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Highlights

• An explicit hybridizable discontinuous Galerkin method is developed for the acoustic wave equation.
• It can yield optimal convergence rates for all the approximate variables.
• It has some superconvergence properties that can be exploited to improve the convergence rate of the solution.
• The method is extended to treat the wave equation with perfectly matched layers.

Abstract

We present an explicit hybridizable discontinuous Galerkin (HDG) method for numerically solving the acoustic wave equation.
The method is fully explicit, high-order accurate in both space and time, and coincides with the classic discontinuous Galerkin (DG)
method with upwinding fluxes for a particular choice of its stabilization function. This means that it has the same computational
complexity as other explicit DG methods. However, just as its implicit version, it provides optimal convergence of order k + 1
for all the approximate variables including the gradient of the solution, and, when the time-stepping method is of order k + 2, it
displays a superconvergence property which allow us, by means of local postprocessing, to obtain new improved approximations
of the scalar field variables at any time levels for which an enhanced accuracy is required. In particular, the new approximations
converge with order k + 2 in the L2-norm for k ≥ 1. These properties do not hold for all numerical fluxes. Indeed, our results show
that, when the HDG numerical flux is replaced by the Lax–Friedrichs flux, the above-mentioned superconvergence properties are
lost, although some are recovered when the Lax–Friedrichs flux is used only in the interior of the domain. Finally, we extend the
explicit HDG method to treat the wave equation with perfectly matched layers. We provide numerical examples to demonstrate the
performance of the proposed method.
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1. Introduction

Discontinuous Galerkin (DG) methods have been used for the spatial discretization of wave propagation
problems [1–19] due to their ability to handle complex geometries and inhomogeneous materials, provide high-
order accurate solutions with very low dispersion errors, as well as perform h/p mesh adaptivity. DG methods are
traditionally combined with explicit time integration schemes such as Runge–Kutta methods to numerically solve
wave propagation problems [20,15,18]. Explicit DG methods are attractive because they only require the inverse of
a block-diagonal mass matrix and the computation of a residual vector. However, it is well known that the time step
of explicit DG methods is limited by the Courant–Fredrichs–Lewy (CFL) condition [21]. In order to avoid the CFL
condition, DG methods can be combined with implicit time integration schemes, resulting in implicit DG methods.
However, one of the main criticism of implicit DG methods is that they have too many globally coupled degrees of
freedom [22,23]. The same criticism has been raised against DG methods for steady-state problems like, for example,
all the DG methods used to solve diffusion problems considered in [24], which, moreover, provide sub-optimally
convergent approximations for the gradient of the field variable.

The hybridizable DG (HDG) methods first introduced in [25] for elliptic problems seek to address some of the
above criticism. Indeed, the HDG methods guarantee that only the degrees of freedom of the approximation of the
scalar variable on the interelement boundaries are globally coupled, and that the approximate gradient attains optimal
order of convergence for elliptic problems [26–28]. This motivated the further development of the HDG methods
for a variety of partial differential equations: diffusion problems [29,30], convection–diffusion problems [31–34],
incompressible flow [35–39], compressible flows [40–43], continuum mechanics [44,41,42,45], and, more recently, to
time-dependent acoustic and elastic wave propagation in [46,47], the Helmholtz equation in [9,10,48], and the time-
harmonic Maxwell’s equations [49,50]. In the setting of wave propagation problems, the HDG methods compare with
other finite element methods favorably because they achieve optimal orders of convergence for both the scalar and
gradient unknowns and display superconvergence properties [46,9,48,47].

Thus far, only implicit HDG methods [47,39,41,32–34] have been developed to solve time-dependent problems.
Our goal in this paper is to introduce an explicit hybridizable discontinuous Galerkin (EHDG) method for numeri-
cally solving the acoustic wave equation and explore its convergence properties. It turns out that the EHDG method
is an explicit DG method whose numerical fluxes coincide with the upwinding fluxes for a particular choice of the
stabilization function. Hence, the method has the same computational cost as other explicit DG methods and provides
optimal convergence of order k + 1 for all the approximate variables. However, when the time-stepping method is of
order k + 2, it displays a superconvergence property that allows us, by means of local postprocessing, to obtain new
improved approximation of the field variable at any time levels for which an enhanced accuracy might be required. In-
deed, the new approximation converges with order k+2 in the L2-norm for k ≥ 1 in full agreement with the theoretical
results of the semidiscrete version of the method obtained in [46]. These superconvergence properties, which are new
even for the well-known DG method using upwinding fluxes, seem to strongly depend on the choice of the numerical
flux. Indeed, we present numerical examples to demonstrate these features and show that, when we replace the HDG
numerical fluxes by those of the Lax–Friedrichs method, the superconvergence property is lost, and that some of them
are recovered when the HDG flux is used at the boundary. We also extend the method to treat the wave equation with
perfectly matched layers. Let us emphasize that, although we solely focus on the acoustic wave equation, the extension
of the proposed method to the elastic wave equations and the time-dependent Maxwell’s equations is straightforward.

The article is organized as follows. In Section 2, we describe the EHDG method and in Section 3, we present
numerical results to assess the convergence and accuracy of the method. In Section 4, we extend the method to treat
perfectly matched layers and present numerical results to demonstrate the effectiveness of the method. Finally, in
Section 5, we provide some concluding remarks on future work.

2. Explicit HDG method

2.1. The acoustic wave equation

Let Ω ∈ Rd be a bounded domain with Lipschitz continuous boundary ∂Ω and let T > 0 be the final time. We
consider the following acoustic wave equation

ρ(x)
∂2u

∂t2 − ∇ · (κ(x)∇u) = f, in Ω × (0, T ]. (1)
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Here u is the scalar field variable, κ is the bulk modulus of the medium, ρ is the density of the medium, and f is a
given source term.

We next introduce a new field variable v =
∂u
∂t and the gradient q = κ∇u. We can write (1) into a system of

first-order equations as

∂q
∂t

− κ∇v = 0, in Ω × (0, T ],

ρ
∂v

∂t
− ∇ · q = f, in Ω × (0, T ].

(2)

The exact solution (v, q) satisfies the following initial conditions

v(x, t = 0) = v0(x), ∀x ∈ Ω ,

q(x, t = 0) = q0(x), ∀x ∈ Ω ,
(3)

and a general Robin boundary condition

q · n + βv = g, on ∂Ω × (0, T ]. (4)

The coefficient β varies on the boundary ∂Ω and represents different types of boundary conditions. Specifically, the
Neumann boundary condition corresponds to β = 0, the Dirichlet boundary condition to β = ∞, and the first-order
absorbing boundary condition to β = 1.

2.2. Approximation spaces

Let Th be a collection of disjoint elements that partition Ω . We denote by ∂Th the set {∂K : K ∈ Th}. For an
element K of the collection Th , F = ∂K ∩ ∂Ω is the boundary face if the d − 1 Lebesgue measure of F is nonzero.
For two elements K + and K − of the collection Th , F = ∂K +

∩ ∂K − is the interior face between K + and K − if the
d − 1 Lebesgue measure of F is nonzero. Let E o

h and E ∂
h denote the set of interior and boundary faces, respectively.

We denote by Eh the union of E o
h and E ∂

h .
Let Pk(D) denote the set of polynomials of degree at most k on a domain D. We are going to use the following

discontinuous finite element spaces:

Wh = {w ∈ L2(Ω) : w|K ∈ W (K ), ∀K ∈ Th},

Vh = {p ∈ (L2(Ω))d
: p|K ∈ V(K ), ∀K ∈ Th},

for W (K ) ≡ Pk(K ) and V(K ) ≡ (Pk(K ))d . In addition, we introduce a traced finite element space

Mh = {µ ∈ L2(Eh) : µ|F ∈ Pk(F), ∀F ∈ Eh}.

We also set Mh(gD) = {µ ∈ Mh : µ = PgD on ∂ΩD}, where P denotes the L2-projection into the space
{µ|∂Ω ∀µ ∈ Mh}.

For functions w and v in (L2(D))d , we denote (w, v)D =


D w · v. For functions w and v in L2(D), we denote
(w, v)D =


D wv if D is a domain in Rd and ⟨w, v⟩D =


D wv if D is a domain in Rd−1. We finally introduce

(w, v)Th =


K∈Th

(w, v)K , ⟨µ, η⟩∂Th
=


K∈Th

⟨µ, η⟩∂K ,

for w, v defined on Th and µ, η defined on ∂Th .

