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We present a class of hybridizable discontinuous Galerkin (HDG) methods for the numer-
ical simulation of wave phenomena in acoustics and elastodynamics. The methods are fully
implicit and high-order accurate in both space and time, yet computationally attractive
owing to their following distinctive features. First, they reduce the globally coupled
unknowns to the approximate trace of the velocity, which is defined on the element faces
and single-valued, thereby leading to a significant saving in the computational cost. In
addition, all the approximate variables (including the approximate velocity and gradient)
converge with the optimal order of k + 1 in the L2-norm, when polynomials of degree
k P 0 are used to represent the numerical solution and when the time-stepping method
is accurate with order k + 1. When the time-stepping method is of order k + 2, superconver-
gence properties allows us, by means of local postprocessing, to obtain better, yet inexpen-
sive approximations of the displacement and velocity at any time levels for which an
enhanced accuracy is required. In particular, the new approximations converge with order
k + 2 in the L2-norm when k P 1 for both acoustics and elastodynamics. Extensive numer-
ical results are provided to illustrate these distinctive features.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The numerical solution of wave phenomena in acoustics, elastodynamics and electromagnetics has found important
applications in many areas of engineering and science such as aerospace, geophysics, civil engineering, mechanical engineer-
ing, telecommunication, medicine, and biology. Examples of applications include noise reduction, stealth technology, seismic
and earthquake, nondestructive testing, antenna design, the detection of hidden targets, radar, satellite, nanophotonic
devices, optical fibers, waveguides, and medical imaging. The wide range of applications has led to the development of
many computational techniques for solving hyperbolic systems of partial differential equations (PDEs) governing wave
phenomena.

The finite element method has been among the most popular techniques for the spatial discretization of wave propaga-
tion problems due to its ability to handle complex geometries and inhomogeneous materials, provide high-order accuracy, as
well as perform h/p adaptivity. There are several spatial discretization strategies within the finite element method. They
include continuous Galerkin/Petrov–Galerkin methods, spectral element methods, mixed finite element methods, extended
finite element methods, and discontinuous Galerkin/Petrov–Galerkin methods. Each method has its own strengths and
weaknesses that make it ideal for some applications, but not the best choice for others.
. All rights reserved.
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For instance, discontinuous Galerkin methods [2–4,18,19,24,23,25] work well on arbitrary meshes, result in stable high-
order accurate (low dispersion) discretizations of hyberbolic systems, allow for a simple and unambiguous imposition of
boundary conditions, and are very flexible to parallelization and adaptivity. One major criticism of many DG methods is that
they have too many degrees of freedom due to nodal duplication at the element boundary interfaces. However, when used
with explicit time-stepping schemes, DG methods [7,19,28,30] provide block-diagonal mass matrices to be inverted, which
results in very low storage and efficient numerical schemes for wave propagation problems. One major disadvantage with
this approach is that the timestep size is restricted by the smallest element in the mesh and the degree of polynomials used
in representing the numerical solution. Even a few small elements can render the timestep size so small that it actually leads
to very high computational cost. The timestep restriction is not only applicable to DG methods, but in fact to any numerical
methods with explicit time integration. On the other hand, when used with implicit time-stepping schemes to alleviate the
timestep restriction, many existing DG methods result in a discrete system of too many globally coupled degrees of freedom
[39,40]. Still, there are a variety of applications for which implicit schemes would be much more efficient than explicit
schemes (and, of course, vice versa).

Regardless of time integration schemes and spatial discretization methods, there are two general approaches for
solving second-order hyperbolic equations. One popular approach is to use finite element approximation in space
and discretize the second-order time derivative directly by using finite difference, leading to the well-known class
of finite element methods for spatial discretization and Newmark methods for temporal discretization. However, this
approach is only second-order accurate in time and it is difficult to extend it beyond second-order accuracy. The
second approach is to transform the second-order hyperbolic equations into a first-order hyperbolic system of differ-
ential equations. One then discretizes the spatial derivatives to obtain an ordinary differential equation (ODE) system,
which can be discretized in time by ODE techniques such as linear multistep methods, Runge–Kutta methods, or even
DG in time. This approach is very popular for explicit time integration since the mass matrix is either block-diagonal
by using DG discretization in space [7,8,19,28,30] or can be reduced to an approximate block-diagonal matrix by using
mass lumping techniques [20]. However, the approach seems less appealing to implicit time integration since it results
in a matrix system which might be considerably larger than the matrix system obtained with the continuous Galerkin
(CG) method. Indeed, the use of the mixed Raviart–Thomas method for the scalar wave equation leads to a global
matrix whose size is the degrees of freedom of the approximate gradient vector [27]. This computational inefficiency
is the main motivation behind the development of a class of mixed finite elements [5] to be used with an explicit
scheme through mass lumping.

