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Abstract

We develop a nested hybridizable discontinuous Galerkin (HDG) method to numerically solve the
Maxwell’s equations coupled with a hydrodynamic model for the conduction-band electrons in
metals. The HDG method leverages static condensation to eliminate the degrees of freedom of
the approximate solution defined in the elements, yielding a linear system in terms of the degrees
of freedom of the approximate trace defined on the element boundaries. This article presents a
computational method that relies on a degree-of-freedom reordering such that the HDG linear
system accommodates an additional static condensation step to eliminate a large portion of the
degrees of freedom of the approximate trace, thereby yielding a much smaller linear system. For
the particular metallic structures considered in this article, the resulting linear system obtained by
means of nested static condensations is a block tridiagonal system, which can be solved efficiently.
We apply the nested HDG method to compute second harmonic generation on a triangular coaxial
periodic nanogap structure. This nonlinear optics phenomenon features rapid field variations and
extreme boundary-layer structures that span a wide range of length scales. Numerical results show
that the ability to identify structures which exhibit resonances at 𝜔 and 2𝜔 is essential to excite
the second harmonic response.
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1. Introduction

Nonlinear plasmonics [11, 13, 42, 66, 74] studies the effects that arise when nonlinear media in a
plasmonic structure cause the polarization to depend nonlinearly on the electric field. These effects
are inherently weak, but can be amplified by the collective excitation of conduction-band electrons
that occur on metallic nanostructures, commonly known as plasmon resonances. These excitations
produce strong near-field enhancements of the incident wave by confining light in small volumes
whose critical length scales are several orders of magnitude smaller than the wavelength of light.
The combination of nonlinear effects and localized plasmon resonances offers new opportunities
for the generation and manipulation of light at the nanoscale. The most common nonlinear effect
is second-harmonic generation (SHG), whereby two photons at the incident frequency interact to
generate a single photon at twice the incident frequency. Within classical electromagnetics, SHG
occurs when the polarization has a quadratic dependence on the electric field. In common nonlinear
optical materials, this quadratic dependence is provided by the absence of an inversion symmetry
in the crystalline lattice, which generates an asymmetric response with respect to the applied
electric field orientation. In contrast, plasmonic metals (e.g. gold, silver, copper and aluminum) are
centrosymmetric and do not possess an intrinsic second-order susceptibility. A correct description of
metal nonlinearities has to account for the complex dynamics of free-electrons [71]. It is well-known
in fact that free-electrons provide both bulk and surface mechanisms for SHG [38, 73, 85]. Surface
contributions arise from locally broken centrosymmetry while bulk contributions are ascribed to
convective and Lorentz-force interactions in the electron fluid [21, 71]. Contrarily to nonlinear
crystals, the nonlinear response of metals becomes highly dependent on the device geometry [14, 44].
In fact, unless centrosymmetry is broken at the larger scale of the device structure, the second-
harmonic fields stays highly localized and destructively interferes in the far-field, becoming too
weak to be observed. Plenty of research has been devoted to designing and fabricating shapes that
enhance SHG, see [13, 42, 46, 66] and the references therein.

The ability to accurately model and simulate nonlinear plasmonic phenomena requires computa-
tional capabilities that challenge traditional simulation techniques. From a modelling perspective,
plasmonic phenomena can be described by Maxwell’s equations coupled with a hydrodynamic model
to account for the nonlocal effect of the conduction-band electrons in the metallic materials, which
become relevant for sub-10 nanometer features. The problems of interest involve the interaction
of long-wavelength electromagnetic waves (µm and mm) with nanometer-wide features for poten-
tial applications in sensing and spectroscopy. Moreover, the electromagnetic fields are confined in
deep-subwavelength cavities, and Ångstrom-thin accumulation charge layers develop at the metal-
dielectric interface. As a consequence, the discretizations required to attain accurate simulations
need to be highly adapted (to properly capture the extremely localized fields) and anisotropic (to
be computationally tractable).

The finite-difference time-domain (FDTD) algorithm [48, 76] is a well known computational method
for wave propagation. The most popular FDTD method utilizes Yee’s scheme [86] to discretize
space and time with staggered cartesian grids and second-order schemes. The main shortcoming
of FDTD is modeling geometries with complex features, since the stair-casing at the interfaces not
aligned with the Cartesian grid severely impacts the accuracy. In addition, the mismatch in length
scales that is characteristic of nonlinear plasmonics is a severe hindrance, since resolving for the
smallest phenomena while keeping a uniform discretization may require grids having prohibitively
large number of degrees of freedom. The FDTD method has been used for nonlocal [31, 57] and
second-harmonic generation [2, 16, 54, 90] simulations.
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Finite element (FE) methods [40] have also been widely used in electromagnetics, due to their ability
to handle heterogeneous media and intricate geometries with unstructured discretizations, as well
as ℎ/𝑝 adaptation for increased accuracy. The family of face/edge elements introduced by Nédélec
[60] have been extensively used to simulate electromagnetic wave propagation, and have been shown
to avoid the problem of spurious modes [10] by appropriately choosing the approximation spaces.
A commonly used implementation of edge elements for Maxwell’s equations is the one provided by
the RF Module of Comsol Multiphysics [26]. Many groups have used this platform to implement
their own version of the hydrodynamic model [19, 77, 78], SHG on nanoparticles and nanoantennas
[4, 6, 15, 32, 91] as well as SHG on periodic arrays of nanostructures [17, 21, 45, 69].

Discontinous Galerkin (DG) methods [25, 34] have also been widely used to simulate nonlocal effects
in electromagnetics. In DG methods, the domain is discretized onto a collection of disjoint elements,
and each field component is independently approximated within each element using standard finite
element spaces. Solutions are therefore discontinuous across elements, and flux continuity is enforced
at the interfaces. The DG method in time domain has been developed for many nanophotonics
applications on metallic and lossless media [12, 39, 49, 55, 64, 72], as well as to simulate SHG on
nanoparticles [35, 47, 58], resonators and antennas [1, 33, 52, 84]. The main caveat of DG methods
for 3-D applications in the frequency domain or in the time domain with implicit time integration
is the high computational burden, stemming from the duplication of degrees of freedom at the
interfaces. This shortcoming is circumvented by the hybridizable discontinuous Galerkin (HDG)
method, first developed in [22–24] and later extended to acoustics and elastodynamics [62, 70] as
well as time-harmonic Maxwell’s equations [51, 63] and the hydrodynamic model for metals [50, 81].
In addition, unlike other DG methods HDG exhibits optimal convergence rates for both the solution
and the flux. As a result, the solution may be locally post-processed to gain an additional order of
convergence, a phenomenon known as superconvergence. In the recent years, the HDG method has
been successfully applied for 2-D and 3-D metallic nanostructures to simulate plasmonic phenomena
[50, 67, 80–82, 88, 89].

This article presents a nested hybridizable discontinuous Galerkin (nHDG) method for the Maxwell’s
equations coupled with a hydrodynamic model for the conduction-band electrons in metals. By
means of a static condensation to eliminate the degrees of freedom of the approximate solution
defined within the elements, the HDG method yields a linear system in terms of the degrees of
freedom of the approximate trace defined on the element boundaries. The nested HDG is a com-
putational method that builds on top of classical HDG, whereby an additional static condensation
is performed in order to eliminate a large portion of the degrees of freedom of the HDG linear sys-
tem. Consequently, this nested strategy gives rise to a much smaller linear system, encompassing
the degrees of freedom of a reduced number of element boundaries. Furthermore, if these element
boundaries are judiciously selected, the nested HDG yields a linear system that is block-tridiagonal,
and can thus be solved efficiently. The article also presents the formulation and implementation
of the HDG method to compute SHG under the assumption of non-depleted pump approximation,
that is, the fundamental wave is not affected by the generated harmonic [11]. We apply the nested
HDG method to compute the SHG on a triangular coaxial periodic nanogap structure, which is a
computationally intensive task since nonlinear optics phenomena feature rapid field variations and
extreme boundary-layer structures that span a wide range of length scales. In addition, we propose
strategies to partition the mesh in order to achieve an efficient nested static condensation.

This article is organized as follows. In Section 2, we introduce the equations and notation used
throughout the article. In Section 3, we review the formulation and implementation of the HDG
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method to solve the hydrodynamic model for metals in frequency domain, describe the modifications
needed to simulate SHG and present the nested hybridization strategy and algorithm. In Section 4,
we present numerical results to assess the performance of the proposed method and present some
concluding remarks in Section 5.

2. Second harmonic generation in metallic nanostructures

We now derive the equations that will be used throughout this article. The overline denotes dimen-
sional variables and constants, whereas the quantities without overlines are their non-dimensional
counterparts. The only dimensional quantities without overlines are the reference quantities that
we use to non-dimensionalize the problem: 𝐿c is a reference length scale in meters, 𝛼 is a reference
magnetic field in Ampere/meter, 𝜀0 is the free-space permittivity in Farad/meter, 𝜇0 is the free-
space permeability in Henry/meter, 𝑐0 = 1/

√
𝜀0𝜇0 is the free-space speed of light in meters/second

and 𝑍0 =
√︀
𝜇0/𝜀0 is the free-space impedance in Volt/Ampere.

2.1. Maxwell’s equations in time domain
The electric ℰ(x, 𝑡) and magnetic ℋ(x, 𝑡) fields, along with the electric displacement 𝒟 and magnetic
flux density ℬ, satisfy Maxwell’s equations in a metallic domain Ωm

∇× ℰ + 𝜕𝑡ℬ = 0 (Ampère’s law),

∇×ℋ− 𝜕𝑡𝒟 = 𝒥 ext (Faraday’s law),

∇ · 𝒟 = 𝜌ext, (Gauss’s law),

∇ · ℬ = 0, (magnetic Gauss’s law),

(1)

where 𝒥 ext represents the external electric current and 𝜌ext the external volume charge density.
For simplicity of exposition, we assume there are no external current 𝒥 ext = 0 and external charge
density 𝜌ext = 0. In addition, we have the following constitutive relations

ℬ = 𝜇ℋ ,

𝒟 = 𝜀0ℰ + 𝒫 + 𝒫∞ = 𝜀∞ℰ + 𝒫 ,

∇ · 𝒫 = −𝜌

𝜕𝑡𝒫 = 𝒥 .