2.3. Semi-discrete formulation

The HDG method for the wave equation (2)–(4) seeks to define (qh, vh,vh) ∈ Vh × Wh × Mh as a solution of
1
κ

∂qh

∂t
, r


Th

+ (vh, ∇ · r)Th
− ⟨vh, r · n⟩∂Th

= 0,
ρ

∂vh

∂t
, w


Th

+ (qh, ∇w)Th
− ⟨qh · n, w⟩∂Th

= ( f, w)Th ,

⟨qh · n, µ⟩∂Th\∂Ω + ⟨qh · n + βvh − g, µ⟩∂Ω = 0,

(5)
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for all (r, w,µ) ∈ Vh × Wh × Mh and all t ∈ (0, T ], where the numerical flux is defined as

qh · n = qh · n − τ(vh −vh), on ∂Th . (6)

In a recent paper [47], we use implicit time-stepping methods such as the diagonally implicit Runge–Kutta schemes
to discretize the HDG method (5)–(6) in time. This results in a class of implicit HDG methods.

In this paper, we aim to introduce a new class of explicit HDG methods. To this end, we consider the following
equivalent (when we take τ to be constant on each face) reformulation of the HDG method (5)–(6): find (qh, vh) ∈

Vh × Wh such that for all K ∈ Th ,
1
κ

∂qh

∂t
, r


K
+ (vh, ∇ · r)K − ⟨vh, r · n⟩∂K = 0, ∀ r ∈ V(K ),

ρ
∂vh

∂t
, w


K

+ (qh, ∇w)K − ⟨qh · n, w⟩∂K = ( f, w)K , ∀ w ∈ W (K ),

(7)

where, for any given face F ∈ ∂K ,

vh =


τ+v+

h + τ−v−

h

τ+ + τ−
−

1
τ+ + τ−

(q+

h · n+
+ q−

h · n−), if F ∈ E o
h ,

τ

τ + β
vh +

1
τ + β

(Pg − qh · n), if F ∈ ∂Ω ,

(8)

and

qh · n = qh · n − τ(vh −vh) on ∂K . (9)

Here Pg denotes the L2 projection of g onto the space Mh , and

v±

h |F = vh |F∈∂K ± , and q±

h |F = qh |F∈∂K ± ,

where K + and K − are two elements sharing the face F . Hence, v−

h and q−

h (respectively, v+

h and q+

h ) are nothing but
the value of vh and qh on the face F from the element K − (respectively, K +). We can show that the system (7)–(9)
is equivalent to the original formulation (5)–(6) by explicitly deriving the expression (8) from the last equation of (5);
see [32,33] for the detailed derivation. While the original formulation (5)–(6) is useful for implicit time integration,
the reformulation (7)–(9) is better suited to explicit time integration.

Let us now establish a relation between these numerical traces and the solution of a Riemann problem for the
equation under consideration. Such a solution is the weak solution of the wave equation (2) on Rd

× (0, T ) with initial
condition

v(x, t = 0) = v±, q(x, t = 0) = q±
, ∀x · n± < 0.

Assuming that κ(x) = κ± and ρ(x) = ρ± for all x ·n± > 0, the solution (q, v) of the above Riemann problem is such
that

q(0, t) · n±
= q±

· n±
−


κ±ρ±(v±

− v(0, t)), ∀t > 0,

where the normal component of q(0, t) and v(0, t) are well-defined, constant quantities for t > 0. We can now see
that when we take the stabilization function as τ±

:=


κ±ρ±, the numerical traces of the HDG method are nothing
but the well-known upwinding fluxes. In this case, we see that the stabilization function τ is nothing but the ratio of
the bulk modulus κ to the sound speed

√
κ/ρ of the medium. It is thus reasonable to take τ in this way although this

is not the only choice that provides good convergence results.

2.4. L2 stability and energy conservation

We can easily show that the semi-discrete formulation (5) satisfies the following energy identity

eh(T ) =
1
2
(ρv0, v0)Th +

1
2
(κ−1q0, q0)Th +

 T

0


( f, vh)Th + ⟨g,vh⟩∂Ω


dt, (10)



752 M. Stanglmeier et al. / Comput. Methods Appl. Mech. Engrg. 300 (2016) 748–769

where

eh(T ) =
1
2
(ρvh(T ), vh(T ))Th +

1
2
(κ−1qh(T ), qh(T ))Th

+

 T

0


⟨τ(uh −uh), (uh −uh)⟩∂Th

+ ⟨βvh,vh⟩∂Ω


dt. (11)

To prove the identity (10), we choose w = vh, r = qh , µ =vh and add the resulting equations in (5) up to obtain
ρ

∂vh

∂t
, vh


Th

+


1
κ

∂qh

∂t
, qh


Th

+ ⟨τ(uh −uh), (uh −uh)⟩∂Th
+ ⟨βvh,vh⟩∂Ω = ( f, vh)Th + ⟨g,vh⟩∂Ω . (12)

The desired result then follows from integrating this equation from 0 to T . The energy identity (10) implies that
qh = uh = vh = 0 when the right-hand side is set to zero and the parameters ρ, κ, β and τ are positive. As a result,
the HDG method (5) is stable and yield unique solutions at all time.

Furthermore, when f = 0 and g = 0, it follows from the above result that

∂ Eh(T )

∂t
= −⟨τ(uh(T ) −uh(T )), (uh(T ) −uh(T ))⟩∂Th

< 0, (13)

where

Eh(T ) =
1
2
(ρvh(T ), vh(T ))Th +

1
2
(κ−1qh(T ), qh(T ))Th +

 T

0
⟨βvh,vh⟩∂Ω dt (14)

is the L2 energy of the PDE system (2) at time T . Therefore, the HDG method is dissipative since the L2 energy
decays with time. The rate of the energy decay is exactly equal to the jump term


K∈Th


∂K τ |uh −uh |

2dx.

2.5. The HDG method as a particular case of a DG method

Let us place the HDG method in the general framework of DG methods. This will show the strong link with those
methods and will allow us to make comparisons with some of them. Note that the (two-dimensional) wave equation
under consideration can be written as

B
∂u
∂t

+ ∇ · F(u) = 0, (15)

where

B =

ρ 0 0
0 1/κ 0
0 0 1/κ

 , u =

 v

qx
qy

 , F(u) = −

qx qy
v 0
0 v

 . (16)

We apply the standard DG space discretization [5] to this linear hyperbolic first-order system to arrive at the following
semidiscrete scheme: Find uh ∈ [Pk(K )]3 such that

B
∂uh

∂t
, V


K
− (F(uh), ∇V)K + ⟨f , V⟩∂K = 0, (17)

for all V ∈ [Pk(K )]3 and all K ∈ Th . Heref is the numerical flux vector depending on uh , the normal vector n, and
the boundary conditions. Note that the weak formulation of our HDG method (7) has this very form.

For any interior face F ∈ E o, a general formula for the numerical flux is given by

f (uh, u−

h , n) =
1
2


F(uh) + F(u−

h )


n +
1
2

S

uh − u−

h


, (18)

where u−

h is the value of the DG solution uh from the neighboring element that shares the interior face and S is the
so-called stabilization matrix. Different choices of the stabilization matrix lead to different DG methods. For instance,
a popular choice is the Lax–Friedrichs flux which corresponds to setting S as:

S := SL F ≡ |λmax|I, (19)
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where I is the identity matrix, and |λmax| = max{1/
√

κ ρ,
√

κ ρ}. For the HDG method, we have the following choice
of the stabilization matrix when τ = τ±:

S := SH DG ≡


τ 0 0

0
n2

x

τ

nx ny

τ

0
nx ny

τ

n2
y

τ

 . (20)

We can now clearly see what we have emphasized already, namely, that our HDG method is a particular case of the
DG method (17)–(18). It coincides with the DG method with upwinding fluxes for τ =

√
κ ρ [3].

The numerical fluxf must also be defined on the boundary faces to account for the boundary conditions. There, it
is usually defined by

f (uh, ub
h, n) =

1
2


F(uh) + F(ub

h)


· n +
1
2

S


uh − ub
h


, (21)

where the vector ub
h depends on uh and the boundary condition. To impose the boundary condition v = 0 on ∂Ω , we

can take ub
h = (0, qh)T . This results in the following form of the numerical flux:

f (uh, ub
h, n) =


qh · n +

|λmax|

2
vh

1
2
vh

1
2
vh

 , (22)

for the Lax–Friedrichs scheme. For the HDG scheme, however, we do not follow the formula (21). Instead, the HDG
method takes a choice consistent with the solution of the Riemann problem, namely,

f (uh, ub
h, n) =

−qh · n
−vh nx
−vh ny

 . (23)

So, to impose the boundary condition v = 0 on ∂Ω , we take

f (uh, ub
h, n) =

−qh · n + τ vh
0
0


and to impose the boundary condition q · n + βv = g, we take

f (uh, ub
h, n) =

−(Pg − βvh)

−vh nx
−vh ny

 , vh :=
τ

τ + β
vh +

1
τ + β

(Pg − qh · n).

