffusion problem. Solid lines ( ) denote computed
error. Dashed lines ( ) denote asymptotic error estimate. The convergence is optimal for the solution as
well as for the gradient.

plotted in Figure 6. As we can see, the error grows with respect to the initial value but is bounded in time.
We would expect the geometric conservation law to slightly change this result, however, given our interest in
steady state solutions, we will consider the current implementation good enough to accommodate transients
in the solution.

0 5 10 15 20 25 30
2

4

6

8

10

12

14

16
x 10

−4

t

||
u
h
−
u
e
||
2

 

 

Unsteady
Initial

(a) Error in the solution uh.
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(b) Error in the gradient of the solution qh.

Figure 6: evolution of the error in the solution as a function of time, compared to the initial error. Time
step in this case was set to ∆t = 0.1.

B. Verification of the RVF solver: compressible Navier-Stokes

Next we would like to present a similar convergence study for the compressible Navier-Stokes equations. For
this we require an analytical solution that we obtain using the method of manufactured solutions.21 We

10 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 M

IT
 L

IB
R

A
R

IE
S 

on
 A

ug
us

t 1
6,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

29
43

 



prescribe the solution field to be:11

p = p∞ =
1

γM2
∞
, (27)

T = T0 +
y

H
(T1 − T0) +

(γ − 1)M∞Pr

2

y

H

(
1− y

H

)
, (28)

u =
y

H
log(

(
1 +

y

H

)
, (29)

v = 0, (30)

with parameters: T0 = 0.8, T1 = 0.85, H = 0.2, Pr = 0.72 and M∞ = 0.15. Using this solution we can
reconstruct the state and fluxes in Eqs. 2-3. Filtering these through the Navier-Stokes operator (Eq. 1)
yields an equivalent source term. This can easily be done using a symbolic manipulator.

Using the equivalent source term and Eqs. 27 -30 as Dirichlet boundary conditions we can easily asses
the error of the scheme. Here we will focus on the steady case (∂δ∂t = 0) on a domain similar to the one used
in the previous example (see Figure 4a). We followed the same strategy as the convection diffusion case, this
is, uniform refinement from an initial mesh and a sweep in polynomial order. The results are summarized
in Figure 7 and show optimal convergence rates in the solution but not in the gradient. This is consistent
with the results found in the literature for this same case.11
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(a) Error in the solution uh compared to asymp-
totic estimates (O(hk+1)).
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(b) Error in the gradient Qh compared to asymp-
totic estimates (O(hk)).

Figure 7: grid convergence studies for the Navier-Stokes problem. Solid lines (−) denote computed error.
Dashed lines (−−) denote an asymptotic error estimate. The convergence is optimal for the solution but
not for the gradient.

C. Laminar flow over smooth bump

VGNS belongs to the class of strongly coupled viscous-inviscid Interaction schemes, which are known to
be able to solve flows past separation. We would like to asses this using a case that develops a laminar
separation bubble. More precisely, we are concerned with the laminar flow at Reynolds number Re = 3 · 105

and Mach number M∞ = 0.3 over a smooth bump protruding from a semi-infinite flat plate. The height of
the bump h is given by:

h = 0.02 sin2(π(x− 0.5)), 0.5 < x < 1.5. (31)

The leading edge of the flat plate is placed at x = 0, half a reference length ahead of the bump. In this case
we will compare VGNS, using both full-potential and Euler for the EIF, against two other techniques: a full
Navier-stokes solver and Xfoil22 (panel method coupled to integral boundary layer).

To compute the full Navier-Stokes solutions, we first had to generate a suitable mesh. For this, we took
the RVF mesh that VGNS delivers, broke it in into triangles, and filled in the rest of the external domain
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with an unstructured triangulation using Distmesh (see Figure 8). With this mesh at hand, we solved the
Navier-Stokes equations using the EIF solver of Section A with the right viscous fluxes.

For the Xfoil solution, we only needed to define the panel distribution. In this case, we took this from
our high order surface mesh. This way we ensured the number of nodes (and hence the resolution) on the
surface was the same. To prevent transition in Xfoil, the critical amplification factor was set to Ncrit = 100.

(a) RVF mesh (red) and EIF mesh (black).

(b) full Navier-Stokes mesh.

Figure 8: meshes used for the computation of the laminar bump case. Top, EIF mesh (black) and extrusion
of the RVF mesh (red) for the converged solution. Bottom, full Navier-Stokes mesh generated from VGNS.
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(a) Friction coefficient.
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(b) Pressure coefficient.
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(c) Boundary layer shape parameter.
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(d) Displacement and momentum thicknesses.

Figure 9: quantities of interest at the wall for the laminar bump case.
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The results for this case using polynomials of order k = 3 (4th order accurate scheme) and 10 elements
across the boundary layer are plotted in Figure 9. Notice how the different EIF models (Euler or full
potential) barely change the solution. The comparison with full Navier-Stokes in Cp and Cf is very good
and much more accurate than the integral boundary layer results. This seems to indicate our segregated
approach retains high fidelity despite the simplifications it involves.