In this paper, we present a class of hybridizable discontinuous Galerkin (HDG) methods for spatial discretization of the
first-order formulation of acoustic and elastic wave equations. Both the backward difference formula (BDF) schemes and
diagonally implicit Runge–Kutta (DIRK) methods are used for time integration. The resulting methods are fully implicit,
unstructured, and high-order accurate in both space and time; yet they are computationally attractive because the only glob-
ally coupled unknown is the numerical trace of the velocity field. Since the numerical trace is defined on the element faces
and single-valued, the HDG methods may have significantly less global degrees of freedom than other DG methods using
implicit time integration. Another attractive feature of the HDG methods is that they yield optimal convergence of order
k + 1 in the L2-norm for all the approximate variables and possess some superconvergence properties for other approximate
quantities. Based on these convergence properties we develop new local postprocessing schemes to obtain better approxi-
mations of the displacement and velocity at the time levels for which an enhanced accuracy is required. Not only less expen-
sive to compute than the original approximations the new approximations converge faster with order k + 2 in the L2-norm
when k P 1 for both acoustics and elastodynamics, when time-stepping methods are of order k + 2. Extensive numerical
experiments are provided to illustrate those features and show that the present method outperforms the standard CG-New-
mark method for smooth problems.

This work is a continuation of our recent effort [34,35,37,32,38] on the development of HDG methods for solving time-
dependent partial differential equations. The first HDG method was introduced for diffusion–reaction problems [13] and
later analyzed in [9,16,15]. Several HDG methods are subsequently developed for Biharmonic equations [10], linear and non-
linear convection–diffusion problems [34,35,11], linear elasticity [43], Stokes flows [12,36,17] (see also [14] for the error
analysis), incompressible Navier–Stokes equations [37,32], and compressible Euler and Navier–Stokes equations [38]. An
overview of recent developments in HDG methodology for fluid dynamics is given in [33].

The article is organized as follows. In Sections 2 and 3, we devote our discussion to acoustic and elastic wave equations,
respectively. In each of the two sections, we introduce the HDG method, prove stability and uniqueness of the numerical
solution, describe the implementation and local postprocessing, extend the method to treat unbounded domains, and pres-
ent numerical results to assess the convergence and accuracy of the method. Finally, in Section 4, we provide some conclud-
ing remarks on future work.

2. The acoustic wave equation

2.1. Problem statement

Let X 2 Rd be a bounded domain with Lipschitz continuous boundary oX and let T > 0 be a final time. We consider the
following acoustic wave equation:
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q
o2u
ot2 �r � ðAruÞ ¼ f ; in X� ð0; T�: ð1Þ
Here u is the scalar variable and f is a given source term. We assume that the scalar coefficient q satisfies q(x) > 0 for all x 2X
and that the matrix-valued coefficient A 2 Rd�d is symmetric positive-definite, namely, pTAp > 0 for all p 2 Rd.

We next introduce the velocity v = ut and the gradient q =ru. We then write (1) into a system of first-order equations as:
oq
ot
�rv ¼ 0; in X� ð0; T�;

q
ov
ot
�r � Aq ¼ f ; in X� ð0; T�:

ð2Þ
We supplement this system with boundary conditions:
v ¼ gD; on oXD;

Aq � n ¼ gN ; on oXN;
ð3Þ
and initial conditions:
vðx; t ¼ 0Þ ¼ v0ðxÞ;
qðx; t ¼ 0Þ ¼ q0ðxÞ:

ð4Þ
Here oXD and oXN are two disjoint parts of the boundary oX such that oX ¼ oXD [ oXN .

2.2. Approximation spaces

Let T h be a collection of disjoint elements that partition X. We denote by oT h the set foK : K 2 T hg. For an element K of
the collection T h; F ¼ oK \ oX is the boundary face if the d � 1 Lebesgue measure of F is nonzero. For two elements K+ and K�

of the collection T h; F ¼ oKþ \ oK� is the interior face between K+ and K� if the d � 1 Lebesgue measure of F is nonzero. Let Eo
h

and Eo
h denote the set of interior and boundary faces, respectively. We denote by Eh the union of Eo

h and Eo
h.

Let PkðDÞ denote the set of polynomials of degree at most k on a domain D. We are going to use the following discontin-
uous finite element spaces:
Wh ¼ w 2 L2ðXÞ : wjK 2WðKÞ; 8K 2 T h

n o
;

Vh ¼ p 2 ðL2ðXÞÞd : pjK 2 VðKÞ; 8K 2 T h

n o
:

Some appropriate choices for the local space W(K) � V(K) on K include:
WðKÞ � VðKÞ �
PkðKÞ � PkðKÞð Þd;
Pk�1ðKÞ � PkðKÞð Þd;
PkðKÞ � PkðKÞð Þd þ x PkðKÞ

� �
:

8>><>>:

These spaces correspond to the equal-order elements, the BDM elements [6], and the RT elements [41], respectively. In addi-
tion, we introduce a traced finite element space:
Mh ¼ l 2 L2ðEhÞ : ljF 2 PkðFÞ; 8F 2 Eh

n o
:

We also set Mh(gD) = {l 2Mh:l = PgD on oXD}, where P denotes the L2-projection into the space {ljoX,"l 2Mh}.
For functions w and v in (L2(D))d, we denote ðw;vÞD ¼

R
D w � v . For functions w and v in L2(D), we denote ðw;vÞD ¼

R
D wv if

D is a domain in Rd and w;vh iD ¼
R

D wv if D is a domain in Rd�1. We finally introduce:
ðw; vÞT h
¼
X
K2T h

ðw;vÞK ; l; gh ioT h
¼
X
K2T h

l; gh ioK ;
for w, v defined on T h and l, g defined on oT h.