Of course, we can also use the HDG boundary flux (23) for the Lax–Friedrichs scheme instead of (22).

2.6. Temporal discretization by the SSPRK methods

We use the SSPRK(s, s) scheme [3,51] to integrate the semi-discrete HDG system in time. We first set
(qn,0

h , v
n,0
h , un,0

h ) = (qn
h, vn

h , un
h). For i = 0, . . . , s − 1, we compute

vn,i
h =


τ+v

+n,i
h + τ−v

−n,i
h

τ+ + τ−
−

1
τ+ + τ−

(q+n,i
h · n+

+ q−n,i
h · n−), if F ∈ Eh\∂Ω ,

τ

τ + β
v

n,i
h +

1
τ + β

(Pgn,i
− qn,i

h · n), if F ∈ ∂Ω ,

(24)
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and qn,i
h · n = qn,i

h · n − τ(v
n,i
h − vn,i

h ) for all faces F of Eh ; we then determine (qn,i+1
h , v

n,i+1
h , un,i+1

h ) ∈

V(K ) × W (K ) × W (K ) as the solution of 1
κ

qn,i+1
h − qn,i

h

∆tn , r


K
+


v

n,i
h , ∇ · r


K

− ⟨vn,i
h , r · n⟩∂K = 0,

ρ
v

n,i+1
h − v

n,i
h

∆tn , w


K
+


qn,i

h , ∇w


K
− ⟨qn,i

h · n, w⟩∂K = ( f n,i , w)K ,un,i+1
h − un,i

h

∆tn , z


K
− (v

n,i
h , z)K = 0,

(25)

for all (r, w, z) ∈ V(K ) × W (K ) × W (K ) and for all elements K ∈ Th . We finally set

(qn+1
h , vn+1

h , un+1
h ) =

s
i=0

αs,i (q
n,i
h , v

n,i
h , un,i

h ), (26)

where the coefficients αs,i are precisely those corresponding to the SSPRK scheme (s, s) [3,51], namely

α1,0 = 1, αs,i =
1
i
αs−1,i−1, i = 1, . . . , s − 2,

αs,s =
1
s!

, αs,s−1 = 0, αs,0 = 1 −

s−1
i=1

αs,i .

(27)

The SSPRK(s, s) scheme has s stages and s orders of accuracy.

2.7. Temporal discretization by the ERK methods

We begin by reviewing the class of explicit Runge–Kutta (ERK) methods for computing the solution of the ODE

dy

dt
= r(y). (28)

The general s-stage ERK method for the above ODE is written in the form
yn,1

yn,2

. . .

yn,s−1

yn,s

 =


yn,0

yn,0

. . .

yn,0

yn,0

+ ∆tn


a21 0 . . . 0 0
a31 a32 . . . 0 0
. . . . . . . . . . . . . . .

as1 as2 . . . as,s−1 0
b1 b2 . . . bs−1 bs




r(yn,0)

r(yn,1)

. . .

r(yn,s−2)

r(yn,s−1)

 , (29)

where yn,0
≡ yn , yn,i

≡ y(tn
+ ci∆tn), i = 1, . . . , s, and yn,s

≡ yn+1. To specify a particular ERK method, one
needs to provide the coefficients ai j , bi and ci . These RK coefficients are usually arranged in the form

0 0 0 0 . . . 0 0
c2 a21 0 0 . . . 0 0
c3 a31 a32 0 . . . 0 0
. . . . . . . . .

cs as1 as2 as3 . . . as,s−1 0
b1 b2 b3 . . . bs−1 bs

(30)

which is known as Butcher tableau. Let us introduce the following matrix
d11 0 . . . 0 0
d21 d22 . . . 0 0
. . . . . . . . . . . . . . .

ds−1,1 ds−1,2 . . . ds−1,s−1 0
ds1 ds2 . . . ds,s−1 dss

 =


a21 0 . . . 0 0
a31 a32 . . . 0 0
. . . . . . . . . . . . . . .

as1 as2 . . . as,s−1 0
b1 b2 . . . bs−1 bs


−1

. (31)
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Then we can rewrite the ERK method (29) as

yn,i+1
= yn,0

−

i−1
j=0

di j

di i
(yn, j

− yn,0) +
∆tn

di i
r(yn,i ), i = 0, . . . , s − 1. (32)

In this form, we see that the i th stage of the ERK method corresponds to a forward Euler step with a timestep size
∆tn,i

= ∆tn/di i and a starting point yn,i
= yn,0

−
i−1

j=0(di j/di i )(yn, j
− yn,0).

We are now ready to describe the ERK method for solving the HDG system (7)–(9). For the i th stage of the ERK
method, we first compute

qn,i
h = qn,0

h −

i−1
j=1

di j

di i
(qn, j

h − qn,0
h ),

v
n,i
h = v

n,0
h −

i−1
j=1

di j

di i
(v

n, j
h − v

n,0
h ),

un,i
h = un,0

h −

i−1
j=1

di j

di i
(un, j

h − un,0
h );

(33)

we next evaluate

vn,i
h =


τ+v

+n,i
h + τ−v

−n,i
h

τ+ + τ−
−

1
τ+ + τ−

(q+n,i
h · n+

+ q−n,i
h · n−), if F ∈ Eh\∂Ω ,

ατ

ατ + β
v

n,i
h +

1
ατ + β

(Pgn,i
− αqn,i

h · n), if F ∈ ∂Ω ,

(34)

and qn,i
h · n = qn,i

h · n − τ(v
n,i
h − vn,i

h ) for all faces F of Eh ; we finally determine (qn,i+1
h , v

n,i+1
h , un,i+1

h ) ∈

V(K ) × W (K ) × W (K ) as the solution of
1
κ

qn,i+1
h − qn,i

h

∆tn/di i
, r


K

+


v

n,i
h , ∇ · r


K

− ⟨vn,i
h , r · n⟩∂K = 0,

ρ
v

n,i+1
h − v

n,i
h

(∆tn/di i )
, w


K

+


qn,i

h , ∇w


K
− ⟨qn,i

h · n, w⟩∂K = ( f n,i , w)K ,
un,i+1

h − un,i
h

∆tn/di i
, z


K

− (v
n,i
h , z)K = 0,

(35)

for all (r, w, z) ∈ V(K ) × W (K ) × W (K ) and for all elements K ∈ Th . This completes the description of the ERK
method for temporal discretization.

2.8. Local postprocessing

To postprocess the numerical solution for the new approximation un ∗

h , we define un ∗

h ∈ Pk+1(K ) on every simplex
K ∈ Th to satisfy

∇un ∗

h , ∇w


K =

qn

h, ∇w


K , ∀ w ∈ Pk+1(K ),
un ∗

h , 1


K =

un

h, 1


K .
(36)

To postprocess the numerical solution for the new velocity vn ∗

h , we first compute an approximation pn
h ∈ V(K ) to the

velocity gradient p(tn) = ∇v(tn) by locally solving the below system
pn

h, v


K = −

vn

h , ∇ · v


K + ⟨vn
h , v · n⟩∂K , ∀ v ∈ V(K ). (37)
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We then find vn ∗

h ∈ Pk+1(K ) such that
∇vn ∗

h , ∇w


K =

pn

h, ∇w


K , ∀ w ∈ Pk+1(K ),
vn ∗

h , 1


K =

vn

h , 1


K .
(38)

The local postprocessing requires us to compute the inverse of a local mass matrix whose size is the dimension of
Pk+1(K ).

It is important to point out that we can compute un ∗

h and vn ∗

h at any time step without advancing in time. Hence,
the local postprocessing can be performed whenever we need higher accuracy at particular time steps.

3. The effect of the choice of the numerical fluxes

In this section, we study the effect of the choice of the numerical fluxes in the convergence properties of explicit
DG methods. We consider the wave equation (1) on a unit square Ω = (0, 1) × (0, 1) with boundary condition v = 0
on ∂Ω and initial condition u(x, y, t = 0) = 0 and v(x, y, t = 0) = sin(πx) sin(πy). For κ = ρ = 1 and f = 0 the
problem has the following exact solution

u =
1

√
2π

sin(πx) sin(πy) sin(
√

2π t), v = sin(πx) sin(πy) cos(
√

2π t).