D. Laminar stagnation flow

One of the peculiarities of VGNS is the use of the Navier-Stokes equations for the RVF instead of thin shear
layer approximations. Amongst other things, this means the RVF model is valid at stagnation points, which
suggests no boundary layer initialization is required. The goal of the next case we present is to confirm this
property.

We are interested in the flow over a body defined by a semi-ellipse of aspect ratio b/a = 0.2 that continues
into a constant section of radius equal to the minor axis. The flow around this body is constrained by two
flat inviscid walls that effectively force a favorable pressure gradient, preventing separation of the boundary
layer downstream of the semi-ellipse. The flow parameters for this case are Minlet = 0.3 and Re = 105.

We solved the problem using both the VGNS approach as well as a full Navier-Stokes solver. As in the
previous case, the mesh for the full Navier-Stokes problem was constructed based on the VGNS one (see
Figure 10). The latter was generated using Distmesh, which places the nodes randomly on the geometry
unless instructed otherwise. This ensures general stagnation flows can be computed since no alignment or
special distribution is enforced. For this case, the RVF mesh consisted of 10 elements across the boundary
layer.

−5 −4 −3 −2 −1 0 1 2
−1

−0.5

0

0.5

1

x/L

y
/
L

(a) RVF mesh (red) and EIF mesh (black).

(b) Detail of the full Navier-Stokes mesh.

Figure 10: meshes used for the computation of the stagnation flow case. Top, EIF mesh (black) and extrusion
of the RVF mesh (red) for the converged solution. Bottom, full Navier-Stokes mesh generated from VGNS.

The results are summarized in Figure 11. As we can see there, the match between VGNS and the full
Navier-Stokes solution is very good, especially for the friction coefficient. Notice how the choice of inviscid
model for the EIF does not affect the solution, thus, in a practical application to subsonic flows, we would
favor the full potential model for cost reasons.

Our only concern with these results are the obvious oscillations in the friction coefficient and the pressure
(to a lesser extent) that affect both the full Navier-Stokes solution as well as the VGNS one. Other researchers
have found similar problems with similar schemes.23 We believe these might be related with the high order
meshes, in particular, the fact that the tangents to the surface are not enforced to be continuous across
elements. We are currently investigating this issue.
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(a) Friction coefficient.
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(b) Pressure coefficient.
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(c) Displacement and momentum thicknesses.

Figure 11: quantities of interest at the wall for the stagnation flow case.

E. Laminar flow over NACA 0008 airfoil

The last case we would like to discuss concerns the flow around a non-lifting airfoil. This case represents
our first attempt at solving a truly aerodynamic flow in this paper. Unlike the previous cases, that isolated
effects, this example presents at the same time several different flow structures such as stagnation flow,
trailing edge separation and a wake, hence, it is a stepping stone for more complicated lifting cases.

The parameters for this problem are the following: Re = 104, α = 0 and M∞ = 0.1. We solved this flow
using VGNS with full potential for the EIF and full Navier-Stokes, both with polynomials of order k = 3.
For comparison purposes, the same case was solved using Xfoil. The initial mesh for the VGNS solver was
generated with Distmesh and the rest of the meshes followed from it as in the previous examples (see Figure
12). The RVF mesh consisted of 10 elements in the normal direction.

The results are summarized in Figure 13 and show how VGNS agrees well with Navier-Stokes and Xfoil.
The biggest discrepancy in friction coefficient is found at the trailing edge, where VGNS predicts a small
amount of separation that none of the others show. The differences in pressure coefficient are generally small
too, but seem to indicate VGNS is closer to the Navier-Stokes solution.

14 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 M

IT
 L

IB
R

A
R

IE
S 

on
 A

ug
us

t 1
6,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

29
43

 



(a) RVF mesh (red) and EIF mesh (black).

(b) full Navier-Stokes mesh.

Figure 12: meshes used for the computation of the laminar flow around a NACA 0008 airfoil. Top, EIF
mesh (black) and extrusion of the RVF mesh (red) for the converged solution. Bottom, full Navier-Stokes
mesh generated from VGNS.
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(b) Pressure coefficient.
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(c) Displacement and momentum thicknesses.

Figure 13: quantities of interest at the wall for the laminar flow around a NACA 0008 airfoil.
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V. Conclusions and future work

We have presented a new strategy for the solution of boundary layer flows based on a segregated approach
in which viscous effects are solved on a truncated domain that adapts automatically to the thickness of the
boundary layer. We have applied this strategy to a variety of cases and verified it against solutions computed
using the full Navier-Stokes equations as well as Xfoil. The results indicate that our approach retains the
high-fidelity of full Navier-Stokes solvers and greatly simplifies the process of generating adapted meshes for
the boundary layer.

In this work we only focused on laminar flows, mostly because a high fidelity solution using the Navier-
Stokes equations can be computed for comparison. In some of the cases presented here, transition would have
naturally occurred which would have had required some sort of turbulence model. We decided not to include
any of it, even though fully turbulent solutions have already been computed within the VGNS framework.9

We are currently interested in taking advantage of the extruded viscous mesh to extract boundary layer
parameters and build a transition prediction capability.
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