2.3. HDG method with backward difference formulas

We begin by considering the governing Eq. (2) on one element K of T h. Multiplying (2) by a test function
(r,w) 2 V(K) �W(K) and integrating by parts we find an approximation (qh,vh) 2 Vh �Wh such that for all K 2 T h:
oqh

ot
; r

� �
K

þ vh;r � rð ÞK � v̂h; r � nh ioK ¼ 0; 8r 2 VðKÞ;

q
ovh

ot
;w

� �
K

þ Aqh;rwð ÞK � Aq̂h � n; wh ioK ¼ ðf ;wÞK ; 8w 2WðKÞ:
ð5Þ
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Here the numerical traces q̂h and v̂h are approximations to q and v over oK, respectively. This system is then discretized in
time using backward difference formulaes (BDF) for the discretization of the time derivative. For instance, using the Back-
ward–Euler scheme at time level tn with timestep Dtn we obtain:
1
Dtn qn

h; r
� �

K þ vn
h;r � r

� �
K � v̂n

h; r � n
� 	

oK ¼
1

Dtn qn�1
h ; r

� �
K ;

1
Dtn qvn

h;w
� �

K þ Aqn
h;rw

� �
K � Aq̂n

h � n; w
� 	

oK ¼ f n;wð ÞK þ
1

Dtn qvn�1
h ;w

� �
K ;

ð6Þ
for all (r,w) � V(K) �W(K). Here we denote vn
h ¼ vhðtnÞ and qn

h ¼ qhðtnÞ.
By summing the above system over all the elements and enforcing the continuity of the normal component of the numer-

ical flux q̂h, we arrive at the following problem: Find ðqn
h;vn

h; v̂n
hÞ 2 Vh �Wh �Mhðgn

DÞ such that:
1
Dtn qn

h; r
� �

T h
þ vn

h;r � r
� �

T h
� v̂n

h; r � n
� 	

oT h
¼ 1

Dtn qn�1
h ; r

� �
T h
;

1
Dtn qvn

h;w
� �

T h
þ Aqn

h;rw
� �

T h
� Aq̂n

h � n; w
� 	

oT h
¼ f n;wð ÞT h

þ 1
Dtn qvn�1

h ;w
� �

T h
;

Aq̂n
h � n; l

� 	
oT h
¼ gn

N; l
� 	

oXN
;

ð7Þ
for all (r,w,l) 2 Vh �Wh �Mh(0), where ðv0
h;wÞT h

¼ ðv0;wÞT h
;8w 2Wh, and ðq0

h; rÞT h
¼ ðq0; rÞT h

;8r 2 Vh. Note that the
Dirichlet boundary condition is enforced by requiring that v̂n

h 2 Mhðgn
DÞ and that the Neumann boundary condition is en-

forced by the last equation in (7). We complete the HDG method (7) by defining q̂n
h in terms of the other unknowns as:
Aq̂n
h ¼ Aqn

h � s vn
h � v̂n

h

� �
n; on oT h: ð8Þ
Here s is the local stabilization parameter which has an important effect on both the stability and accuracy of the numerical
scheme. The selection of the value of the parameter s will be described below.

Once vn
h is available we compute un

h by simultaneously seeking un
h 2Wh such that:
1
Dtn un

h;w
� �

T h
¼ vn

h;w
� �

T h
þ 1

Dtn un�1
h ;w

� �
T h
; 8w 2Wh: ð9Þ
Here the initial solution u0
h is given by ðu0

h;wÞT h
¼ ðu0;wÞT h

;8w 2Wh, where u0 is the initial data. Note that the above system
can be inverted at the element level thanks to the discontinuous nature of the space Wh.

The application of higher-order backward difference formulas (BDFs) leads to systems similar to (7), so that our discus-
sion is relevant to higher-order time differencing as well. The HDG method can also work with other implicit time-stepping
methods such as the diagonally implicit Runge–Kutta (DIRK) methods as discussed below.

2.4. HDG method with DIRK schemes

We consider the following DIRK(q,p) formulas [1] written in the form of Butcher’s table for time integration:
ð10Þ
where q denotes the number of stages and p denotes the order of the method. For instance, the DIRK(2,3) and DIRK(3,4)
schemes proposed by Crouzeix [22] are known to be A-stable. In addition, we shall also use the A-stable DIRK(5,5) scheme
proposed by Cooper and Sayfy [21].