(2)

The polarization density 𝒫 represents the density of permanent or induced electric dipole moments
due to free electrons. Conversely, the background polarization 𝒫∞ = (𝜀∞ − 𝜀0)ℰ represents the
polarization of the bound electrons in the valence band. The last two relations relate the polarization
density 𝒫 to the internal current 𝒥 and internal charge density 𝜌.

2.2. A nonlinear hydrodynamic model
The above set of equations is closed once we specify the polarization density of the material in
response to applied electromagnetic fields. In the simplest case, 𝒫 depends locally on the electric
field through a linear relationship. To account for nonlocal effects which become important at
nanoametric scales, a hydrodynamic model (HM) for the free electron gas was proposed in [30].
This model, despite neglecting quantum phenomena such as quantum tunneling and quantum
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oscillations, introduces a hydrodynamic pressure term that accounts for the nonlocal coupling of the
conduction-band electrons. Below we provide a brief description of the model and refer to [8, 20, 68]
for additional details.

The electron density 𝑛(x, 𝑡) and the hydrodynamic velocity v(x, 𝑡) are related by the continuity
equation as 𝜕𝑡𝑛 = −∇ · (𝑛v). In addition, the equation of motion for the electron fluid under a
macroscopic electromagnetic field is described as

𝑚𝑒(𝜕𝑡 + v · ∇ + 𝛾)v = 𝑒(ℰ + v × ℬ) − ∇𝑝

𝑛
, (3)

where 𝑚𝑒 is the effective electron mass, 𝑒 is the electron charge so that 𝒥 = 𝑒𝑛v and 𝛾 is a damping
constant related to the collision rate of the electrons. The electron pressure 𝑝(x, 𝑡) is given by [27]

𝑝(x, 𝑡) = 𝑝0

(︂
𝑛(x, 𝑡)

𝑛0

)︂5/3

(4)

where 𝑝0 =
18

25
𝑛0𝐸F, 𝐸F is the Fermi energy and 𝑛0 is the equilibrium charge density.

After combining equations (3), (4) and the continuity equation, we follow [21] and retaining only
first- and second-order terms, we obtain a nonlinear nonlocal model for the polarization in response
to an applied electromagnetic field

−𝛽2∇(∇ · 𝒫) + 𝜕𝑡𝑡𝒫 + 𝛾𝜕𝑡𝒫 − 𝜔2
p𝜀0ℰ = −

𝜔2
p𝜀0

𝑛0𝑒
ℰ
(︀
∇ · 𝒫

)︀
+

𝜔2
p

𝑐20𝑛0𝑒
𝜕𝑡𝒫 ×ℋ

− 1

𝑛0𝑒
∇ · (𝜕𝑡𝒫 ⊗ 𝜕𝑡𝒫) − 𝛽2

3𝑛0𝑒
∇(∇ · 𝒫)2 ,

(5)

where 𝜔p =
√︀
𝑛0𝑒2/𝑚𝑒𝜀0 is the metal’s plasma frequency. For incoming fields above this frequency

the metal behaves like a lossy dielectric since electron mobility is not sufficient to react and cancel

the incoming wave. The nonlocal parameter 𝛽 is given by 𝛽 =
√︁

6𝐸F/5𝑚𝑒. Given the definition

of Fermi kinetic energy 𝐸F = 𝑚𝑒𝑣
2
F/2, the nonlocal parameter reduces to 𝛽 =

√︀
3/5 𝑣F [53], where

𝑣F is the Fermi velocity. The nonlinear terms in the right hand side of equation (5) are known as
Coulomb force, magnetic Lorentz force, nonlinear convective force and nonlinear pressure force. We
note that the simplest form of the hydrodynamic model, based on the Thomas-Fermi approximation
accounting only for the linearized kinetic energy, corresponds to neglecting the nonlinear terms in
the right hand side of (5) to recover a linear expression. The implementation of this nonlocal linear
model with a hybridizable discontinuous Galerkin method was presented in [81].

Equation (5) needs to be solved simultaneously with Maxwell’s equations (1). Before proceeding,
it is convenient to non-dimensionalize the problem variables using the following scalings

x = 𝐿cx, 𝑡 = 𝐿c𝑡/𝑐0, ℰ = 𝛼𝑍0ℰ , ℋ = 𝛼ℋ,

𝒟 = 𝜀0𝛼𝑍0𝒟, ℬ = 𝜇0𝛼ℬ, 𝒥 = 𝛼𝒥 /𝐿c, 𝒫 = 𝛼𝒫/𝑐0 .
(6)

For a non-magnetic medium (𝜇 = 𝜇0), applying the scalings above to Maxwell’s equations (1), the
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constitutive relations (2) and the hydrodynamic pressure equation (5), we obtain

∇× ℰ + 𝜕𝑡ℋ = 0,

∇×ℋ− 𝜕𝑡(𝜀∞ℰ) = 𝒥 ,

𝛽2∇𝜌 + 𝜕𝑡𝒥 + 𝛾𝒥 − 𝜔2
pℰ =

𝜔2
p

𝑛0𝑒
ℰ𝜌 +

𝜔2
p

𝑛0𝑒
𝒥 ×ℋ− 1

𝑛0𝑒
∇ · (𝒥 ⊗ 𝒥 ) − 𝛽2

3𝑛0𝑒
∇𝜌2,

(7)

with the non-dimensional optical constants 𝜀∞ = 𝜀∞/𝜀0, 𝜔p = 𝜔p𝐿c/𝑐0, 𝛾 = 𝛾𝐿c/𝑐0, 𝛽 = 𝛽/𝑐0 and
electron constants 𝑒 = 𝑒 𝑐0/(𝛼𝐿2

c) and 𝑛0 = 𝑛0𝐿
3
c .

We now assume a time-harmonic response of the non-dimensional electromagnetic fields, where *

denotes the complex conjugate

ℰ(x, 𝑡) =
∑︁
𝑛∈N

ℜ{E𝑛(x) exp(−𝑖𝑛𝜔𝑡)} =
1

2

∑︁
𝑛∈N

E𝑛(x) exp(−𝑖𝑛𝜔𝑡) + E*
𝑛(x) exp(𝑖𝑛𝜔𝑡) ,

ℋ(x, 𝑡) =
∑︁
𝑛∈N

ℜ{H𝑛(x) exp(−𝑖𝑛𝜔𝑡)} =
1

2

∑︁
𝑛∈N

H𝑛(x) exp(−𝑖𝑛𝜔𝑡) + H*
𝑛(x) exp(𝑖𝑛𝜔𝑡) ,

𝒥 (x, 𝑡) =
∑︁
𝑛∈N

ℜ{J𝑛(x) exp(−𝑖𝑛𝜔𝑡)} =
1

2

∑︁
𝑛∈N

J𝑛(x) exp(−𝑖𝑛𝜔𝑡) + J*
𝑛(x) exp(𝑖𝑛𝜔𝑡) ,

𝜌(x, 𝑡) =
∑︁
𝑛∈N

ℜ{ρ𝑛(x) exp(−𝑖𝑛𝜔𝑡)} =
1

2

∑︁
𝑛∈N

ρ𝑛(x) exp(−𝑖𝑛𝜔𝑡) + ρ*𝑛(x) exp(𝑖𝑛𝜔𝑡) .

(8)

To derive a system for the amplitudes of the first harmonic, we introduce the expansions (8) into
(7) considering only 𝑛 ≤ 2, multiply by exp (−𝑖𝜔𝑡) and invoke orthogonality of the Fourier modes
to obtain following set of nonlinear equations

∇×E1 − 𝑖𝜔H1 = 0 ,

∇×H1 + 𝑖𝜔𝜀∞E1 − J1 = 0 ,

𝛽2∇ρ1 + (𝛾 − 𝑖𝜔)J1 − 𝜔2
pE1 = 𝑓1 ,

𝑖𝜔ρ1 −∇ · J1 = 0 .

(9)

The nonlinear source term 𝑓1 is given by

2𝑓1 =
𝜔2
p

𝑛0𝑒
(E*

1ρ2 + E2ρ
*
1) +

𝜔2
p

𝑛0𝑒
(J*

1 ×H2 + J2 ×H*
1)

− 1

𝑛0𝑒
∇ · (J*

1 ⊗ J2 + J2 ⊗ J*
1) − 𝛽2

3𝑛0𝑒
∇ (ρ*1ρ2 + ρ2ρ

*
1) .

(10)

Since we expect the power of the first harmonic to be several orders of magnitude stronger than that
of the second harmonic (‖E2‖ ≪ ‖E1‖), we hereafter assume that 𝑓1 = 0. This approximation is
known as the non-depleted pump approximation [11], which emphasizes that the second harmonic
does not deplete the fundamental wave. This assumption simplifies the calculation of the second-
harmonic and is justified in instances where the efficiency of the second harmonic generation is
sufficiently weak. For later use, we refer to the system of equations (9) with the simplification
𝑓1 = 0, as ℒm(E1,H1,J1, ρ1;𝜔) = 0.
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The Drude model [28] can be recovered from (9) by setting the nonlocal parameter 𝛽 to zero, in
which case Ohm’s law is recovered J1 = 𝑖𝜔2

pE1/(𝜔 + 𝑖𝛾) and the complex Drude permittivity is
expressed as 𝜀m(𝜔) = 𝜀∞ − 𝜔2

p/(𝜔(𝜔 + 𝑖𝛾)). The Drude model is more computationally efficient,
since (9) simplifies to Maxwell’s equations with a complex-valued permitivity, at the expense of
neglecting the nonlocal electron interactions that become relevant for sub-10 nm features.

2.3. Metallic nanostructures
The above formulation is extended to consider the more general case of a metallic nanostructure,
comprising both a metal Ωm described by the HM and a dielectric Ωd with permittivity 𝜀d described
solely by Maxwell’s equations. The solution within the metallic structure is governed by (9) and (12),
whereas the response in the dielectric Ωd is given by regular time-harmonic Maxwell’s equations,
namely

∇×E1 − 𝑖𝜔H1 = 0 ,

∇×H1 + 𝑖𝜔𝜀dE1 = 0 .
(11)

The boundary conditions for a metallic nanostructure can be expressed as

n×E1 × n = 0, on 𝜕ΩE ,

n×H1 = 0, on 𝜕ΩH ,

n · J1 = 0, on 𝜕Ωm
J ∪ Γmd ,

ρ1 = 0, on 𝜕Ωm
ρ ,

H1 × n−
√
𝜀d n×E1 × n = Hinc × n−

√
𝜀d n×Einc × n := 𝑓inc, on 𝜕Ωd

rad .