This solution represents the vibration of the square membrane under an initial velocity.
In the first set of numerical experiments, we test the convergence properties of the explicit HDG method with

τ±
= τ±

upw :=


ρ± κ±, that is, of the well-known upwinding DG method. We then take the stabilization function as
τ = 10 τupw and as τ = 0.1 τupw to see if this affects the performance of the method. Our experiments show optimal
convergence for the approximations qh and vh as well as superconvergence of the local averages uh (which is reflected
in the optimal convergence of the postprocessing u∗

h), and that the orders of convergence are not affected when we
change the stabilization function, in full agreement with the theoretical results proved for the semidiscrete version of
the HDG method in [46]. (The optimal convergence of the postprocessing v∗

h was not proved in [46] but has been
verified once again here.) Note that although the explicit upwinding method has been known for a few decades, this
is the first time we uncover the above-mentioned superconvergence.

In the second set of numerical experiments, we replace the HDG fluxes by the popular Lax–Friedrichs flux to see
if the superconvergence properties still hold. Our experiments show that, although we still achieve optimal orders of
convergence for the approximations qh and vh , the superconvergence of the local average of uh is actually lost. Our
experiments show that using the HDG boundary flux (23) produces smaller errors and better convergence rates than
using the flux (22).

3.1. The HDG flux

We start by setting τ = τupw :=
√

κ ρ so that the explicit HDG method under consideration becomes the classic
DG method with upwinding fluxes; see, for example, [3].

We consider triangular meshes that are obtained by splitting a regular n × n Cartesian grid into a total of 2n2

triangles, giving uniform element sizes of h = 1/n. On these meshes, we consider polynomials of degree k to represent
all the approximate variables using a high-order nodal basis [15] within each element. We use SSPRK(k + 1, k + 1)

and SSPRK(k + 2, k + 2) for temporal discretization. The timestep size is set to ∆t =
h

2(2k+1)
. Unless otherwise

indicated, the final time is T = 1.
We present the L2-errors and associated orders of convergence for the numerical approximations obtained using

the HDG-SSPRK(k + 1, k + 1) scheme in Table 1 and the HDG-SSPRK(k + 2, k + 2) scheme in Table 2. We ob-
serve in both cases that all of the numerical approximations converge with the optimal order k + 1 and that, for the
HDG-SSPRK(k +2, k +2) scheme, the postprocessed field variable, u∗

h , converges with order k +2, in full agreement
with the theoretical results in [46]; the theoretical justification of the observed order of convergence for v∗

h , k + 2,
remains an open problem. We also see that the HDG-SSPRK(k + 1, k + 1) scheme performs just as well as the HDG-
SSPRK(k + 2, k + 2) scheme (the errors in time seem to be much smaller than those in space for T = 1), except for
u∗

h for k = 2. In such a case, it only converges with order k + 1 with the HDG-SSPRK(k + 1, k + 1) scheme whereas
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Table 1
Errors and orders of convergence for the HDG-SSPRK(k + 1, k + 1) scheme with τ = τupw on structured meshes.

Degree Mesh ∥u − uh∥Th ∥v − vh∥Th ∥q − qh∥Th ∥u − u∗
h∥Th ∥v − vh

∗
∥Th

k 1/h Error Order Error Order Error Order Error Order Error Order

2 4.24e−3 – 1.01e−2 – 1.69e−2 – 2.30e−3 – 8.98e−3 –
4 4.07e−4 3.38 1.07e−3 3.24 1.68e−3 3.33 1.23e−4 4.23 5.41e−4 4.05

2 8 4.48e−5 3.19 1.27e−4 3.07 1.84e−4 3.19 7.23e−6 4.09 2.96e−5 4.19
16 5.27e−6 3.09 1.60e−5 2.99 2.16e−5 3.09 5.67e−7 3.67 1.78e−6 4.06
32 6.39e−7 3.04 2.02e−6 2.99 2.62e−6 3.04 5.82e−8 3.28 1.23e−7 3.85

2 5.75e−4 – 1.62e−3 – 2.66e−3 – 1.82e−4 – 1.33e−3 –
4 3.12e−5 4.21 8.22e−5 4.30 1.38e−4 4.27 4.64e−6 5.30 3.58e−5 5.21

3 8 1.78e−6 4.13 5.21e−6 3.98 7.74e−6 4.15 1.31e−7 5.15 1.03e−6 5.13
16 1.06e−7 4.07 3.32e−7 3.97 4.56e−7 4.08 3.89e−9 5.07 3.06e−8 5.07
32 6.46e−9 4.04 2.09e−8 3.99 2.77e−8 4.04 1.19e−10 5.03 9.12e−10 5.07

2 8.63e−5 – 2.29e−4 – 4.00e−4 – 2.23e−5 – 1.65e−4 –
4 2.56e−6 5.07 6.46e−6 5.15 1.16e−5 5.11 3.42e−7 6.03 2.67e−6 5.95

4 8 7.71e−8 5.06 1.98e−7 5.03 3.33e−7 5.12 5.19e−9 6.04 3.73e−8 6.16
16 2.35e−9 5.03 6.13e−9 5.01 1.00e−8 5.05 7.95e−11 6.03 6.09e−10 5.94
32 7.25e−11 5.02 1.92e−10 5.00 3.07e−10 5.03 1.23e−12 6.02 1.06e−11 5.84

Table 2
Errors and orders of convergence for the HDG-SSPRK(k + 2, k + 2) scheme with τ = τupw on structured meshes.

Degree Mesh ∥u − uh∥Th ∥v − vh∥Th ∥q − qh∥Th ∥u − u∗
h∥Th ∥v − vh

∗
∥Th

k 1/h Error Order Error Order Error Order Error Order Error Order

2 4.13e−3 – 9.84e−3 – 1.65e−2 – 2.13e−3 – 8.64e−3 –
4 4.01e−4 3.37 1.06e−3 3.22 1.65e−3 3.32 1.02e−4 4.38 5.19e−4 4.06

2 8 4.44e−5 3.17 1.27e−4 3.06 1.83e−4 3.18 4.82e−6 4.40 2.80e−5 4.21
16 5.24e−6 3.08 1.60e−5 2.99 2.15e−5 3.09 2.59e−7 4.22 1.61e−6 4.12
32 6.36e−7 3.04 2.02e−6 2.99 2.61e−6 3.04 1.53e−8 4.08 9.81e−8 4.04

2 5.75e−4 – 1.62e−3 – 2.66e−3 – 1.82e−4 – 1.33e−3 –
4 3.12e−5 4.21 8.22e−5 4.30 1.38e−4 4.27 4.63e−6 5.29 3.59e−5 5.21

3 8 1.78e−6 4.13 5.21e−6 3.98 7.74e−6 4.15 1.31e−7 5.15 1.03e−6 5.13
16 1.06e−7 4.07 3.32e−7 3.97 4.56e−7 4.08 3.88e−9 5.07 3.05e−8 5.07
32 6.46e−9 4.04 2.09e−8 3.99 2.77e−8 4.04 1.19e−10 5.03 8.97e−10 5.09

2 8.63e−5 – 2.29e−4 – 4.00e−4 – 2.23e−5 – 1.65e−4 –
4 2.56e−6 5.07 6.46e−6 5.15 1.16e−5 5.11 3.42e−7 6.03 2.67e−6 5.95

4 8 7.71e−8 5.06 1.98e−7 5.03 3.33e−7 5.12 5.19e−9 6.04 3.73e−8 6.16
16 2.35e−9 5.03 6.13e−9 5.01 1.00e−8 5.05 7.95e−11 6.03 6.09e−10 5.94
32 7.25e−11 5.02 1.92e−10 5.00 3.07e−10 5.03 1.23e−12 6.02 1.06e−11 5.84

it converges with order k + 2 with the HDG-SSPRK(k + 2, k + 2) scheme, as expected. In conclusion, by using the
local postprocessing, we can increase the convergence rate by one order from k + 1 to k + 2 with little additional cost.

Next, we show the convergence properties of the explicit HDG method for τ = 10τupw in Table 3 and τ = 0.1τupw

in Table 4, where τunw :=
√

κ ρ. Our numerical results show that the convergence rates are similar to those shown
in Table 1 for τ = τupw. However, in both cases, we must use a smaller timestep size in order to ensure the stability
of the explicit HDG method. In particular, the timestep size is now set to ∆t =

0.1h
2(2k+1)

for both τ = 10τupw

and τ = 0.1τupw. (Note that the explicit HDG method is unstable when we consider a larger timestep size than
∆t =

0.1h
2(2k+1)

.) More generally, we observe from our numerical experiments that for τ = cτupw the timestep size

required for the explicit HDG method is ∆t = min{
ch

2(2k+1)
, h

2c(2k+1)
}. This implies that the choice of τ = τupw is

optimal. Hence, the value of τ does not affect the convergence rate of the explicit HDG method, but it does have a
significant impact on the required timestep size.
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Table 3
Errors and orders of convergence for the HDG-SSPRK(k + 1, k + 1) scheme with τ = 10τupw on structured meshes.