We are now ready to describe the HDG method for spatial discretization and the DIRK(q,p) method for time integration.
This is done by applying the DIRK(q,p) method to integrate the ODE system (5) in time and enforcing the continuity of the
normal component of the numerical flux. To simplify notation we write tn, i for tn + ciDtn, yn

h for ðqn
h;vn

hÞ, and yn;i
h for

ðqn:i
h ;v

n;i
h Þ ¼ ðqhðtn;iÞ;vhðtn;iÞÞ. The numerical solution ynþ1

h ¼ ðqnþ1
h ;vnþ1

h Þ at time level n + 1 given by the DIRK(q,p) method is
computed as follows:
ynþ1
h ¼ yn

h þ Dtn
Xq

i¼1

bif h;i; ð11Þ
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where
f h;1 ¼
yn;1

h � yn
h

a11Dtn ;

f h;2 ¼
yn;2

h � yn
h

a22Dtn �
a21

a22
f h;1;

. . .

f h;q ¼
yn;q

h � yn
h

aqqDtn �
Xq�1

j¼1

aqj

aqq
f h;j:

ð12Þ
The intermediate states yn;i
h ¼ ðq

n;i
h ;v

n;i
h Þ; 1 6 i 6 q, are determined as follows: ðqn;i

h ;v
n;i
h ; v̂

n;i
h Þ 2 Vh �Wh �Mhðgðtn;iÞDÞ

satisfies:
1
aiiDtn qn;i

h ; r
� �

T h

þ vn;i
h ;r � r

� �
T h

� v̂n;i
h ; r � n

D E
oT h

¼ pn;i
h ; r

� �
T h

;

1
aiiDtn qvn;i

h ;w
� �

T h

þ Aqn;i
h ;rw

� �
T h

� Aq̂n;i
h � n;w

D E
oT h

¼ f tn;i
� �

;w
� �

T h
þ qzn;i

h ;w
� �

T h

;

Aq̂n;i
h � n;l

D E
oT h

¼ gN tn;i
� �

;l
� 	

oXN
;

ð13Þ
where
q̂n;i
h ¼ qn;i

h � s vn;i
h � v̂n;i

h

� �
n; on oT h; ð14Þ
and the terms sn;i
h ¼ ðp

n;i
h ; z

n;i
h Þ;1 6 i 6 q, on the right-hand side of (13) are given by
sn;1
h ¼

yn
h

a11Dtn ;

sn;2
h ¼

yn
h

a22Dtn þ
a21

a22

yn;1
h

a11Dtn � sn;1
h

 !
;

. . .

sn;q
h ¼

yn
h

aqqDtn þ
Xq�1

j¼1

aqj

aqq

yn;j
h

aj;jDtn � sn;j
h

 !
:

ð15Þ
We note that the resulting system (13) at each ith stage of the DIRK(q,p) method is very similar to the system (7) of the Back-
ward–Euler method. Therefore, most of our discussion for the Backward–Euler method would be relevant to the DIRK(q,p)
method.

2.5. Stability and uniqueness for the backward-euler method

We now show that the numerical solution obtained by the HDG scheme (7) is stable and unique.

Proposition 1. Assume that A is symmetric positive-definite and piecewise-constant. Any solution of the equations defining the
HDG method, (7), satisfies the following energy identity:
1
2

Aqm
h ;q

m
h

� �
T h
þ 1

2
qvm

h ; vm
h

� �
T h
þHm

h ¼
1
2

Aq0
h;q

0
h

� �
T h
þ 1

2
qv0

h; v0
h

� �
T h
þUm

h ; ð16Þ
for all m P 1, where,
Hm
h :¼

Xm

n¼1

Dtn s vn
h � v̂n

h

� �
; vn

h � v̂n
h

� �� 	
oT h
þ 1

2

Xm

n¼1

A qn
h � qn�1

h

� �
; qn

h � qn�1
h

� �� �
T h
þ 1

2

Xm

n¼1

q vn
h � vn�1

h

� �
; vn

h � vn�1
h

� �� �
T h
;

Wm
h :¼

Xm

n¼1

Dtn f n;vn
h

� �
T h
þ gn

N; v̂n
h

� 	
oXN

� �
:

Moreover, if we assume the following positivity condition:
s > 0; on oT h; ð17Þ
then the HDG method (7) has a unique solution ðqn
h;vn

h; v̂n
hÞ for any timestep n P 1.
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Proof. To prove the energy identity, we begin by substituting the definition of the numerical flux q̂h (8) into (7) to obtain:
1
Dtn qn

h;v
� �

T h
þ vn

h;r � v
� �

T h
� bv n

h;v � n
� 	

oT h
¼ 1

Dtn qn�1
h ;v

� �
T h
;

1
Dtn qvn

h;w
� �

T h
� r � Aqn

h;w
� �

T h
þ s vn

h � v̂n
h

� �
;w

� 	
oT h
¼ f n;wð ÞT h

þ 1
Dtn qvn�1

h ;w
� �

T h
;