(12)

The first and second boundary condition prescribe perfect electric conductor (PEC) and perfect
magnetic conductor (PMC) behavior, which allows us to impose symmetries in periodic structures.
The third and fourth conditions also prescribe symmetry conditions in periodic structures for the
electric current and the electron charge, and are only applicable on the metallic subdomain. In
addition, the third boundary condition is also applied at the metal-dielectric interface Γmd =
Ωm ∩ Ωd to preclude the electrons from leaving the metal (since the normal component of the
electric current vanishes), also known as no electron spill-out condition [7]. Quantum effects such
as electron tunneling are therefore not modeled by the HM.

The last equation is the first-order Silver-Müller radiation condition [59, 75], preventing outgoing
waves from reflecting at the computational boundary and coming back into the domain. A common
alternative to the radiation condition are the perfectly matched layers (PMLs) [5, 41]. Even though
PMLs can be more effective at absorbing waves, they are more computationally intensive and require
parameter tuning. We have developed both alternatives and found no significant differences for the
metallic nanostructures considered within the frequency regimes of interest, hence we resorted to
Silver-Müller conditions. Illumination is prescribed as a p-polarized plane wave propagating in the
d-direction, that is Einc = p exp(𝑖𝜔

√
𝜀d d ·x) and Hinc = −𝑖/𝜔∇×Einc. For an example of how the

boundary conditions are assigned see Fig. 4 (c), where a periodic triangular coaxial nanostructure
is shown.

We refer to the above system of equations (11) to be solved on the dielectric as ℒd(E1,H1;𝜔) = 0,
and the boundary equations (12) to be prescribed as 𝑏(E1,H1,J1, ρ1;𝜔) = 𝑓inc, respectively. In
order to numerically solve the above systems with the HDG method we shall also impose continuity
of the tangential component of the magnetic field along the entire domain and continuity of the
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normal component of the electric current along the metal. These two additional conditions are
explained and derived within the HDG discretization, see Section 3.

2.4. Second-harmonic generation
Once the solution for the fundamental harmonic (E1,H1,J1, ρ1) has been determined by simultane-
ously solving (9), (11) and (12), we turn our attention to the second harmonic. Similary as before,
we introduce expansions (8) with 𝑛 ≤ 2 into (7), multiply by exp(−2𝑖𝜔𝑡), invoke orthogonality of
the Fourier basis and obtain the following set of equations for the amplitudes of the second harmonic
in the metallic domain. .

∇×E2 − 2𝑖𝜔H2 = 0,

∇×H2 + 2𝑖𝜔𝜀∞E2 − J2 = 0,

𝛽2∇ρ2 + (𝛾 − 2𝑖𝜔)J2 − 𝜔2
pE2 = 𝑓2

2𝑖𝜔ρ2 −∇ · J2 = 0,

(13)

where

2𝑓2 =
𝜔2
p

𝑛0𝑒
E1ρ1 +

𝜔2
p

𝑛0𝑒
J1 ×H1 −

1

𝑛0𝑒
∇ · (J1 ⊗ J1) − 𝛽2

3𝑛0𝑒
∇ρ21 (14)

The nonlinear source term in (14) depends only on the fundamental fields and represents the motion
of the electron fluid under an electromagnetic field.

The assumption of non-depleted pump approximation simplifies second-harmonic calculations, since
instead of solving a coupled system for the two harmonics, the SHG may be obtained by sequentially
solving Maxwell’s equations first for the fundamental wave and then for the second harmonic with a
nonlinear source term involving only the fundamental fields [21]. Using the operator ℒm introduced
earlier, we can express equation (13) as ℒm(E2,H2,J2, 𝜌2; 2𝜔) = 𝑓2. The boundary conditions for
the SHG are then simply 𝑏(E2,H2,J2, 𝜌2; 2𝜔) = 0, since no incident light is shone and the only
response is due to the nonlinear current.

Summarizing, the non-depleted SHG can be simulated as a two-step process, namely

1. Solve
ℒm(E1,H1,J1, 𝜌1;𝜔) = 0 , in Ωm ,

ℒd(E1,H1;𝜔) = 0 , in Ωd ,

with 𝑏(E1,H1,J1, ρ1;𝜔) = 𝑓inc ,

(15)

to compute (E1,H1,J1, ρ1).
2. Solve

ℒm(E2,H2,J2, ρ2; 2𝜔) = 𝑓2(E1,H1,J1, ρ1) , in Ωm ,

ℒd(E2,H2; 2𝜔) = 0 , in Ωd ,

with 𝑏(E2,H2,J2, ρ2; 2𝜔) = 0 ,

(16)

to compute (E2,H2,J2, ρ2).

Here, the plane-wave illumination is used only to compute the fundamental fields, ensuring the
second harmonic fields are solely generated by the nonlinear source (14). We point out that if the
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non-depleted approximation were not justified, the nonlinear source term (10) would need to be
retained in (15) and in this case, a simple fixed-point iterative algorithm involving (15) and (16)
could be devised.

3. Nested HDG method for the hydrodynamic model

3.1. Approximation spaces
We first review the notation, operators and approximation spaces needed for the HDG method
following [63]. We denote by 𝒯 = 𝒯 m ∪ 𝒯 d a triangulation of disjoint regular elements 𝐾 that
partition a nanostructure consisting of a metallic and dielectric subdomains 𝒟 = Ωm ∪ Ωd ∈ R3.
The set of element boundaries is then defined as 𝜕𝒯 := {𝜕𝐾 : 𝐾 ∈ 𝒯 }. For an arbitrary element
𝐾 ∈ 𝒯 , 𝐹 = 𝜕𝐾 ∩ 𝜕𝒟 is a boundary face if it has a non-zero 2-D Lebesgue measure. Any pair
of elements 𝐾+ and 𝐾− share an interior face 𝐹 = 𝜕𝐾+ ∩ 𝜕𝐾− if its 2-D Lebesgue measure is
non-zero. We finally denote by ℰ𝑜

ℎ and ℰ𝜕
ℎ the set of interior and boundary faces, respectively, and

their union by ℰℎ = ℰ𝑜
ℎ ∪ ℰ𝜕

ℎ .

Let n+ and n− be the outward-pointing unit normal vectors on the neighboring elements 𝐾+, 𝐾−,
respectively. We further use u± to denote the trace of u on 𝐹 from the interior of 𝐾±. The jump
J·K for an interior face 𝐹 ∈ ℰ𝑜

ℎ is defined as

Ju⊙ nK = u+ ⊙ n+ + u− ⊙ n−,

and for a boundary face 𝐹 ∈ ℰ𝜕
ℎ with outward normal n as

Ju⊙ nK = u⊙ n.

Here, the binary operation ⊙ represents either · or ×. The tangential u𝑡 and normal u𝑛 components
of u, such that u = u𝑡 + u𝑛, are given by

u𝑡 = n× u× n , u𝑛 = n(u · n) .

Let 𝐿2(𝒟) ≡ [𝐿2(𝒟)]3 denote the Lebesgue space of three dimensional square integrable vector
functions and 𝐻1(𝒟) the Hilbert space 𝐻1(𝒟) = {𝑣 ∈ 𝐿2(𝒟) :

∫︀
𝒟 |∇𝑣|2 < ∞}. We introduce the

curl-conforming space
𝐻curl(𝒟) = {u ∈ 𝐿2(𝒟) : ∇× u ∈ 𝐿2(𝒟)}

with associated norm ‖u‖2𝐻curl(𝒟) =
∫︀
𝒟 |u|2 + |∇ × u|2, as well as the div-conforming space

𝐻div(𝒟) = {u ∈ 𝐿2(𝒟) : ∇ · u ∈ 𝐿2(𝒟)}

with associated norm ‖u‖2𝐻div(𝒟) =
∫︀
𝒟 |u|2 + |∇ · u|2.

Let 𝒫𝑝(𝒟) denote the space of complex-valued polynomials of degree at most 𝑝 on 𝒟. We introduce
the following approximation spaces

𝑊ℎ = {𝑤 ∈ 𝐿2(𝒟) : 𝑤|𝐾 ∈ 𝒫𝑝(𝐾), ∀𝐾 ∈ 𝒯ℎ},

𝑊ℎ = {𝑤 ∈ 𝐿2(𝒟) : 𝑤|𝐾 ∈ [𝒫𝑝(𝐾)]
3
, ∀𝐾 ∈ 𝒯ℎ},

𝑀ℎ = {𝜇 ∈ 𝐿2(ℰℎ) : 𝜇|𝐹 ∈ 𝒫𝑝(𝐹 ), ∀𝐹 ∈ ℰℎ},
𝑀ℎ = {𝜇 ∈ 𝐿2(ℰℎ) : 𝜇|𝐹 ∈ 𝒫𝑝(𝐹 )t1 ⊕ 𝒫𝑝(𝐹 )t2, ∀𝐹 ∈ ℰℎ},
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where t1, t2 are linearly independent vectors tangent to the face. We note that by construction,
𝜇 ∈ 𝑀ℎ satisfies 𝜇 = n × 𝜇 × n = 𝜇1t1 + 𝜇2t2. The tangent vectors on a face 𝐹 can be defined
in terms of its normal n = (𝑛1, 𝑛2, 𝑛3) as t1 = (−𝑛2/𝑛1, 1, 0) and t2 = (−𝑛3/𝑛1, 0, 1). This
definition assumes that |𝑛1| ≥ max(|𝑛2|, |𝑛3|) but analogous expressions can be obtained when
|𝑛2| ≥ max(|𝑛1|, |𝑛3|) or |𝑛3| ≥ max(|𝑛1|, |𝑛2|) to avoid singularities. Boundary conditions are
included by setting 𝑀ℎ(u𝜕 |𝜕𝒟) = {𝜇 ∈ 𝑀ℎ : n × 𝜇 × n = Πu𝜕 on 𝜕𝒟} and 𝑀ℎ(𝑢𝜕 |𝜕𝒟) = {𝜇 ∈
𝑀ℎ : 𝜇 = Π𝑢𝜕 on 𝜕𝒟}, where Πu𝜕 (respectively, Π𝑢𝜕) is the projection of the prescribed value of
u, u𝜕 , onto 𝑀ℎ (respectively, 𝑢𝜕 onto 𝑀ℎ).