Degree Mesh ∥u − uh∥Th ∥v − vh∥Th ∥q − qh∥Th ∥u − u∗
h∥Th ∥v − vh

∗
∥Th

k 1/h Error Order Error Order Error Order Error Order Error Order

2 5.11e−3 – 2.99e−2 – 7.88e−2 – 5.94e−3 – 3.01e−2 –
4 4.88e−4 3.39 2.11e−3 3.83 1.55e−2 2.34 5.73e−4 3.37 2.19e−3 3.78

2 8 3.32e−5 3.88 1.45e−4 3.86 2.18e−3 2.83 3.79e−5 3.92 1.70e−4 3.69
16 2.13e−6 3.96 1.04e−5 3.80 2.32e−4 3.23 1.95e−6 4.28 1.31e−5 3.69
32 1.83e−7 3.54 7.21e−7 3.85 2.29e−5 3.34 9.51e−8 4.36 9.01e−7 3.86

2 8.73e−4 – 3.18e−3 – 1.71e−2 – 1.01e−3 – 3.22e−3 –
4 3.43e−5 4.67 1.19e−4 4.73 1.52e−3 3.49 4.12e−5 4.62 1.32e−4 4.61

3 8 1.04e−6 5.04 5.19e−6 4.52 9.59e−5 3.99 1.24e−6 5.05 6.22e−6 4.41
16 3.01e−8 5.12 1.96e−7 4.73 4.87e−6 4.30 3.11e−8 5.32 2.38e−7 4.71
32 1.16e−9 4.69 7.00e−9 4.81 2.43e−7 4.33 7.73e−10 5.33 8.19e−9 4.86

2 1.04e−4 – 2.96e−4 – 2.76e−3 – 1.24e−4 – 3.05e−4 –
4 2.20e−6 5.56 9.20e−6 5.01 1.12e−4 4.62 2.46e−6 5.66 9.71e−6 4.97

4 8 4.90e−8 5.49 2.11e−7 5.45 3.24e−6 5.12 3.56e−8 6.11 2.20e−7 5.46
16 1.44e−9 5.09 4.40e−9 5.59 8.03e−8 5.33 4.43e−10 6.33 4.16e−9 5.73
32 4.56e−11 4.98 9.05e−11 5.60 2.04e−9 5.30 5.67e−12 6.29 6.49e−11 6.00

Table 4
Errors and orders of convergence for the HDG-SSPRK(k + 1, k + 1) scheme with τ = 0.1τupw on structured meshes.

Degree Mesh ∥u − uh∥Th ∥v − vh∥Th ∥q − qh∥Th ∥u − u∗
h∥Th ∥v − vh

∗
∥Th

k 1/h Error Order Error Order Error Order Error Order Error Order

2 2.96e−2 – 2.51e−2 – 1.39e−2 – 2.31e−3 – 1.53e−2 –
4 3.92e−3 2.92 6.59e−3 1.93 1.23e−3 3.49 1.44e−4 4.00 7.55e−4 4.34

2 8 4.56e−4 3.10 1.11e−3 2.57 1.26e−4 3.29 6.56e−6 4.45 2.74e−5 4.79
16 5.30e−5 3.10 1.53e−4 2.86 1.59e−5 2.98 2.93e−7 4.48 9.06e−7 4.92
32 6.33e−6 3.07 1.98e−5 2.95 2.04e−6 2.97 1.51e−8 4.28 3.30e−8 4.78

2 5.04e−3 – 5.54e−3 – 1.98e−3 – 2.01e−4 – 7.78e−4 –
4 3.16e−4 4.00 6.38e−4 3.12 8.48e−5 4.54 4.47e−6 5.49 1.62e−5 5.58

3 8 1.83e−5 4.11 4.86e−5 3.71 5.11e−6 4.05 1.16e−7 5.27 3.28e−7 5.63
16 1.08e−6 4.09 3.24e−6 3.91 3.29e−7 3.96 3.43e−9 5.08 9.16e−9 5.16
32 6.50e−8 4.05 2.08e−7 3.97 2.09e−8 3.98 1.06e−10 5.02 2.73e−10 5.07

2 7.05e−4 – 9.98e−4 – 2.77e−4 – 2.40e−5 – 7.95e−5 –
4 2.15e−5 5.03 4.85e−5 4.36 8.17e−6 5.08 3.26e−7 6.20 9.50e−7 6.39

4 8 6.27e−7 5.10 1.75e−6 4.80 2.62e−7 4.96 4.83e−9 6.08 1.33e−8 6.16
16 1.86e−8 5.07 5.72e−8 4.93 8.35e−9 4.97 7.43e−11 6.02 1.96e−10 6.08
32 5.65e−10 5.04 1.82e−9 4.97 2.63e−10 4.99 1.15e−12 6.01 3.43e−12 5.84

We now study the performance of the EHDG method on unstructured meshes. To this end, we consider an initial
mesh shown in Fig. 1 and refine it by splitting each triangle into 4 smaller triangles to obtain its first refinement. The
initial mesh has hmin = 0.2357 and the ℓth refinement has hmin = 0.2357/2ℓ. We show in Table 5 the results for the
SSPRK(k + 1, k + 1) and in Table 6 the results for the SSPRK(k + 2, k + 2) scheme. We observe that the results are
quite similar to those obtained on the structured meshes.

Furthermore, we consider a much longer final time T = 10 to study the performance of the HDG method for long
time integration. To this end, we choose to keep the ratio h/k fixed to 1/32. Fig. 2 depicts the error in the processed
quantities as a function of time. For the case (k, h) = (1, 1/32), the errors increase rapidly at the early time and
grow quite slowly at the later time. In contrast, for the case (k, h) = (4, 1/8), the errors decrease at the early time
and maintain the same level of accuracy at the later time. The results clearly indicate that high-order approximations
are significantly more effective than low-order approximations for high accuracy in long time. Therefore, both the
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Table 5
Errors and orders of convergence for the HDG-SSPRK(k + 1, k + 1) scheme τ = τupw on unstructured meshes.

Degree Mesh ∥u − uh∥Th ∥v − vh∥Th ∥q − qh∥Th ∥u − u∗
h∥Th ∥v − vh

∗
∥Th

k hmin Error Order Error Order Error Order Error Order Error Order

0.2357 1.41e−2 – 3.11e−2 – 3.45e−2 – 8.70e−3 – 3.33e−2 –
0.1179 2.5e−3 2.50 7.00e−3 2.15 7.10e−3 2.28 1.30e−3 2.74 5.60e−3 2.57

1 0.0589 5.06e−4 2.30 1.60e−3 2.13 1.60e−3 2.15 1.59e−4 3.03 9.17e−4 2.61
0.0295 1.15e−4 2.14 3.91e−4 2.03 3.84e−4 2.06 1.71e−5 3.22 1.70e−4 2.44

0.2357 1.00e−3 – 2.90e−3 – 3.30e−3 – 4.36e−4 – 1.90e−3 –
0.1179 1.17e−4 3.10 3.49e−4 3.05 4.12e−4 3.00 2.23e−5 4.29 1.19e−4 4.00

2 0.0589 1.40e−5 3.06 4.38e−5 3.00 4.92e−5 3.07 1.19e−6 4.23 7.92e−6 3.90
0.0295 1.72e−6 3.03 5.50e−6 2.99 6.01e−6 3.03 7.91e−8 3.91 5.23e−7 3.92

0.2357 1.63e−4 – 3.55e−4 – 4.85e−4 – 2.77e−5 – 1.01e−4 –
0.1179 9.03e−6 4.17 2.44e−5 3.86 2.67e−5 4.18 7.30e−7 5.25 4.56e−6 4.48

3 0.0589 5.35e−7 4.08 1.58e−6 3.95 1.61e−6 4.05 2.13e−8 5.10 1.70e−7 4.74
0.0295 3.26e−8 4.04 9.92e−8 3.99 9.96e−8 4.02 6.52e−10 5.03 4.81e−9 5.14

0.2357 1.28e−5 – 3.64e−5 – 3.51e−5 – 1.65e−6 – 1.06e−5 –
0.1179 4.69e−7 4.77 1.03e−6 5.15 9.87e−7 5.15 2.26e−8 6.19 3.50e−7 4.91

4 0.0589 1.49e−8 4.98 3.13e−8 5.04 2.98e−8 5.05 3.55e−10 5.99 7.95e−9 5.46
0.0295 4.66e−10 5.00 9.65e−10 5.02 9.05e−10 5.04 5.36e−12 6.05 2.09e−10 5.25

Table 6
Errors and orders of convergence for the HDG-SSPRK(k + 2, k + 2) scheme with τ = τupw on unstructured meshes.