Aqn
h � n� s vn

h � v̂n
h

� �
;l

� 	
oT h
¼ gn

N;l
� 	

oXN
: ð18Þ
Next, we take v ¼ Aqn
h;w ¼ vn

h;l ¼ v̂n
h in (18) and add the resulting equations up to obtain:
1
Dtn Aqn

h;q
n
h

� �
T h
þ 1

Dtn qvn
h; vn

h

� �
T h
þ s vn

h � v̂n
h

� �
; vn

h � v̂n
h

� �� 	
oT h

¼ 1
Dtn Aqn�1

h ;qn
h

� �
T h
þ 1

Dtn qvn�1
h ; vn

h

� �
T h
þ f n;vn

h

� �
T h
þ gn

N ; v̂n
h

� 	
oXN

:

Since ab = a2/2 + b2/2 � (a � b)2/2 and since A is symmetric, we readily obtain:
1
2Dtn Aqn

h;q
n
h

� �
T h
þ 1

2Dtn qvn
h;vn

h

� �
T h
þ s vn

h � v̂n
h

� �
; vn

h � v̂n
h

� �� 	
oT h

¼ 1
2Dtn Aqn�1

h ; qn�1
h

� �
T h
� 1

2Dtn A qn
h � qn�1

h

� �
; qn

h � qn�1
h

� �� �
T h

þ 1
2Dtn qvn�1

h ;vn�1
h

� �
T h
� 1

2Dtn q vn
h � vn�1

h

� �
; vn

h � vn�1
h

� �� �
T h
þ f n;vn

h

� �
T h
þ gn

N; v̂n
h

� 	
oXN

:

To get the energy identity, we only have to multiply the above equation by Dtn and add on n.
Let us now prove the existence and uniqueness of the approximate solution. Since the formulation (18) defines a square

and linear system, the existence and uniqueness follow if we show that qn
h ¼ 0;vn

h ¼ 0, and v̂h ¼ 0 when the right-hand side
is set to zero. In this case, the energy identity gives:
1
Dtn Aqn

h;q
n
h

� �
T h
þ 1

Dtn qvn
h; v

n
h

� �
T h
þ s vn

h � v̂n
h

� �
; vn

h � v̂n
h

� �� 	
oT h
¼ 0: ð19Þ
This implies that qn
h ¼ 0;vn

h ¼ 0, and v̂n
h ¼ vn

h ¼ 0 since s > 0,q > 0, and A is symmetric positive-definite. This completes the
proof. h

The energy identity (16) gives us a way to choose s. In particular, on the basis of dimensional analysis s should be chosen
as:
s ¼ q
tc
¼ qxc; ð20Þ
where tc is the characteristic timescale and xc = 1/tc is the characteristic frequency.

2.6. Implementation

There are two different approaches for implementing the HDG method. We briefly describe the first approach and leave
the second approach to Sub Section 3.3. For simplicity of exposition, we consider a fixed timestep Dtn = Dt. We first note that
the discretization of the system of Eq. (18) gives rise to a matrix equation of the form:
A �BT �CT

B D ET

C E G

264
375 Q n

Vn

Kn

264
375 ¼ AQ n�1

Fn þMVn�1

Ln

264
375: ð21Þ
Here Qn, Vn, and Kn represent the vector of degrees of freedom for qn
h;vn

h, and v̂n
h , respectively.

Due to the discontinuous nature of Vh �Wh the matrix ½A� BT ; B D� is block-diagonal and invertible, so its inverse exists
and is block-diagonal. Therefore, we can eliminate both Qn and Vn to obtain a reduced globally coupled matrix equation only
for Kn as:
KKn ¼ Rn; ð22aÞ
where
K ¼ � C E½ � A �BT

B D

" #�1
�CT

E

" #
þG; ð22bÞ
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and
Table 1
Exampl

Degr

k

1

2

3

Rn ¼ Ln � C E½ � A �BT

B D

" #�1
AQ n�1

Fn þMVn�1

" #
: ð22cÞ
We can thus pre-compute the stiffness matrix K and the following matrix product:
H ¼ C E½ � A �BT

B D

" #�1

:

Then the vector Rn can be inexpensively computed at every time step. In Section 3.3, we describe the second approach to
form K and Rn without explicitly constructing A;B;C;D; E, and G; see also [34,35] for additional details.

2.7. Local postprocessing

We propose here a local postprocessing procedure to improve the accuracy of the numerical approximations. In partic-
ular, the postprocessed displacement and velocity will converge with order k + 2, whenever the approximate gradient con-
verges with the optimal order k + 1 and the average of the original approximation superconverges with order k + 2 [9,44].
Note that the local postprocessing is effective only when the temporal accuracy is of order k + 2. Furthermore, our postpro-
cessing scheme may not be effective for other DG methods such as the BR method [3], local DG method [18], IPDG method
[25], and CDG method [39] because the approximate gradient of those DG methods converges with the suboptimal order k. It
appears that the above-mentioned convergence and postprocessing properties are unique for the HDG method.