Finally, we define the various Hermitian products for the above finite element spaces. The volume
inner products are defined as

(𝜂, 𝜁)𝒯 :=
∑︁
𝐾∈𝒯

(𝜂, 𝜁)𝐾 , (𝜂, 𝜁)𝒯 :=

3∑︁
𝑖=1

(𝜂𝑖, 𝜁𝑖)𝒯 ,

and the surface inner products by

⟨𝜂, 𝜁⟩𝜕𝒯 :=
∑︁
𝐾∈𝒯

⟨𝜂, 𝜁⟩𝜕𝐾 , ⟨𝜂, 𝜁⟩𝜕𝒯 :=

3∑︁
𝑖=1

⟨𝜂𝑖, 𝜁𝑖⟩𝜕𝒯 .

For two arbitrary scalar functions 𝜂 and 𝜁, its scalar product (𝜂, 𝜁)𝒟 is the integral of 𝜂𝜁* on 𝒟.

3.2. First hybridization
In this section, we describe the HDG discretization for a metallic nanostructure, introduced in
[81], which is a necessary first step to develop the nested HDG method. For completeness, we will
consider both plane-wave illumination – active only when computing first harmonic – as well as the
nonlinear source term – active only when computing second harmonic.

The HDG discretization of ℒm, ℒd and 𝑏 needs to be completed with two additional continuity
condition, that is enforcing zero jump in the tangential component of Hℎ and in the normal com-
ponent of Jℎ. For all test functions (𝜅,𝜂, 𝜉, 𝜁,𝜇, 𝜃) ∈ 𝑊ℎ ×𝑊ℎ ×𝑊ℎ ×𝑊ℎ ×𝑀ℎ ×𝑀ℎ, we seek
approximate fields (Hℎ,Eℎ,Jℎ, ρℎ, ̂︀Eℎ, ̂︀ρℎ) ∈ 𝑊ℎ×𝑊ℎ×𝑊ℎ×𝑊ℎ×𝑀ℎ(0|𝜕ΩE)×𝑀ℎ(0|𝜕Ωm

ρ
) such

that

−𝑖𝜔(Hℎ,𝜅)𝒯 m + (Eℎ,∇× 𝜅)𝒯 m + ⟨̂︀Eℎ,𝜅× n⟩𝜕𝒯 m∖𝜕Ωm
E

= 0,

−𝛽2(ρℎ,∇ · 𝜂)𝒯 m + 𝛽2⟨̂︀ρℎ,𝜂 · n⟩𝜕𝒯 m∖𝜕Ωm
ρ

+ (𝛾 − 𝑖𝜔)(Jℎ,𝜂)𝒯 m − 𝜔2
p(Eℎ,𝜂)𝒯 m = (𝑓 ,𝜂)𝒯 m ,

(Hℎ,∇× 𝜉)𝒯 m + ⟨ ̂︀Hℎ, 𝜉 × n⟩𝜕𝒯 m + 𝑖𝜔(𝜀∞Eℎ, 𝜉)𝒯 m − (Jℎ, 𝜉)𝒯 m = 0,

𝑖𝜔(ρℎ, 𝜁)𝒯 m − ⟨̂︀Jℎ · n, 𝜁⟩𝜕𝒯 m + (Jℎ,∇𝜁)𝒯 m = 0,

−⟨n× ̂︀Hℎ,𝜇⟩𝜕𝒯 m∖𝜕Ωm
E

= 0,

⟨̂︀Jℎ · n, 𝜃⟩𝜕𝒯 m∖𝜕Ωm
ρ

= 0,

(17)

are satisfied in the metal. The fields ̂︀Eℎ, ̂︀Hℎ, ̂︀Jℎ, ̂︀ρℎ are single valued on the faces and approximate
the tangential component of E, H, J and the trace of ρ, respectively. The first four equations are
the weak formulation of ℒm(H,E,J, ρ;𝜔) = 𝑓inc. The boundary equations are strongly prescribed
on the approximation spaces for the electric field and electron charge and weakly prescribed on the
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last two equations for the magnetic field and the electric current. In addition, the fifth equation
enforces zero jump in the tangential component of Hℎ, that is Jn × ̂︀HℎK = 0 along all elemental
interfaces ℰℎ, and lastly the sixth equation enforces zero jump on the normal component of Jℎ along
all metal-metal interfaces ℰm

ℎ , that is Jn · ̂︀JℎK = 0.

Similarly, for the dielectric domain Ωd the following weak formulation is satisfied

−𝑖𝜔(Hℎ,𝜅)𝒯 d + (Eℎ,∇× 𝜅)𝒯ℎ
+ ⟨̂︀Eℎ,𝜅× n⟩𝜕𝒯 d∖𝜕Ωd

E
= 0,

(Hℎ,∇× 𝜉)𝒯 d + ⟨ ̂︀Hℎ, 𝜉 × n⟩𝜕𝒯 d + 𝑖𝜔(𝜀dEℎ, 𝜉)𝒯 d = 0,

−⟨n× ̂︀Hℎ,𝜇⟩𝜕𝒯 d∖𝜕Ωd
E
−
√
𝜀d⟨̂︀Eℎ,𝜇⟩𝜕Ωd

rad
= ⟨𝑓inc,𝜇⟩𝜕Ωd

rad

(18)

We close the system by introducing expressions for the hybrid fluxes of the magnetic field and
electric current field as ̂︀Hℎ = Hℎ + 𝜏𝑡(Eℎ − ̂︀Eℎ) × n,̂︀Jℎ · n = Jℎ · n− 𝜏𝑛𝑖𝜔(ρℎ − ̂︀ρℎ).

(19)

The parameters 𝜏𝑡, 𝜏𝑛 are the stabilization parameters, defined globally to ensure the accuracy and
stability of the HDG discretization. We propose the choice 𝜏𝑡 =

√
𝜀 (for each material’s permittivity)

and 𝜏𝑛 = 𝜔p/𝛽 which leads to numerically stable solutions even in the presence of tightly localized
fields in the metal-dielectric interface.

Substituting (19) in (17) and integrating by parts, we write the final HDG discretization for the
metallic domain

−𝑖𝜔(Hℎ,𝜅)𝒯 m + (Eℎ,∇× 𝜅)𝒯 m + ⟨̂︀Eℎ,𝜅× n⟩𝜕𝒯 m∖𝜕Ωm
E

= 0,

−𝛽2(ρℎ,∇ · 𝜂)𝒯 m + 𝛽2⟨̂︀ρℎ,𝜂 · n⟩𝜕𝒯 m∖𝜕Ωm
ρ

+ (𝛾 − 𝑖𝜔)(Jℎ,𝜂)𝒯 m − 𝜔2
p(Eℎ,𝜂)𝒯 m = (𝑓2,𝜂)𝒯 m ,

(∇×Hℎ, 𝜉)𝒯 m + ⟨𝜏𝑡[Eℎ − ̂︀Eℎ],n× 𝜉 × n⟩𝜕𝒯 m + 𝑖𝜔(𝜀∞Eℎ, 𝜉)𝒯 m − (Jℎ, 𝜉)𝒯 m = 0,

−(∇ · Jℎ, 𝜁)𝒯 m + 𝑖𝜔(ρℎ, 𝜁)𝒯 m + 𝑖𝜔𝜏𝑛⟨ρℎ, 𝜁⟩𝜕𝒯 m − 𝑖𝜔𝜏𝑛⟨̂︀ρℎ, 𝜁⟩𝜕𝒯 m = 0,

−⟨n×Hℎ,𝜇⟩𝜕𝒯 m∖𝜕Ωm
E
− ⟨𝜏𝑡Eℎ,𝜇⟩𝜕𝒯 m∖𝜕Ωm

E
+ ⟨𝜏𝑡̂︀Eℎ,𝜇⟩𝜕𝒯 m∖𝜕Ωm

E
= 0,

⟨Jℎ · n, 𝜃⟩𝜕𝒯 m∖𝜕Ωm
ρ
− 𝑖𝜔𝜏𝑛⟨ρℎ, 𝜃⟩𝜕𝒯 m∖𝜕Ωm

ρ
+ 𝑖𝜔𝜏𝑛⟨̂︀ρℎ, 𝜃⟩𝜕𝒯 m∖𝜕Ωm

ρ
= 0.

(20)

The nonlinear source also requires integration by parts, hence

(𝑓2,𝜂)𝒯 m =
𝜔2
p

2𝑛0𝑒
(E1ρ1,𝜂)𝒯 m +

𝜔2
p

2𝑛0𝑒
(J1 ×H1)𝒯 m

− 1

2𝑛0𝑒

[︁
⟨(̂︀J1 ⊗ ̂︀J1) · n,𝜂⟩𝜕𝒯 m − (J1 ⊗ J1,∇𝜂)𝒯 m

]︁
− 𝛽2

6𝑛0𝑒

[︀
⟨̂︀ρ21,𝜂 · n⟩𝜕𝒯 m − (ρ21,∇ · 𝜂)𝒯 m

]︀
.

The final HDG discretization for the dielectric is obtained after substituting (19) in (18) and
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integrating by parts

−𝑖𝜔(Hℎ,𝜅)𝒯 d + (Eℎ,∇× 𝜅)𝒯 d + ⟨̂︀Eℎ,𝜅× n⟩𝜕𝒯 d∖𝜕Ωd
E

= 0,

(∇×Hℎ, 𝜉)𝒯 d + ⟨𝜏𝑡[Eℎ − ̂︀Eℎ],n× 𝜉 × n⟩𝜕𝒯 d + 𝑖𝜔(𝜀dEℎ, 𝜉)𝒯 d = 0,

−⟨n×Hℎ,𝜇⟩𝜕𝒯 d∖𝜕Ωd
E
− ⟨𝜏𝑡Eℎ,𝜇⟩𝜕𝒯 d∖𝜕Ωd

E
+

+⟨𝜏𝑡̂︀Eℎ,𝜇⟩𝜕𝒯 d∖𝜕Ωd
E
−

√
𝜀d⟨̂︀Eℎ,𝜇⟩𝜕Ωd

rad
= ⟨𝑓inc,𝜇⟩𝜕Ωd

rad
.