Degree Mesh ∥u − uh∥Th ∥v − vh∥Th ∥q − qh∥Th ∥u − u∗
h∥Th ∥v − vh

∗
∥Th

k hmin Error Order Error Order Error Order Error Order Error Order

0.2357 1.45e−2 – 2.60e−2 – 3.57e−2 – 9.20e−3 – 2.71e−2 –
0.1179 2.60e−3 2.48 6.00e−3 2.12 7.30e−3 2.29 1.4e−3 2.72 3.90e−3 2.80

1 0.0589 5.19e−4 2.32 1.50e−3 2.00 1.60e−3 2.19 1.89e−4 2.89 4.88e−4 3.00
0.0295 1.16e−4 2.16 3.63e−4 2.05 3.88e−4 2.04 2.42e−5 2.97 6.15e−5 2.99

0.2357 1.00e−3 – 2.90e−3 – 3.30e−3 – 4.17e−4 – 1.90e−3 –
0.1179 1.16e−4 3.10 3.49e−4 3.06 4.11e−4 3.01 2.04e−5 4.35 1.17e−4 4.02

2 0.0589 1.40e−5 3.05 4.38e−5 2.99 4.91e−5 3.06 9.93e−7 4.36 7.85e−6 3.90
0.0295 1.71e−6 3.03 5.50e−6 2.99 6.00e−6 3.03 5.53e−8 4.16 5.18e−7 3.92

0.2357 1.63e−4 – 3.55e−4 – 4.85e−4 – 2.77e−5 – 1.02e−4 –
0.1179 9.03e−6 4.17 2.44e−5 3.86 2.67e−5 4.18 7.30e−7 5.25 4.56e−6 4.48

3 0.0589 5.35e−7 4.08 1.58e−6 3.95 1.61e−6 4.05 2.13e−8 5.10 1.70e−7 4.74
0.0295 3.26e−8 4.04 9.92e−8 3.99 9.96e−8 4.02 6.52e−10 5.03 4.81e−9 5.14

0.2357 1.28e−5 – 3.64e−5 – 3.51e−5 – 1.65e−6 – 1.06e−5 –
0.1179 4.69e−7 4.77 1.03e−6 5.15 9.87e−7 5.15 2.26e−8 6.19 3.50e−7 4.91

4 0.0589 1.49e−8 4.98 3.13e−8 5.04 2.98e−8 5.05 3.55e−10 5.99 7.95e−9 5.46
0.0295 4.66e−10 5.00 9.65e−10 5.02 9.05e−10 5.04 5.36e−12 6.05 2.09e−10 5.25

dissipation and dispersion characteristics of the HDG method depend crucially on the polynomial degree used to
represent the approximate solution.

3.2. The Lax–Friedrichs flux

We now compare the performance of our explicit HDG method to that of the Lax–Friedrichs DG method on
this particular example. Here we consider structured meshes and a much longer final time T = 10 instead of
T = 1. We present the errors and convergence rates for the HDG-SSPRK(k + 1, k + 1) scheme in Table 7, the
HDG-SSPRK(k + 2, k + 2) scheme in Table 8, and for the Lax–Friedrichs DG-SSPRK(k + 2, k + 2) scheme
using the boundary flux (22) in Table 9 and the HDG boundary flux (23) in Table 10. We see that, as expected,
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Table 7
Errors and orders of convergence for the HDG-SSPRK(k + 1, k + 1) scheme with τ = τupw on structured meshes. Here the final time is
T = 10.

Degree Mesh ∥u − uh∥Th ∥v − vh∥Th ∥q − qh∥Th ∥u − u∗
h∥Th ∥v − vh

∗
∥Th

k 1/h Error Order Error Order Error Order Error Order Error Order

2 3.69e−3 – 9.70e−2 – 2.34e−2 – 3.84e−3 – 9.73e−2 –
4 3.40e−4 3.44 4.80e−3 4.34 3.05e−3 2.94 3.44e−4 3.48 4.81e−3 4.34

2 8 2.45e−5 3.79 2.67e−4 4.17 3.49e−4 3.13 2.45e−5 3.81 2.63e−4 4.19
16 2.27e−6 3.44 2.30e−5 3.54 4.22e−5 3.05 2.21e−6 3.47 2.17e−5 3.60
32 2.58e−7 3.14 2.57e−6 3.16 5.20e−6 3.02 2.47e−7 3.16 2.36e−6 3.20

2 2.45e−4 – 3.85e−3 – 3.82e−3 – 2.76e−4 – 3.87e−3 –
4 6.62e−6 5.21 3.88e−5 6.63 2.43e−4 3.98 7.71e−6 5.16 3.64e−5 6.73

3 8 2.10e−7 4.98 1.85e−6 4.39 1.50e−5 4.02 2.30e−7 5.07 5.74e−7 5.99
16 1.03e−8 4.35 1.36e−7 3.77 9.27e−7 4.01 8.54e−9 4.75 2.08e−8 4.79
32 6.33e−10 4.02 9.20e−9 3.89 5.76e−8 4.01 4.11e−10 4.38 9.43e−10 4.46

2 2.41e−5 – 2.22e−4 – 5.47e−4 – 2.59e−5 – 1.24e−4 –
4 6.18e−7 5.28 6.53e−6 5.08 1.73e−5 4.98 4.00e−7 6.01 1.37e−6 6.50

4 8 1.97e−8 4.97 2.09e−7 4.97 5.36e−7 5.02 6.17e−9 6.02 2.21e−8 5.95
16 6.41e−10 4.94 6.61e−9 4.98 1.66e−8 5.01 9.57e−11 6.01 3.5e−10 5.98
32 2.06e−11 4.96 2.08e−10 4.99 5.16e−10 5.01 1.49e−12 6.01 5.56e−12 5.98

Fig. 1. The initial unstructured mesh (left) and its first refinement (right).

Fig. 2. The L2 error in the postprocessed solution ∥u − u∗
h∥Th (left) and the postprocessed velocity ∥v − vh

∗
∥Th (right) as a function of time for

three choices of (k, h) such that h/k = 1/32.

the HDG-SSPRK(k +1, k +1) does not yield k +2 convergence rate for the postprocessed solutions, while the HDG-
SSPRK(k+2, k+2) does. Furthermore, it turns out that the definition of the numerical flux on the domain boundary has
a significant impact on the accuracy of the numerical approximations and the postprocessed solutions. In particular,
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Table 8
Errors and orders of convergence for the HDG-SSPRK(k + 2, k + 2) scheme with τ = τupw on structured meshes. Here the final time is T = 10.

Degree Mesh ∥u − uh∥Th ∥v − vh∥Th ∥q − qh∥Th ∥u − u∗
h∥Th ∥v − vh

∗
∥Th

k 1/h Error Order Error Order Error Order Error Order Error Order

2 3.14e−3 – 8.90e−2 – 2.20e−2 – 3.31e−3 – 8.93e−2 –
4 2.49e−4 3.66 3.61e−3 4.62 2.88e−3 2.93 2.55e−4 3.70 3.62e−3 4.62

2 8 1.18e−5 4.40 1.27e−4 4.83 3.36e−4 3.10 1.17e−5 4.45 1.17e−4 4.95
16 7.14e−7 4.04 8.39e−6 3.92 4.11e−5 3.03 5.06e−7 4.53 3.76e−6 4.96
32 7.63e−8 3.23 1.02e−6 3.04 5.09e−6 3.01 2.49e−8 4.34 1.31e−7 4.85

2 2.28e−4 – 3.88e−3 – 3.80e−3 – 2.62e−4 – 3.91e−3 –
3 4 5.83e−6 5.29 4.10e−5 6.57 2.42e−4 3.97 7.04e−6 5.22 3.88e−5 6.65

8 1.75e−7 5.06 1.87e−6 4.45 1.50e−5 4.01 1.99e−7 5.15 6.29e−7 5.95
16 8.28e−9 4.40 1.36e−7 3.78 9.27e−7 4.01 6.01e−9 5.05 1.84e−8 5.09
32 5.16e−10 4.00 9.17e−9 3.89 5.75e−8 4.01 1.85e−10 5.02 5.8e−10 4.99

2 2.41e−5 – 2.22e−4 – 5.47e−4 – 2.59e−5 – 1.25e−4 –
4 6.18e−7 5.28 6.53e−6 5.09 1.73e−5 4.98 4.00e−7 6.01 1.37e−6 6.51

4 8 1.97e−8 4.97 2.09e−7 4.97 5.36e−7 5.02 6.17e−9 6.02 2.21e−8 5.96
16 6.41e−10 4.94 6.61e−9 4.98 1.66e−8 5.01 9.56e−11 6.01 3.50e−10 5.98
32 2.06e−11 4.96 2.08e−10 4.99 5.16e−10 5.01 1.49e−12 6.01 5.53e−12 5.98

the numerical results presented show that using the HDG boundary flux (23) produces smaller errors and better
convergence rates than using the boundary flux (22). Note further that the Lax–Friedrichs DG-SSPRK(k + 2, k + 2)

scheme using the HDG boundary flux (23) provides similar results as the HDG-SSPRK(k + 2, k + 2) scheme except
that it does not yield the convergence rate of order k + 2 for the postprocessed velocity v∗

h , which appears to converge
with order k + 1 only.