We first consider the local postprocessing of the displacement. On every simplex K 2 T h, we define a new approximate
displacement un�

h 2 Pkþ1ðKÞ to satisfy:
run�
h ;rw

� �
K ¼ qn

h;rw
� �

K ; 8w 2 Pkþ1ðKÞ;
un�

h ;1
� �

K ¼ un
h;1

� �
K :

ð23Þ
The postprocessing (23) requires us to solve a linear system whose size is the dimension of Pkþ1ðKÞ.
To postprocess the numerical solution for the new velocity vn�

h , we first compute an approximation pn
h 2 VðKÞ to the veloc-

ity gradient p(tn) =rv(tn) by locally solving the below system:
rpn
h;v

� �
K ¼ � vn

h;r � v
� �

K þ v̂n
h;v � n

� 	
oK ; 8v 2 VðKÞ: ð24Þ
We then find vn�
h 2 Pkþ1ðKÞ such that:
rvn�
h ;rw

� �
K ¼ pn

h;rw
� �

K ; 8w 2 Pkþ1ðKÞ;
vn�

h ;1
� �

K ¼ vn
h;1

� �
K :

ð25Þ
This postprocessing step is similar to (23).
The postprocessing scheme described here is an extension of the previous work [9,16,34,35]. This local postprocessing

method is efficient since it can compute both un�
h and vn�

h at any time step without advancing in time. As a result, the
new approximations are significantly less expensive to compute than the original approximations.
e 1: History of convergence of the numerical approximations for a fixed ratio h/Dt = 4.

ee Mesh ku� uhkT h
kv � vhkT h

kq� qhkT h
ku� u�hkT h

kv � v�hkT h

1/h Error Order Error Order Error Order Error Order Error Order

2 3.75e�2 – 6.15e�2 – 1.37e�1 – 2.93e�2 – 7.06e�2 –
4 7.10e�3 2.40 1.47e�2 2.06 2.68e�2 2.35 5.25e�3 2.48 1.46e�2 2.27
8 1.20e�3 2.56 2.99e�3 2.30 4.56e�3 2.55 7.35e�4 2.84 2.11e�3 2.80
16 2.31e�4 2.38 6.67e�4 2.16 8.66e�4 2.40 9.54e�5 2.95 2.77e�4 2.93
32 5.12e�5 2.17 1.61e�4 2.05 1.90e�4 2.19 1.21e�5 2.98 3.55e�5 2.96

2 7.29e�3 – 1.72e�2 – 3.01e�2 – 6.16e�3 – 1.71e�2 –
4 4.80e�4 3.92 2.16e�3 2.99 2.00e�3 3.91 2.77e�4 4.48 1.99e�3 3.11
8 4.47e�5 3.42 1.86e�4 3.54 1.84e�4 3.44 7.02e�6 5.30 1.40e�4 3.83
16 5.24e�6 3.09 1.81e�5 3.36 2.15e�5 3.10 2.54e�7 4.79 8.73e�6 4.00
32 6.36e�7 3.04 2.08e�6 3.12 2.61e�6 3.04 1.44e�8 4.14 5.36e�7 4.03

2 5.80e�4 – 1.60e�3 – 2.67e�3 – 1.97e�4 – 1.59e�3 –
4 3.12e�5 4.22 8.22e�5 4.29 1.38e�4 4.27 4.92e�6 5.33 8.05e�5 4.30
8 1.78e�6 4.13 5.20e�6 3.98 7.74e�6 4.16 1.37e�7 5.17 3.78e�6 4.41
16 1.06e�7 4.07 3.32e�7 3.97 4.56e�7 4.08 4.05e�9 5.08 1.14e�7 5.05
32 6.46e�9 4.04 2.09e�8 3.99 2.77e�8 4.04 1.24e�10 5.03 1.50e�9 6.24
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2.8. First-order absorbing boundary condition

We consider solving the wave Eq. (2) in an truncated domain X by using the first-order absorbing boundary condition of
the form:
Fig. 1.
1/4) me
v þ Aq � n ¼ 0; on Cext; ð26Þ
where Cext is the exterior boundary of the truncated domain X and oXD [ o XN denotes the interior boundary of X. The above
absorbing boundary condition has been extensively studied [26,29].
Example 1: Comparison of the convergence of the L2-errors in u (top), v (middle), and q (bottom) for the HDG–DIRK(q,p) method and the CG-N(b =
thod. The postprocessed solution was taken as the approximation for the HDG–DIRK(q,p) method.
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The HDG method now seeks an approximation ðqn
h;vn

h; v̂n
hÞ 2 Vh �Wh �Mhðgn

DÞ such that:
1
Dtn qn

h; r
� �

T h
þ vn

h;r � r
� �

T h
� v̂n

h; r � n
� 	

oT h
¼ 1

Dtn qn�1
h ; r

� �
T h
;

1
Dtn qvn

h;w
� �

T h
þ Aqn

h;rw
� �

T h
� Aq̂n

h � n;w
� 	

oT h
¼ f n;wð ÞT h

þ 1
Dtn qvn�1

h ;w
� �

T h
;

Aq̂n
h � n;l

� 	
oT h
þ v̂n

h;l
� 	

Cext
¼ gn

N ;l
� 	

oXN
; ð27Þ
for all (r,w,l) 2 Vh �Wh �Mh(0), where:
Aq̂n
h ¼ Aqn

h � s vn
h � v̂n

h

� �
n; on oT h: ð28Þ
We note that the boundary condition (26) is imposed implicitly by the term v̂n
h;l

� 	
Cext

in the last equation of (27). In fact, this
term is the only difference between (7) and (27). Of course, our earlier discussion such as the implementation, uniqueness
and stability, and local postprocessing for (7) is also relevant to the system (27).