(21)

The weak formulations (20)-(21) are then discretized using the corresponding basis functions on all
the elements and faces of 𝒯 , thus giving rise to the linear system⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑖𝜔A 0 B 0 C 0

0 (𝛾 − 𝑖𝜔)A −𝜔2
pA −𝛽2P 0 𝛽2O

B𝑇 −A D + 𝑖𝜔A𝜀 0 −E 0

0 −P𝑇 0 𝑖𝜔H 0 −𝑖𝜔N

C𝑇 0 −E𝑇 0 M 0

0 O𝑇 0 −𝑖𝜔N𝑇 0 𝑖𝜔T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Hm

Jm

Em

ρ
m̂︀Em̂︀ρ
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

𝑓2

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (22)

for the metal domain, and⎡⎢⎢⎢⎣
−𝑖𝜔A B C

B𝑇 D + 𝑖𝜔A𝜀 −E

C𝑇 −E𝑇 M

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Hd

Ed̂︀Ed

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

0

𝑓inc

⎤⎥⎥⎥⎦ , (23)

for the dielectric domain. Here (Hm,Em,
̂︀Em) and (Hd,Ed,

̂︀Ed) represent the vectors of degrees
of freedom of (Hℎ,Eℎ, ̂︀Eℎ) in metal and dielectric, respectively. Similarly, (Jm, ρm, ̂︀ρm) represent
the vectors of degrees of freedom of (Jℎ, ρℎ, ̂︀ρℎ) in metal. It is important to point out that the
two systems (22) and (23) have to be solved simultaneously because ̂︀Em and ̂︀Ed share degrees of
freedom for the faces located on the metal-dielectric interface.

We note that due to the discontinuous nature of the approximation spaces, the local variables
Eℎ, Hℎ, Jℎ, ρℎ (defined in the interior of each element) are only coupled globally through the global
variables ̂︀E, ̂︀ρ (defined on the element faces). This means that we can eliminate these local variables
at the element level, which in matrix form corresponds to eliminating the upper-left submatrices,
indicated with the dashed lines in (22) and (23), thus only a reduced matrix for the global variables
needs to be assembled. This numerical strategy, also known as hybridization or static condensation,
is essential to achieve an efficient implementation of the HDG method [22–24, 61–63]. Specifically,
the hybridization procedure yields the following global linear system

ϒ̂︀U = 𝑏, (24)

where the vector ̂︀U consists of the degrees of freedom of (̂︀Eℎ, ̂︀ρℎ). In practice, both the matrix
ϒ and the vector 𝑏 are formed by a standard finite element assembly procedure by computing
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the elemental quantities and assembling them in an element-by-element fashion. The detailed
implementation can be found in [79, 81].

The elimination of local degrees of freedom through hybridization renders a linear system where
the global degrees of freedom are defined on the faces only, thus drastically reducing the size of the
linear system that must be solved. After solving the linear system (24) for the global unknowns,
the local unknowns can be efficiently recovered at the element level [79, 81], an operation that is
trivially parallelizable.

3.3. Nested hybridization
Thus far, we have recreated the formulation and implementation of the HDG method for a metal-
dielectric domain introduced in [81]. In this section, we describe a nested hybridization method to
efficiently solve the global linear system that stems from the first hybridization (24) by exploiting
the geometry of the problems of interest. Indeed, for large 3-D structures the direct solution of
(24) may be challenging. Iterative methods, on the other hand, have found limited success for stiff
indefinite problems of the type considered here.

The idea behind the nested hybridization is to partition the global degrees of freedom ̂︀U = {W, V},
such that the W degrees of freedom can be statically condensed to yield the following linear system

ΨV = 𝑑 (25)

for V. Specifically, reordering the global system (24) using the ̂︀U = {W, V} allows us to write of
Ψ, 𝑑 as a function of ϒ, 𝑏, namely⎡⎢⎣ ϒWW ϒWV

ϒVW ϒVV

⎤⎥⎦
⎡⎢⎣ W

V

⎤⎥⎦ =

⎡⎢⎣ 𝑏W

𝑏V

⎤⎥⎦ . (26)

Assuming that ϒWW is invertible, the above system may be recast as

W = ϒ−1
WW [𝑏W −ϒWVV] (27)[︀

ϒVV −ϒVWϒ−1
WWϒWV

]︀
V = 𝑏V −ϒVWϒ−1

WW𝑏W . (28)

Thus we have Ψ = ϒVV −ϒVWϒ−1
WWϒWV and 𝑑 = 𝑏V −ϒVWϒ−1

WW𝑏W.

For this hybridization to be computationally efficient, we need to ensure the inverse of ϒWW may be
efficiently evaluated by means of a judicious choice of the global degrees of freedom. To that end, we
target specifically metallic nanostructures that can be discretized by extruding a 2-D discretization.
There are many examples of such structures in the literature [18, 19, 21, 67, 81, 87, 88, 92]. Under
this assumption, the degrees of freedom in the planes perpendicular to the extrusion direction are
assigned to V, and the remaining degrees of freedom are assigned to W. This partitioning gives
rise to N blocks {Ω𝑛}N𝑛=1, whose unknowns are {W𝑛}N𝑛=1; and N + 1 interfaces {Γ𝑛}N𝑛=0, whose
unknowns are {V𝑛}N𝑛=0, as illustrated in Fig. 1. Consequently, the matrix ϒWW can be inverted
efficiently since it is a block-diagonal matrix, namely

ϒWW = diag (ϒW1W1
,ϒW2W2

, . . . ,ϒWNWN
) .
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Û V

W
Γ3

Ω1

Ω2

Ω3
Γ2

Γ1

Γ0

a b

Figure 1: Sample metallic film structure with degrees of freedom for a 𝑝 = 2 discretization. (a) Global degrees of free-
dom ̂︀U after first hybridization. (b) Degree of freedom splitting ̂︀U = {W, V} after nested hybridization,
with V only on horizontal planes and W within the blocks.

Furthermore, this partitioning gives rise to a linear system (25) that is a block-tridiagonal, namely⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛼0 𝛽0

𝛾0 𝛼1 𝛽1 0
𝛾1

. . . . . .

. . . . . . . . .

0
. . . 𝛼N−1 𝛽N−1

𝛾N−1 𝛼N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V0

V1

...

...

VN−1

VN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑑0

𝑑1

...

...

𝑑N−1

𝑑N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(29)
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The blocks may be computed explicitly following (27) and (28) to obtain

𝛼0 = ϒV0V0
−ϒV0W1

ϒ−1
W1W1

ϒW1V0
,

𝛽0 = ϒV0V1 −ϒV0W1ϒ
−1
W1W1

ϒW1V1 ,

𝛾0 = ϒV1V0 −ϒV1W1ϒ
−1
W1W1

ϒW1V0 ,

𝑑0 = 𝑏V0
−ϒV0W1

ϒ−1
W1W1

𝑏W1
,

𝛼N = ϒVNVN
−ϒVNWN

ϒ−1
WNWN

ϒWNVN
,

𝑑N = 𝑏VN
−ϒVNWN

ϒ−1
WNWN

𝑏WN
,

(30)

and for 𝑛 = 1, . . . ,N − 1

𝛼𝑛 = ϒV𝑛V𝑛
−ϒV𝑛W𝑛

ϒ−1
W𝑛W𝑛

ϒW𝑛V𝑛
−ϒV𝑛W𝑛+1

ϒ−1
W𝑛+1W𝑛+1

ϒW𝑛+1V𝑛
,

𝛽𝑛 = ϒV𝑛V𝑛+1 −ϒV𝑛W𝑛+1ϒ
−1
W𝑛+1W𝑛+1

ϒW𝑛+1V𝑛+1 ,

𝛾𝑛 = ϒV𝑛+1V𝑛
−ϒV𝑛+1W𝑛+1

ϒ−1
W𝑛+1W𝑛+1

ϒW𝑛+1V𝑛
,

𝑑𝑛 = 𝑏V𝑛 −ϒV𝑛W𝑛ϒ
−1
W𝑛W𝑛

𝑏W𝑛 −ϒV𝑛W𝑛+1ϒ
−1
W𝑛+1W𝑛+1

𝑏W𝑛+1 .

(31)

The block tridiagonal system is never formed in practice, but rather solved on-the-fly using Thomas
method (forward Gaussian elimination for tridiagonal matrices). The first equation in (29) is recast
as

V0 = 𝛼−1
0 (𝑑0 − 𝛽0V1) = ̃︀𝑑0 + ̃︀𝛼0V1 . (32)

Using this relation, the second equation reads

V1 = (𝛼1 + 𝛾0 ̃︀𝛼0)
−1

(︁
𝑑1 − 𝛾0

̃︀𝑑0 − 𝛽1V2

)︁
= ̃︀𝑑1 + ̃︀𝛼1V2 , (33)

and we can thus establish an analogous expression for the subsequent equations 𝑛 = 2, . . . ,N − 1,
that is

V𝑛 = (𝛼𝑛 + 𝛾𝑛−1 ̃︀𝛼𝑛−1)
−1

(︁
𝑑𝑛 − 𝛾𝑛−1

̃︀𝑑𝑛−1 − 𝛽𝑛V𝑛+1

)︁
= ̃︀𝑑𝑛 + ̃︀𝛼𝑛V𝑛+1 . (34)

Hence, from the last equation we can retrieve the value for VN as

VN = (𝛼N + 𝛾N−1 ̃︀𝛼N−1)
−1

(︁
𝑑N − 𝛾N−1

̃︀𝑑N−1

)︁
= ̃︀𝛼N

̃︀𝑑N , (35)

and we then march backwards to recover the remaining {V𝑛}0𝑛=N−1 leveraging (34)–(32).

3.4. Implementation
In this section, we describe how to efficiently compute (30)-(31) and solve (29). The first step is to
judiciously partition the computational domain in the extrusion direction to define the blocks and
interfaces. For a given block Ω𝑛, the values on ϒW𝑛W𝑛

depend solely on the spatial dimensions
of the block and the material properties (𝜀d for dielectric and 𝜀∞, 𝜔p, 𝛾, 𝛽 for metal) and for a
given interface Γ𝑛 the values ϒV𝑛V𝑛

depend solely on the spatial dimensions of the interface and
the adjacent blocks’ material properties. Hence, accounting for these features when partitioning
the domain allows us to define unique block and interface types {Ωℓ}𝐿ℓ=1, {Γ𝑚}𝑀𝑚=1 that may
translate into important computational savings, similar to the strategy developed by Huynh et al.
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Figure 2: Substrate-metal-superstrate sample structure. (a) Block and interface definition. (b) Block types. (c)
Interface types.