4. Extension to the wave equation with perfectly matched layers

4.1. Perfectly matched layers

We consider the PML formulation that was first introduced in [52] for the wave equation in its standard second-
order form and subsequently extended in [53]. This PML formulation applied to the wave equation (1) yields the
following system of equations:

ρ
∂2u

∂t2 + γ
∂u

∂t
+ ζu + ξw − ∇ · (κ∇u) − ∇ · p = 0,

∂p
∂t

+ Ap + B (κ∇u) − C∇w = 0,

∂w

∂t
− u = 0,

(39)

where

γ = ρ (σx + σy + σz), ζ = ρ(σxσy + σxσz + σyσz), ξ = ρ(σxσyσz), (40)

A =

σx 0 0
0 σy 0
0 0 σz

 , C =

σyσz 0 0
0 σxσz 0
0 0 σxσy

 ,

B =

σx − σy − σz 0 0
0 σy − σx − σz 0
0 0 σz − σx − σy

 .

(41)

Here the damping functions σx , σy, σz are positive inside the PML domain ΩPML ≡ Ω\ΩFTD and vanish inside the
finite truncated domain ΩFTD ≡ (x1, x2)× (y1, y2)× (z1, z2), where Ω ≡ (x1 − a, x2 + a)× (y1 − b, y2 + b)× (z1 −
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Table 9
Errors and orders of convergence for the Lax–Friedrichs DG-SSPRK(k + 2, k + 2) scheme using the boundary flux (22) on structured meshes for
T = 10.

Degree Mesh ∥u − uh∥Th ∥v − vh∥Th ∥q − qh∥Th ∥u − u∗
h∥Th ∥v − vh

∗
∥Th

k 1/h Error Order Error Order Error Order Error Order Error Order

2 6.83e−2 – 7.29e−2 – 3.09e−1 – 6.83e−2 – 7.28e−2 –
4 1.21e−2 2.50 1.03e−2 2.82 5.47e−2 2.50 1.21e−2 2.50 1.03e−2 2.82

2 8 1.50e−3 3.01 2.68e−3 1.94 6.81e−3 3.01 1.50e−3 3.01 2.68e−3 1.95
16 1.71e−4 3.14 4.50e−4 2.57 7.80e−4 3.12 1.71e−4 3.14 4.50e−4 2.57
32 1.77e−5 3.27 6.57e−5 2.78 8.18e−5 3.25 1.77e−5 3.27 6.57e−5 2.78

2 1.37e−2 – 4.60e−2 – 6.31e−2 – 1.37e−2 – 4.61e−2 –
4 4.54e−4 4.92 3.46e−3 3.73 2.12e−3 4.89 4.54e−4 4.92 3.46e−3 3.74

3 8 4.12e−6 6.78 2.25e−4 3.94 3.27e−5 6.02 4.09e−6 6.79 2.25e−4 3.94
16 7.20e−7 2.52 1.28e−5 4.14 3.49e−6 3.23 7.20e−7 2.51 1.28e−5 4.14
32 7.14e−8 3.33 6.98e−7 4.20 3.39e−7 3.37 7.14e−8 3.33 6.98e−7 4.20

2 1.01e−3 – 4.77e−3 – 4.58e−3 – 1.01e−3 – 4.78e−3 –
4 7.01e−5 3.85 3.15e−5 7.24 3.17e−4 3.85 7.01e−5 3.85 3.14e−5 7.25

4 8 2.17e−6 5.01 3.74e−6 3.07 9.9e−6 5.00 2.17e−6 5.01 3.74e−6 3.07
16 6.17e−8 5.14 1.42e−7 4.72 2.84e−7 5.12 6.17e−8 5.14 1.42e−7 4.72
32 1.80e−9 5.10 4.37e−9 5.03 8.37e−9 5.08 1.80e−9 5.10 4.37e−9 5.03

Table 10
Errors and orders of convergence for the Lax–Friedrichs DG-SSPRK(k +2, k +2) scheme using the HDG boundary flux (23) on structured meshes
for T = 10.

Degree Mesh ∥u − uh∥Th ∥v − vh∥Th ∥q − qh∥Th ∥u − u∗
h∥Th ∥v − vh

∗
∥Th

k 1/h Error Order Error Order Error Order Error Order Error Order

2 3.88e−3 – 8.75e−2 – 2.39e−2 – 4.00e−3 – 8.78e−2 –
4 3.25e−4 3.58 3.56e−3 4.62 2.89e−3 3.05 3.20e−4 3.65 3.55e−3 4.63

2 8 1.74e−5 4.22 1.55e−4 4.53 3.12e−4 3.21 1.31e−5 4.60 1.38e−4 4.69
16 1.62e−6 3.42 1.50e−5 3.37 3.88e−5 3.01 5.35e−7 4.62 1.19e−5 3.53
32 1.90e−7 3.09 1.84e−6 3.03 4.98e−6 2.96 2.80e−8 4.25 1.44e−6 3.05

2 2.49e−4 – 3.86e−3 – 3.84e−3 – 2.72e−4 – 3.90e−3 –
4 7.33e−6 5.09 4.13e−5 6.55 2.59e−4 3.89 6.41e−6 5.41 4.10e−5 6.57

3 8 2.46e−7 4.89 2.11e−6 4.29 1.76e−5 3.89 1.79e−7 5.16 5.91e−7 6.12
16 1.00e−8 4.62 1.69e−7 3.64 1.08e−6 4.02 5.51e−9 5.02 3.77e−8 3.97
32 6.24e−10 4.01 1.19e−8 3.83 6.70e−8 4.01 1.72e−10 5.00 2.99e−9 3.66

2 2.45e−5 – 2.17e−4 – 5.52e−4 – 2.55e−5 – 1.25e−4 –
4 5.83e−7 5.39 6.18e−6 5.13 1.73e−5 5.00 3.90e−7 6.03 2.60e−6 5.59

4 8 1.67e−8 5.12 1.83e−7 5.08 5.41e−7 5.00 5.94e−9 6.04 9.53e−8 4.77
16 5.02e−10 5.06 5.47e−9 5.06 1.75e−8 4.95 9.37e−11 5.99 3.14e−9 4.92
32 1.54e−11 5.03 1.67e−10 5.04 5.30e−10 5.04 1.46e−12 6.00 1.00e−10 4.97

c, z2 + c) is the computational domain, and a, b, c denote the thickness of the PML layer in the x , y, z directions,
respectively. In particular, the damping function in the x-axis is defined as

σx (x) =


0, x1 ≤ x ≤ x2,
|x − x1|

m

am σmax
x , x1 − a ≤ x < x1,

|x − x2|
m

am σmax
x , x2 < x ≤ x2 + a.

(42)

Similar scaling functions are used for σy and σz . The constant σmax
x depends on the discretization and the thickness

of the PML layer a. It has also been found that the optimal order for the polynomial scaling m is typically in the



M. Stanglmeier et al. / Comput. Methods Appl. Mech. Engrg. 300 (2016) 748–769 763

range of 3 ≤ m ≤ 4. On the exterior boundary of the PML domain ΩPML we apply a first-order absorbing boundary
condition.

In two space dimensions, σz and w vanish so that the above PML formulation reduces to

ρ
∂2u

∂t2 + ρ

σx + σy

 ∂u

∂t
+ ρσxσyu − ∇ · (κ∇u) − ∇ · p = 0

∂p
∂t

+ Ap + Bκ∇u = 0,

(43)

with

A =


σx 0
0 σy


, B =


σx − σy 0

0 σy − σx


. (44)

By setting v =
∂u
∂t and q = κ∇u, the second-order system can be reduced to a first-order system to be later solved

with the Hybridizable Discontinuous Galerkin method. This results in the following PML formulation for the wave
equation (1) in two space dimensions:

ρ
∂v

∂t
+ ρ


σx + σy


v + ρσxσyu − ∇ · q − ∇ · p = 0,

1
κ

∂q
∂t

− ∇v = 0,

∂p
∂t

+ Ap + Bq = 0,

∂u

∂t
− v = 0.

(45)

It is important to point out that the last two equations are ordinary differential equations (ODEs). Hence, they can be
solved locally in the HDG framework.