2.9. Numerical results

We now present several examples to demonstrate the performance of the HDG method. We shall use equal-order ele-
ments and high-order nodal basis [30] to represent the numerical approximations in all the examples.

2.9.1. Vibration of a square membrane
We consider the wave Eq. (1) on a unit square X = (0,1) � (0,1) with boundary condition v = 0 on oX and initial condition

u(x,y, t = 0) = 0 and v(x,y, t = 0) = sin(px)sin(py). We set q :¼ 1 and A :¼ I. For f = 0 the problem has the following exact
solution:
Fig. 2. Example 2: Plots of uh (left) and u�h (right) at t = 0.20 for k = 2 (top) and k = 3 (bottom).
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u ¼ 1ffiffiffi
2
p

p
sinðpxÞ sinðpyÞ sinð

ffiffiffi
2
p

ptÞ; v ¼ sinðpxÞ sinðpyÞ cosð
ffiffiffi
2
p

ptÞ:
This solution represents the vibration of the square membrane under an initial velocity. The final time is T = 1.
We consider triangular meshes that are obtained by splitting a regular n � n Cartesian grid into a total of 2n2 triangles,

giving uniform element sizes of h = 1/n. On these meshes, we consider polynomials of degree k to represent all the approx-
imate variables using a high-order nodal basis [30] within each element. For temporal discretization we use the DIRK(2,3),
DIRK(3,4), and DIRK(5,5) schemes for k = 1, 2, and 3, respectively. The stabilization parameter is set to s = 1.

We present in Table 1 the L2 errors and associated orders of convergence for the numerical approximations at the final
time t = 1. These results are obtained for a fixed ratio h/Dt = 4. We observe that the approximate displacement, velocity,
and gradient converge with the optimal order k + 1 for k = 1, 2, 3. Moreover, both the postprocessed displacement and veloc-
ity converge with order k + 2 which are the same order as the DIRK schemes used for time integration. The fact that the HDG
method yields optimal convergence for the approximate gradient has an important advantage since many other DG methods
provide suboptimal convergence of order k for the approximate gradient. Equally important is the fact that both the post-
processed displacement and velocity converge with the order k + 2, which is one order higher than the original approxima-
tions. Moreover, since the local postprocessing is performed at the element level and only at the timestep where higher
accuracy is desired, it adds very little to the overall computational cost. As a result, with the HDG method, the (k + 2)-con-
vergent solution can be computed at the cost of a DG approximation using polynomials of degree k only.
2.9.2. Comparison with the continuous Galerkin–Newmark method
The continuous Galerkin–Newmark (CG-N) method is widely used to solve the acoustic and elastic wave equations. The

CG-N method employs continuous Galerkin (CG) finite elements for spatial discretization and Newmark schemes for time
integration. The unconditionally stable second-order Newmark scheme with b = 1/4 [31] is the most popular scheme of
the Newmark family. Below we compare the HDG–DIRK(q,p) method with the CG-N(b = 1/4) method.

We consider the previous test case to assess the performance of the HDG–DIRK(q,p) method and the CG-N(b = 1/4) meth-
od based on the accuracy versus the global degrees of freedom. Since the DIRK(q,p) scheme requires q linear system solves
Fig. 3. Example 2: Plots of uh (left) and u�h (right) at t = 0.25 for k = 2 (top) and k = 3 (bottom).
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per one timestep, we take h/Dt = 4q for the CG-N(b = 1/4) method to guarantee that both the HDG–DIRK(q,p) method and the
CG-N(b = 1/4) method have exactly the same total number of linear system solves. Moreover, since the local postprocessing
is inexpensive, we take the postprocessed solution as the approximation for the HDG–DIRK(q,p) method and compare it with
the approximate solution of the CG-N(b = 1/4) method.

Fig. 1 shows the L2 errors in u, v, and q as a function of the global degrees of freedom. Thanks to its faster convergence rate
the HDG–DIRK(q,p) method quickly outperforms the CG-N(b = 1/4) method as the global degrees of freedom increase. In
particular, as the problem size becomes larger than 103, the HDG–DIRK(q,p) method produce smaller errors than the
CG-N(b = 1/4) method for both k = 1 and k = 2. For the same problem size, the approximate gradient of the HDG–DIRK(q,p)
method is significantly more accurate than that of the CG-N(b = 1/4) method.