Blocks Interfaces
Ω𝑛

𝜎Ω−−→ Ωℓ Γ𝑛
𝜎Γ−−→ Γ𝑚

1 1 0 1
2-4 2 1-3 2
5-6 3 4 3
7-9 4 5 4
10 5 6 5

7-9 6
10 7

Table 1: Block and interface type assignment for structure in Fig. 2.

in the context of efficient model order reduction for structured problems [29, 36, 37, 83]. The type
assignments can be mathematically expressed with a tuple of maps (𝜎Ω, 𝜎Γ), such that 𝜎Ω(𝑛) = ℓ if
block 𝑛 belongs to type ℓ, and analogously for the interfaces with 𝜎Γ. We have illustrated the type
definition on a substrate-metal-superstrate structure shown in Fig. 2, where the block partitioning
is done along the 𝑧 axis. After discretization, we are left with 4, 2 and 4 substrate, metal and
superstrate blocks respectively, along with 11 interfaces. Based on the dimensions and the material
properties, the type assignment is summarized in Table 1.

Once the type maps have been established and the matrix and forcing term ϒ, 𝑏 have been com-
puted, the degrees of freedom ̂︀U following Algorithm 1, a procedure that we refer to as nested
HDG with full assembly. Since an integral part of this nested hybridization method is the ability
to reuse computations by virtue of the block and interface types, we shall define six lists {𝑣𝑖}6𝑖=1

where all relevant computations are stored and can thus be accessed whenever required by Algo-
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Algorithm 1 Nested hybridization with full assembly to solve (24)

Require: HDG matrix and forcing term ϒ, 𝑏 of entire domain Ω; type maps (𝜎Ω, 𝜎Γ) of blocks
{Ω𝑛}N𝑛=1 and interfaces {Γ𝑛}N𝑛=0; six empty lists 𝑣1, . . . , 𝑣6

1: for 𝑛 = 1 : N do
2: Set ℓ = 𝜎Ω(𝑛), 𝑚0 = 𝜎Γ(𝑛− 1) and 𝑚1 = 𝜎Γ(𝑛)
3: if 𝑣1(ℓ) = ∅ then
4: Compute LU decomposition of ϒWℓWℓ

= 𝐿𝑈 and store 𝐿𝑈 ↦→ 𝑣1(ℓ)
5: Solve linear system for multiple right-hand-sides in parallel

𝑣1(ℓ)[𝑥0,𝑥1,𝑦] =
[︀
ϒWℓ,V𝑚0

, ϒWℓ,V𝑚1
, 𝑏W𝑛

]︀
,

store 𝑥0 ↦→ 𝑣2[ℓ,𝑚0], 𝑥1 ↦→ 𝑣3[ℓ,𝑚1] and set 𝑥 = [𝑥0, 𝑥1,𝑦]
6: else
7: if 𝑣2(ℓ,𝑚0) = ∅ and 𝑣3(ℓ,𝑚1) ̸= ∅ then
8: Solve linear system for multiple right-hand-sides in parallel

𝑣1(ℓ)[𝑥0,𝑦] =
[︀
ϒWℓ,V𝑚0

, 𝑏W𝑛

]︀
,

store 𝑥0 ↦→ 𝑣2[ℓ,𝑚0] and set 𝑥 = [𝑥0, 𝑣3[ℓ,𝑚1], 𝑦]
9: else if 𝑣2(ℓ,𝑚0) ̸= ∅ and 𝑣3(ℓ,𝑚1) = ∅ then

10: Solve linear system for multiple right-hand-sides in parallel

𝑣1(ℓ)[𝑥1,𝑦] =
[︀
ϒWℓ,V𝑚1

, 𝑏W𝑛

]︀
,

store 𝑥1 ↦→ 𝑣3[ℓ,𝑚1] and set 𝑥 = [𝑣2[ℓ,𝑚0], 𝑥1, 𝑦]
11: else
12: Solve linear system 𝑣1(ℓ)𝑏 = 𝑏W𝑛

and set 𝑥 = [𝑣2[ℓ,𝑚0], 𝑣3[ℓ,𝑚1], 𝑦]
13: end if
14: end if
15: Multiply and store ϒV𝑚0

,Wℓ
𝑥 ↦→ 𝑣4[ℓ,𝑚0], ϒV𝑚1

,Wℓ
𝑥 ↦→ 𝑣5[ℓ,𝑚1]

16: Compute 𝛼𝑛−1, 𝛽𝑛−1, 𝛾𝑛−1 and 𝑑𝑛−1 using (30)-(31)
17: Compute and store ̃︀𝛼𝑛−1 ↦→ 𝑣6[𝑛, 1] and ̃︀𝑑𝑛−1 ↦→ 𝑣6[𝑛, 2] using (32)-(34)
18: if 𝑛 = N then
19: Compute 𝛼N, 𝑑N using (30) and ̃︀𝛼N, ̃︀𝑑N using (35)
20: Evaluate VN = ̃︀𝛼N

̃︀𝑑N

21: end if
22: end for
23: for 𝑛 = N : −1 : 1 with ℓ = 𝜎Ω(𝑛), 𝑚0 = 𝜎Γ(𝑛− 1), 𝑚1 = 𝜎Γ(𝑛) do

V𝑛−1 = 𝑣6(𝑛, 2) + 𝑣6(𝑛, 1)V𝑛

𝑣1(ℓ)W𝑛 = 𝑏W𝑛 −ϒWℓV𝑚0
V𝑛−1 −ϒWℓV𝑚1

V𝑛

24: end for

rithm 1. These lists will contain the following items: 𝑣1 stores the LU decomposition of ϒWW for
each block type, and are indexed by block type; 𝑣2, . . . , 𝑣5 contain the building blocks of the Schur
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decomposition at the block-interface level, and are indexed by both block and interface type, see
Algorithm 1 for the exact expressions; finally, 𝑣6 contains each intermediate factor in the solution of
the tridiagonal system (29) using forward block Gaussian elimination, that is {̃︀𝛼𝑛, ̃︀𝑑𝑛}N𝑛=0, which
are required to compute the degrees of freedom for V with equations (32)–(34).

We make the following remarks regarding Algorithm 1: (i) instead of precomputing the HDG matrix
ϒ and forcing 𝑏, which may require significant storage, the matrix and forcing term can be partially
assembled on-the-fly after operation 2, that is only for the degrees of freedom {Wℓ,V𝑚0

,V𝑚1
} and

purged after each iteration, a variation that is referred to hereafter as nested HDG with partial
assembly; however, if this strategy is pursued both matrix and forcing term need to be partially
re-assembled in operation 23 to recover the solution field, hence the saving in memory (the HDG
matrix is never entirely assembled) comes at the expense of a higher computational runtime; (ii)
since storing and reusing computations is an integral part of the algorithm, we may also eliminate
items from 𝑣2, . . . , 𝑣5 as soon as they are no longer needed; (iii) the solution of the linear systems for
multiple right-hand-sides in steps 5, 8 and 10 of the algorithm is the most computationally intensive,
although it can be trivially parallelized; (iv) the storage of 𝑣6 requires significant memory storage
since all steps are needed to recover the interface degrees of freedom as in operation 23; and (v)
this hybridization results in a strong compression of the original problem, since once {V𝑛}N𝑛=0 have
been recovered we may evaluate {W𝑛}N𝑛=1 through operation 23 block-wise at minimal cost (the
LU decompositions are already stored in 𝑣1) and then obtain the local variables {Eℎ, Hℎ, Jℎ, ρℎ}
with the classical HDG static condensation expressions at the element level, see [79, 81].

The computational strategy described above is a purely algebraic construction, hence it is not only
applicable to the HDG discretization of Maxwell’s equations augmented with the hydrodynamic
model, but to any linear system arising from an HDG discretization. In order to minimize the
computational and memory requirements that stem from the nested HDG method described in
Algorithm 1, a carefully designed mesh and judicious degree-of-freedom choice is critical.

4. Numerical results

The numerical results presented in this section have been simulated with the MATLAB implementa-
tion of the nested HDG method described above and the classical HDG for Maxwell’s equations
introduced in [63, 81]. The computational times and memory footprint of the simulations corre-
spond to a 512GB Linux 18.04 machine with 16 AMD Opteron(tm) Processors 6320x15 that has
been used to perform the simulations.

4.1. Plane wave through layered media
In this section, we perform a numerical test to verify the implementation and accuracy of the nested
HDG. To that end, we use a plane wave propagating through a sapphire-silica-air layered medium
under normal incidence, for which the exact solution is known, and compare the errors of classical
HDG, i.e. direct solution of (24), with nested hybridization described by Algorithm 1.