4.2. Explicit HDG method

For simplicity of exposition we consider the two-dimensional case. The explicit HDG method for the wave equation
with PML (45) can be derived as shown in Section 2 for the wave equation without PML. In particular, the HDG
method seeks to find


qh, vh, v̂h, ph, uh


∈ Vh × Wh × Mh × Vh × Wh such that

1
κ

∂qh

∂t
, r


Th

+ (vh, ∇ · r)Th
−

v̂h, r · n


∂Th

= 0,
ρ

∂vh

∂t
, w


Th

+

ρ


σx + σy

vh + σxσyuh


, w


Th

+ (qh, ∇w)Th
−

q̂h · n, w


∂Th

− (∇ph, w)Th
= 0,

q̂h · n, µ

∂Th\∂Ω +


αq̂h · n + βv̂h − g, µ


∂Ω = 0,ph

∂t
, s


Th

+ (Aph, s)Th
+ (Bqh, s)Th

= 0,uh

∂t
, z


Th

− (vh, z)Th
= 0,

(46)

for all (r, w,µ, s, z) ∈ Vh × Wh × Mh × Vh × Wh and all t ∈ (0, T ], where the numerical flux is defined as

q̂h · n = qh · n − τ(vh − v̂h), on ∂Th . (47)

We now need to discretize this system in time. Because each stage of the general ERK scheme and the SSPRK scheme
is similar to the forward Euler method, we will describe the forward Euler method for temporal discretization.
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Starting with (qn
h, pn

h, vn
h , un

h) as the numerical approximation to the solution (q(tn), p(tn), v(tn), u(tn)) at tn
=

n∆tn , we compute the numerical trace as

v̂n
h =


τ+v+n

h + τ−v−n
h

τ+ + τ−
−

1
τ+ + τ−

(q+n
h · n+

+ q−n
h · n−), if F ∈ Eh\∂Ω ,

ατ

ατ + β
vn

h +
1

ατ + β
(Pgn

− αqn
h · n), if F ∈ ∂Ω ,

(48)

and the numerical flux as q̂n
h ·n = qn

h ·n−τ(vn
h−v̂n

h ) for all faces F of Eh . We then determine (qn+1
h , pn+1

h , vn+1
h , un+1

h ) ∈

V(K ) × V(K ) × W (K ) × W (K ) as the solution of
1
κ

qn+1
h

∆tn , r


K

=


ρ

qn
h

∆tn , r


K
+

v̂n

h , r · n

∂K −


vn

h , ∇ · r


K ,
ρ

vn+1
h

∆tn , w


K

=


vn

h

κ∆tn , w


K

+

q̂n

h · n, w

∂K −


qn

h, ∇w


K

+

∇ · pn

h, w


K −

ρ


σx + σy

vn

h + σxσyun
h


, w


K ,
pn+1

h

∆tn , s


K

=


pn

h

∆tn , s


K
−

Apn

h, s


K −

Bqn

h, s


K ,
un+1

h

∆tn , z


K

=


un

h

∆tn , z


K

+ (vn
h , z)K ,

(49)

for all (r, w, s, z) ∈ V(K ) × W (K ) × V(K ) × W (K ) and for all elements K ∈ Th . Here the initial approximations
(q0

h, p0
h, v0

h, u0
h) ∈ V(K ) × V(K ) × W (K ) × W (K ) are given by

(q0
h, r)K = (q0, r)K , (p0

h, s)K = (p0, s)K ,

(v0
h, w)Th = (v0, w)K , (u0

h, z)K = (u0, z)K ,
(50)

for all (r, w, s, z) ∈ V(K ) × W (K ) × V(K ) × W (K ), where (q0, v0, p0, u0) are the given initial data.

4.3. Scattering of plane wave from a circular cylinder

This example illustrates the performance of the explicit HDG method for curved geometry in an unbounded
domain. We consider the acoustic scattering from the unit circular cylinder of an incident planar wave of the form

ui (x, y, t) = sin(k · x − c|k|t),

where c is the wave speed and k = (kx , ky) is the wave vector with |k| =


k2

x + k2
y . For our particular problem we

consider c = 1 and k = (20, 0), which represents the plane wave along the x direction. The scattered wave u satisfies
the homogeneous wave equation (1) ( f = 0, ρ = 1, and κ = 1) and the following boundary condition on the cylinder
surface ∂ΩCir:

∇u · n = −∇ui
· n, on ∂ΩCir.

We study the scattered field in a finite truncated domain ΩFTD ≡ (−5, 5)×(−5, 5) and consider a = b = c = 2 for the
PML layer thicknesses. The full computational domain is thus Ω ≡ ΩSquare\ΩCir, where ΩSquare ≡ (−7, −7)×(−7, 7)

and ΩCir is the unit circle. We use a first-order absorbing boundary condition on the outer boundary:

∂u

∂t
+ ∇u · n = 0, on ∂ΩOut.

The initial condition is u(x, t = 0) = 0 and ∂u(x, t = 0)/∂t = 0. The computational domain and associated grid are
shown in Fig. 3.
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Fig. 3. The unstructured mesh for the problem of the scattering of plane waves.

The normalized analytical solution to this problem is given by

u(x, y, t) = ℜ[eic|k|tU (x, y)], (51)

where U (x, y) is the solution in the frequency domain

U (x, y) = −
J0(k)

H (1)
0 (k)

H (1)
0 (kr) − 2

∞
n=1

in Jn(k)

H (1)
n (k)

H (1)
n (kr) cos(nθ). (52)

Here Jn and H (1)
n denote the Bessel functions and the Hankel functions of the first kind, respectively; and (r, θ)

represents the polar coordinates.
We consider solving this problem with the first-order absorbing boundary condition only and with the PML

formulation. The former corresponds to setting σmax
x = σmax

y = 0 in the PML domain, while the latter corresponds
to setting σx and σy according to (42) with m = 4 and σmax

x = σmax
y = 15. We display in Fig. 4 the approximate

solution uh at times t = 5, 10, and 20 for the cases with and without PML layers. Fig. 5 shows the difference between
the solution plotted in Fig. 4 and the analytical solution (51). These results are obtained using polynomial degree
k = 3 and the classical fourth-order Runge–Kutta scheme with ∆t = 0.00125. We observe that the PML formulation
is clearly superior to the first-order absorbing boundary condition and is barely distinguishable from the analytical
solution in most of the truncated domain.

5. Conclusions

We have presented the first explicit HDG method for numerically solving the acoustics wave equation. The method
yields the optimal convergence of order k + 1 for all the approximate variables including the gradient of the solution,
while having the same computational complexity as other explicit DG methods. Moreover, it has some supercon-
vergence properties that allow us to improve the convergence rate of the numerical solution by one order by means
of a local postprocessing. Therefore, this explicit HDG method can provide more accurate solutions than existing
DG methods for the same computational cost. Furthermore, we extended the method to treat the wave equation with
perfectly matched layers. Numerical experiments were presented to demonstrate the optimal and super-convergence
properties of the present method.

Let us emphasize that, for a particular choice of the stabilization function, the explicit HDG method is nothing
but the well known DG method with upwinding fluxes. Although this method has been known for a few decades, the
above-mentioned superconvergence property we uncover here was not known. There seems to be something special
about the HDG numerical fluxes since, when they are replaced by the Lax–Friedrichs fluxes, these superconvergence
properties are lost and, when the HDG flux is used on the boundary, some of these superconvergence properties are
recovered. The theoretical understanding of this new phenomenon constitutes the subject of ongoing work.
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Fig. 4. Simulation of the wave scattering problem with a surrounding PML (left) and a first order ABC (right) using the explicit HDG method with
a classical fourth order Runge–Kutta scheme (δt = 0.00125). Both solutions (PML and first order ABC) were computed on a (7 × 7) mesh for a
fair comparison, but only the domain of interest (5 × 5) is shown in these plots as the extra layer in all four directions works as boundary condition
in the PML case. Plots show results for u at times t = 5 s (top), t = 10 s (middle) and t = 20 s (bottom).

There are a number of other research directions that we would like to pursue. Extension of the method to
electrodynamics and elastodynamics is relatively straightforward. Of particular interest is the possibility of developing
a hybrid scheme that combines the explicit HDG method with the implicit one [47] to have even better performance
than both the explicit scheme and the implicit scheme.
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Fig. 5. Simulation of the wave scattering problem with a surrounding PML (left) and a first order ABC (right) using the explicit HDG method with
a classical fourth order Runge–Kutta scheme (δt = 0.00125). Both solutions (PML and first order ABC) were computed on a (7 × 7) mesh for a
fair comparison, but only the domain of interest (5 × 5) is shown in these plots as the extra layer in all four directions works as boundary condition
in the PML case. Plots show results for the error u − uexact at times t = 5 s (top), t = 10 s (middle) and t = 20 s (bottom).
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