The refractive indices of the layers are 3.31 (sapphire), 1.98 (silica) and 1 (air), with respective
thicknesses of 500, 250 and 250 nm. The plane wave is an 𝑥-polarized 1 micron wavelength plane
wave propagating in the positive 𝑧-direction, impinging from the sapphire layer. The computational
domain is a prism of 250× 250× 1000 nm discretized in 6× 6×𝑛 isotropic cubes, and we prescribe
E × n = 0 on the 𝑥-constant boundaries and H × n = 0 on the 𝑦-constant boundaries, as well as
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HDG nested HDG
‖E0 −Eℎ‖𝐿2 ‖E0 −Eℎ‖𝐻curl ‖E0 −Eℎ‖𝐿2 ‖E0 −Eℎ‖𝐻curl

𝑝 𝑛 Error Order Error Order Error Order Error Order

2 8 5.0e-2 – 2.2e-1 – 5.0e-2 – 2.2e-1 –
16 2.6e-3 4.27 4.7e-2 2.20 2.6e-3 4.27 4.7e-2 2.20
32 1.2e-4 4.42 1.2e-2 2.01 1.2e-4 4.42 1.2e-2 2.01
64 9.7e-6 3.63 2.9e-3 2.00 9.7e-6 3.63 2.9e-3 2.00

3 8 2.9e-3 – 4.5e-2 – 2.9e-3 – 4.5e-2 –
16 6.6e-5 5.47 5.6e-3 3.01 6.6e-5 5.47 5.6e-3 3.01
32 3.0e-6 4.46 7.2e-4 2.97 3.0e-6 4.46 7.2e-4 2.97
64 1.7e-7 4.14 9.0e-5 2.99 1.7e-7 4.14 9.0e-5 2.99

4 8 1.6e-4 – 6.6e-3 – 1.6e-4 – 6.6e-3 –
16 3.5e-6 5.51 4.8e-4 3.79 3.5e-6 5.51 4.8e-4 3.79
32 9.3e-8 5.23 3.1e-5 3.96 9.3e-8 5.23 3.1e-5 3.96
64 2.8e-9 5.08 1.9e-6 3.99 2.8e-9 5.08 1.9e-6 3.99

Table 2: History of convergence for the HDG and nested HDG solution.

first-order absorbing conditions on the top and bottom boundaries. We focus on 𝑝 = 2, 3, 4 and
several 𝑛 values, and compute the 𝐿2(𝒯 ) and 𝐻curl(𝒯 ) errors of Eℎ, collected in Table 2 along with
a convergence analysis. Note that since the cubes in the 𝑧-direction are isotropic, there are only
three different types of blocks (sapphire, silica, air) and seven interfaces (upper-lower boundaries,
sapphire-sapphire, sapphire-silica, silica-silica, silica-air and air-air).

a b

Figure 3: Comparison of computational costs between methods, for 𝑝 = 2, 3, 4 and 𝑛 = 8, 16, 32, 64: (a) Memory
requirements with respect to nested HDG with partial assembly. (b) Runtime with respect to nested HDG
with full assembly.

As expected, the solutions computed by both methods have the exact same errors and orders of
convergence, since the nested HDG is just an algebraic modification that enables a more efficient
solution of the classical HDG linear system. We now compare the computational costs and memory
requirements of HDG to the nested version, both with full and partial assembly. The computational
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runtimes correspond to the wall time averages of 10 individual simulations for each method; the
memory is measured in terms of RAM GB required to execute the algorithms. The most memory-
efficient method is the nested HDG with partial assembly, and the differences become starker as
the mesh is refined, requiring half the memory of that of nested HDG with full assembly and about
20 times less than HDG for the finest mesh, see Fig. 3(a). In terms of computational runtime,
the nested HDG with full assembly, which we use to benchmark in Fig. 3(b), is obviously faster
than nested HDG with partial assembly due to the cost of operation 23. Even though solutions
computed with classical HDG are faster for coarser meshes, as the discretization is refined our
implementation of nested HDG with full assembly becomes faster due to the reuse of computations
at the block level. The main takeaway from this example is that the nested HDG produces the same
solutions as classical HDG while exhibiting significantly lower memory requirements; the differences
in computational runtime depend on a myriad of factors, namely the resolution of the 2-D mesh
(the interfaces), the amount of unique blocks, the number of processors available and the efficiency
of the implementation, to name a few. However, based on the results in this article, we can conclude
that the nested HDG has the potential of resolving the linear HDG system faster than via direct
solution.

4.2. Triangular nanocoaxial aperture
We now consider a metallic nanostructure that produces extraordinary optical transmission and can
excite second harmonic fields. This structure consists of periodic arrays of subwavelength triangular
apertures of a dielectric material patterned in a metallic film, and unlike arrays of annular nanogap
structures that have been simulated with HDG in previous works [67, 81, 88], triangular apertures
are not centrosymmetric, a requirement to excite second-order effects.

4.2.1. Structure definition
The structure that will be analyzed is a gold thin-film with triangular coaxial nanogaps arranged
according to the symmetries of the square, see Fig. 4(a), for wavelengths ranging from visible
to low infra-red. The metal film is deposited over a sapphire substrate, a transparent material
in these frequency regimes, and the nanogap is filled with alumina. The structure is illuminated
from below with an 𝑥-polarized plane wave, and we can exploit the symmetries of the structure
and solve only for the domain shown in Fig. 4 containing half of the triangular nanogap. Under
these symmetry conditions, we prescribe E × n = 0, ρ = 0 on the 𝑥-constant boundaries and
H×n = 0, J ·n = 0 on the 𝑦-constant boundaries. First-order radiation conditions are imposed on
the 𝑧-constant boundaries. To assess the efficacy of SHG, we monitor the transmittance τ through
the structure and the second harmonic transmittance, computed as

τ1 = 100 ·

⃒⃒⃒∫︀
𝐴𝑜

ℜ [E1 ×H*
1] · n d𝐴

⃒⃒⃒
⃒⃒⃒∫︀

𝐴𝑖
ℜ [Einc ×H*

inc] · n d𝐴
⃒⃒⃒ , τ2 = 100 ·

⃒⃒⃒∫︀
𝐴𝑜

ℜ [E2 ×H*
2] · n d𝐴

⃒⃒⃒
⃒⃒⃒∫︀

𝐴𝑖
ℜ [Einc ×H*

inc] · n d𝐴
⃒⃒⃒ , (36)

where 𝐴𝑖 is an arbitrary 𝑥𝑦 plane below the gold film and 𝐴𝑜 an arbitrary 𝑥𝑦 plane above the gold
film.

The discretization consists of 18K hexahedral cubic elements, and is constructed by extruding in the
𝑧-direction the 2-D curved mesh in Fig. 4(b). The 2-D curved mesh, with 330 elements, is devised
such that the rounded corners are properly represented, and a boundary-layer type discretization is
used for the region surrounding the gap. To that end, we place 2-D coaxial layers at distances 0.5,
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Figure 4: Triangular coaxial nanostructure: (a) 3-D model of periodic array with relevant measures. (b) Cross-
sectional view and 2-D curved mesh of unit cell, with symmetry axis and boundary condition specification.
(c) 3-D computational domain of unit cell.

1, 2, 3 and 5 nm on both sides of the gap-metal interfaces, ensuring enough resolution for both first
and second order phenomena. In the vertical direction, we set both the substrate and superstrate
thickness to 500 nm which is sufficient to properly represent illumination conditions and domain
unboundedness. For each stratum, we use 19 blocks divided among 4 types, increasing the thickness
of each block type as we move further away from the gold film. This computational strategy allows
us to capture the rapidly-varying near-field effects in the vicinity of the metal surface (< 5 nm) as
well as to smoothly transition towards the far-field values of transmittance. For the gold stratum, we
use one thin block type for the regions near the metal-substrate and metal-superstrate interfaces (4
blocks of 0.25 nm thickness for both upper and lower areas) to capture the boundary-layer features
that develop and one thick block type for the rest (8 blocks). Hence, the total number of blocks is 54,
split into 10 type blocks and 7 type interfaces, see Fig. 4(c). The mesh topology we have described
is the same for the different geometric parameters discussed below, and since the hydrodynamic
density profile is independent of the gap size we use the same values of 2-D coaxial layers and 3-D
boundary-layer detail at the upper and lower metal surfaces for all gaps. Numerical accuracy is
verified by carrying out grid convergence studies on consecutively refined meshes, until the relative
error for the SHG transmittance is below 1%. This highly anisotropic mesh, along with the nested
HDG method, allows us to efficiently solve for the full 3-D EM wave field.
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4.2.2. Optimal geometry
For the structure under consideration, we set the array periodicity to 500 nm and the radius of
curvature at the triangle corners to 20 nm for fabrication purposes. The remaining geometric
features, namely the gap size 𝐺, the triangle side 𝐷 and the film thickness 𝑇 need to be numerically
determined so as to achieve a doubly-resonant structure. The idea behind such a structure is that
resonances are excited at both 𝜔 and 2𝜔, thus amplifying the second-order effects that are generated
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with lines to visually aid resonance tracking and gray shaded area to identify thicknesses that lead to
doubly-resonant structures. (b) Real part of Ex for the different resonances along the mid-gap diagonally-
vertical plane. Black lines correspond to upper and lower film surfaces.

as a consequence of its non-centrosymmetric nature.

Firstly, we need to understand the effect of 𝐺, 𝐷 and 𝑇 on the resonances. In order to alleviate the
computational burden of this parametric study, we perform the simulations using the Drude model
(by setting 𝛽 = 0 in (15)) instead of the hydrodynamic model; in the mid-infrared the Drude model
predicts a transmittance spectrum that is qualitatively identical to that of the hydrodynamic (only
red-shifted), hence it suffices to understand the impact of the geometry parameters. Furthermore,
the high-resolution mesh defined above is specifically tailored to capture SHG, hence we may use
a coarser mesh just for these geometry simulations since the Drude model does not solve for the
Ångstrom-thin accumulation charge layers at the metal-dielectric interfaces. To that end, we use a
mesh similar to that of Fig. 4(b,c), but with only 112 2-D elements for a total of 2K hexahedral
cubic elements.

For a single wavelength, simulating the full electromagnetic response using the Drude model on
the coarse mesh requires solving a sparse linear system of size 190K and 62M non-zeros (1.5GB of
RAM), which takes 9 minutes to solve using MATLAB’s backslash operation. We simulate the full
spectra of transmittance (0.9-2.8 micron) for several gaps, triangle side lengths and film thicknesses.
The impact of gap is shown in Fig. 5(a) for 𝑇 = 125 nm and 𝐷 = 150 nm, the impact of thickness
is shown in Fig. 5(b) for 𝐺 = 9 nm and 𝐷 = 150 nm and the impact of triangle side length is
shown in Fig. 5(c) for 𝑇 = 125 nm and 𝐺 = 9 nm. The wavelength 𝜆*

0 of resonance 𝑅0 is blue-
shifted as 𝐷 decreases, whereas it is almost insensitive to the thickness. Conversely, the wavelength
𝜆*
1 of resonance 𝑅1 is much more sensitive to changes in 𝑇 (blue-shift for decreasing thickness)
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than to changes in 𝐷. Finally, both resonances are similarly affected by gap size modifications.
Consequently, for a given gap size one should fix either 𝐷 (resp. 𝑇 ) and vary 𝑇 (resp. 𝐷) to attain
a geometric configuration that is doubly-resonant at frequencies 𝜔 and 2𝜔.

For this structure, we choose to fix 𝐷 and optimize the double resonance as 𝑇 varies, and leverage
our previous work to compute parametrized solutions of plasmonic structures [82], whereby a small
number of high-fidelity simulations can be used to construct an accurate reduced order model
(ROM) that enables the inexpensive computation of approximate solutions. The reduced order
model is constructed upon two parameters: the incident wavelength, to obtain spectrum profiles;
and the film thickness, to evaluate how variations in the film thickness impact the resonances. To
achieve a parametric representation of the thickness, we build a mapping using 𝒞2 splines that
prescribes deformations in the z-direction, thus ensuring that thickness variations starting from a
reference thickness value may be accommodated and are continuous and differentiable. Further
details on how to parametrize geometry in plasmonics using deformation mappings may be found
in [82].

For each gap size of interest, we set the triangle side to 𝐷 = 150 nm and build a ROM by first
computing 200 high-fidelity simulations (Drude model on the coarse mesh) and then combining these
solutions, or snapshots, to form a low-dimensional approximation space, see [82]. This is commonly
known as offline stage, which is computationally intensive (each of the 200 solutions takes 9 minutes
for a total of 30 hours) but done only once. After completing this stage, the main advantage of
ROMs is that they can be queried for any value of 𝜆 ∈ [0.8, 22] micron and 𝑇 ∈ [110, 150] nm –these
are the prescribed intervals of interest for the triangular coax– and produce an approximate full-
wave 3-D solution of (15) in less than 0.1 seconds. This multi-query process, known as the online
stage, will obviously exhibit lower accuracy since instead of the high-fidelity solver we employ a
surrogate model. However, for the reduced order models under consideration we report relative
errors in transmittance of less than 5% when comparing the ROM solution to the high-fidelity
HDG solution, hence the ROM are a suitable computational tool to study the impact of thickness
in the resonances of this triangular coaxial structure.

In this case, the burden of the offline stage is greatly compensated by the efficiency of the online
stage, since transmittance-wavelength-thickness heatmaps can be obtained by inexpensively query-
ing the ROM for multiple (𝜆, 𝑇 ) combinations, which would otherwise require a full HDG 3-D
simulation for each (𝜆, 𝑇 ). These heatmaps are paramount to track the resonances as a function
of the thickness and to identify, for each gap, the metal film thickness that gives rise to a doubly-
resonant structure. We show the transmittance heatmaps for 12 and 15 nm nanogaps with 𝐷 = 150
nm in Fig 6, where we notice that the 𝑅1 resonance splits between two for 15 nm gaps and above,
whereas it remains a single resonance for gaps below 15 nm. A field plot of the real part of the
𝑥-electric amplitude is provided in Fig. 6, where the field is shown along the mid-gap diagonal
plane –that is, the vertical plane that runs along the middle of the gap and is parallel to the longer
side of the triangle as shown in Fig. 5(b)– where it can be observed that the 𝑅1 splitting gives rise
to modes 𝑅1𝑎, 𝑅1𝑏 that are not constant along the diagonal direction, as opposed the 𝑅1 mode.
The shaded gray area corresponds to thickness values that lead to double resonances.

4.2.3. Second-harmonic simulations
Once we have identified, for each gap, the values of 𝐷 and 𝑇 that excite modes at 𝜔 and 2𝜔,
we can apply the computational strategy summarized in (15)-(16) on the fine mesh and with the
hydrodynamic model (𝛽 > 0) to compute SHG, where we solve the global HDG linear systems by
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Figure 7: First and second harmonic transmittance for 𝐷 = 150 nm. (a,b) Transmittance profile τ1 (a) and τ2
(b)-wavelength [µm] for 6, 9, 12 and 15 nm gap and optimal thickness to realize double resonances. (c,d)
Transmittance profile τ1 (c) and τ2 (d)-wavelength [µm] for the 12 nm gap and several film thicknesses.
Optimal thickness leading to double resonance is 128 nm.

means of Algorithm 1. In order to simulate the spectra shown in Fig. 7, for each gap size and film
thickness we solve (15)-(16) for 24 different wavelength values. These simulations are expensive,
taking around 19 hours –9.5 hours for each (15) and (16)– per wavelength, for a grand total of 19
days of nonstop computation to recover the first and second harmonic spectrum for a given gap
and thickness. We now discuss the breakdown of simulation costs of either (15) or (16) for one
wavelength into operations as per Algorithm 1, using the nested HDG with partial assembly and
purging the lists 𝑣2, 𝑣5 of unnecessary computations after each iteration. The LU decomposition
(operation 4) takes 25 min, solving the linear system (operations 5, 8, 10, 12) takes 250 min, forming
and operating the full matrices that result from the second hybridization (operations 16, 17, 20)
take 282 min and the {W,V} recovery (operation 23) takes 3 min. In terms of storage, the partial
assembly of ϒ requires 0.5 GB, the LU decompositions in 𝑣1 requires 13 GB for all types, 𝑣2 and
𝑣3 combined require a maximum of 29 GB, 𝑣4 and 𝑣5 combined require a maximum of 28 GB and
finally 𝑣6 requires 128 GB. The storage requirement at any given algorithm step does not exceed
150 GB thanks to the type blocks and interfaces definition and since the information on 𝑣2, . . . , 𝑣5
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can be eliminated as the algorithm progresses. However, the storage for 𝑣1, 𝑣6 keeps increasing
throughout the main loop, and it can only be deleted after it has been used to recover {W,V} in
operation 23. Unfortunately, no specific cost comparison can be drawn with classical HDG because
the direct solution of the fully assembled sparse matrix exceeds the RAM capacity of our machine
(512 GB). If fully assembled, the HDG linear system ϒ is of dimension 2M, with 750M non-zeros
for a total of 18 GB in storage.

The bottleneck for the nested HDG method is the discretization of the 2-D mesh rather than the
amount of blocks in the third dimension. The resolution of the 2-D mesh will dictate the amount of
degrees of freedom at the interfaces, which is directly related to the amount of forcing terms when
solving the linear systems (operations 5, 8, 10), as well as to the dimension of the matrices 𝛼𝑛 that
need to be inverted to solve the tridiagonal system, which are no longer sparse. A possible strategy
to mitigate the computational costs is to increase the number of processors, since operations 5,
8, 10 are embarrassingly parallel with respect to the number of forcing terms. However, further
research is needed to reduce the computational burden of the forward Gaussian elimination of the
block tridiagonal matrix (Thomas algorithm), summarized in operations 16, 17, 20.

For all simulations, we choose an illumination intensity of 100 MW/cm
2, which corresponds to a

reference magnetic field 𝛼 = 7.29 · 104 A/m, and a reference lengthscale 𝐿c = 10−9 m. The values
for gold optical constants are 𝜀∞ = 1, ~𝜔p = 8.45 eV, ~𝛾 = 0.047 eV [65], the Fermi velocity
𝑣F = 1.39 · 106 m/s, the equilibrium charge density 𝑛0 = 5.91 · 1028 m−3 [3] and finally the electron
charge 𝑒 = 1.062 · 10−19 C. The dielectric constant values for alumina as a function of the incident
wavelength are given by [9] for 𝜆 < 1.5 micron and [43] for 𝜆 > 1.5 micron, whereas the permittivity
of sapphire is taken from [56].

The first and second order transmittances τ1, τ2 are shown in Figs. 7(a) and (b) for 6, 9, 12 and 15
nm gap. Setting 𝐷 = 150 nm, we capitalize on the ROMs constructed in Section 4.2.2 and find that
thickness values of 128.5, 129, 128 and 126 nm lead to double resonances for these gaps, respectively.
Even though the ROM is constructed for the Drude model only, the doubly-resonant thickness is
still valid for the nonlocal calculations, since the blue-shift introduced by the hydrodynamic model
depends only on the gap width and triangle side length. Stronger second-harmonic transmittance
correlates with stronger first harmonic transmittance, suggesting that ultranarrow gaps (below
10 nm) may not be the best candidate structures to observe SHG, despite exhibiting larger field
enhancements due to the increased confinement.

In order to highlight the importance of having a doubly resonant structure for enhanced SHG, we
compute for 𝐷 = 150 nm and 𝐺 = 12 nm the transmittance profile for several film thicknesses,
namely 110, 120, 128, 140 and 150 nm, shown in Figs. 7(c) and (d). For this gap and triangle side,
thicknesses of approximately 128 nm are the ones that guarantee double resonances, as shown in Fig.
6(a) (top), thus we can expect the second harmonic transmittance τ2 to peak for this geometric
configuration. Indeed, when comparing the peak transmittance of 120 and 128 nm thicknesses,
we see that despite exhibiting lower first harmonic transmittance τ1281 /τ1201 = 0.95, the 128 nm
thickness attains a second harmonic transmittance nearly four times larger than that of 120 nm
τ1282 /τ1202 = 3.97. This boosting in second harmonic transmittance is a consequence of an optimal
geometric configuration that excites resonances at precisely 𝜔 and 2𝜔. The field enhancement for
this optimal geometry at the resonant wavelength is shown in Fig. 8, where the extreme confinement
and boundary-layer structure of both the first and second harmonic at the curved metal-alumina
interface can be appreciated.
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Figure 8: Cross-section image, with two zooms to show detail at the rounded vertex, of 𝑥-component of electric field
for 𝐷 = 150 nm, 𝐺 = 12 nm and 𝑇 = 128 nm (double resonant structure) at resonant wavelength 𝜆 = 2.009
micron, computed 0.25 nm below the gold-air interface. Black squares indicate area of zoom. (a) First
harmonic |E1x| (b) Second harmonic |E2x| .

5. Conclusions

The hybridizable discontinuous Galerkin method for Maxwell’s equations augmented with the hy-
drodynamic model for metals is specially suited to simulate nonlinear plasmonics phenomena, owing
to its high-order accuracy and its ability to handle the very large disparity in length scales and the
extreme localization of electromagnetic fields. For complex structures the required spatial dis-
cretization gives rise to a system that cannot be directly solved due to storage limitations. On the
other hand we have not found a robust and effective iterative algorithm to solve the large indefinite
HDG linear systems. In this article, we have presented a computational strategy to efficiently solve
linear systems of equations that arise from the HDG method by performing a nested hybridization.
In computational terms, we consider discretizations that results form the extrusion of 2-D meshes
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and substitute one single large linear system solve for multiple smaller linear systems that stem from
partitioning the original mesh into non-overlapping blocks of mesh elements following the extrusion
direction. Furthermore, a judicious block partition enables us to reuse computations, thus making
the nested HDG more efficient than classical HDG both from the storage and the computational
perspective.
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