2.9.3. Inhomogeneous wave speed
The problem has X = (0,1) � (0,1), f = 0, T = 0.25, and A = I. The density q(x) is set to 1 if x 2X1 = (0.3,0.7) � (0.3,0.7) and

1/9 if x 2X2 �XnX1. Therefore, the wave speed is equal to 1 in X1 and 3 in X2. The boundary conditions are v = 0 on oX. The
initial conditions are given by u(x, t = 0) = 0 and vðx; t ¼ 0Þ ¼ 2e�500ððx�0:5Þ2þðy�0:5Þ2Þ.

We use a regular 10 � 10 Cartesian grid with meshsize h = 0.1 for spatial discretization and employ the BDF3 scheme
with timestep Dt = 0.0025 for temporal discretization. We use the DIRK(2,3) method to obtain the numerical solution at
the first and second time levels. We choose s = 1. We present in Fig. 2 the plots of the approximate displacement uh and
the postprocessed displacement u�h at time t = 0.2 for k = 2 and k = 3. Fig. 3 shows the same results at time t = 0.25. The dis-
continuity in the material can be clearly seen from the plots of the numerical solution at time t = 0.2. We observe that the
approximate displacement is significantly improved as k increases from 2 to 3. Moreover, the local postprocessing does also
enhance the accuracy of the solution the since u�h is clearly superior to uh. These results illustrate the effectiveness of the local
postprocessing for inhomogeneous media.

2.9.4. Reflection of waves from a L-shaped domain
This problem is taken from [8]. We consider a L-shaped domain X = (0,1)2n(0.7,1)2, f = 0,q = 1,A = I and T = 0.45. The

boundary and initial conditions are kept the same as those in the previous example.
Fig. 4. Example 3: Plots of vh (left) and v�h (right) at t = 0.30 for k = 2 (top) and k = 3 (bottom).



3706 N.C. Nguyen et al. / Journal of Computational Physics 230 (2011) 3695–3718
We use a regular Cartesian grid with meshsize h = 0.1 for spatial discretization and the BDF3 scheme with timestep
Dt = 0.005 for temporal discretization. We set s = 1. We present in Fig. 4 the plots of the approximate velocity vh and the
postprocessed velocity v�h at time t = 0.3 for k = 2 and k = 3. Fig. 5 shows the same results at time t = 0.45. We see that the
waves begin to reflect from the corner (0.7,0.7) at time t = 0.3. After time t = 0.3, the waves form a second circular wave cen-
tered at the corner (0.7,0.7). Again we observe that increasing k leads to a significant improvement of the numerical solution
and that the local postprocessing does enhance the accuracy. Hence, our local postprocessing is effective even for irregular
domains such as the L-shaped domain.
2.9.5. Scattering of plane wave from an airfoil
This example illustrates the performance of the HDG method for curved geometry in an unbounded domain. We consider

the acoustic scattering from the NACA 0012 airfoil of an incident planar wave of the form:
uiðx; y; tÞ ¼ sinðk � x� cjkjtÞ;
where c is the wave speed and k = (kx,ky) is the wave number with jkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
. For our particular problem we consider

kx = 20, ky = 0, and c = 1, which represents the plane wave along the x direction. The scattered wave u satisfies the homog-
enous wave Eq. (1) (f = 0,q = 1, and A = c2I) and the following boundary condition on the airfoil surface Ca:
ru � n ¼ �rui � n; on Ca:
We study the scattered field in an truncated domain Xext = (�2,3) � (�2,2) and apply the first-order absorbing boundary
condition on its boundary as:
ou
ot
þru � n ¼ 0; on Cext:
The initial condition is u(x, t = 0) = 0 and ou(x, t = 0)/ot = 0. The computational domain and associated grid is given in Fig. 6.
Fig. 5. Example 3: Plots of vh (left) and v�h (right) at t = 0.45 for k = 2 (top) and k = 3 (bottom).



Fig. 6. Example 4: Geometry and mesh for the acoustic scattering problem.

Fig. 7. Example 4: Plots of uh (left) and u�h (right) at t = 2 for k = 2 (top) and k = 3 (bottom).
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The BDF3 scheme is used to discretize the time derivatives with D t = 0.005, while the HDG method is employed for spa-
tial discretization. Here we choose s = 1. We present the computed results in Figs. 7 and 8 for k = 2,3. It is clearly seen that the
local postprocessing enhances the accuracy quite significantly since the postprocessed solution for k = 2 looks much better
than the original solution for k = 2 and resembles the original solution for k = 3. Very good results are obtained in spite of the
fact that the problem has curved geometry, absorbing boundary condition, and relatively high wave number.

3. The elastic wave equations

In this section, we extend the HDG method developed in the previous section to linear elastodynamics. Linear elastody-
namics has some important applications in engineering such as seismic modeling and nondestructive evaluation. The elastic



Fig. 8. Example 4: Plots of vh (left) and v�h (right) at t = 2 for k = 2 (top) and k = 3 (bottom).
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wave equations are different from the scalar acoustic wave equation in the sense that they are vectorial and have two
different wave speeds, namely, pressure (primary) wave speed and shear (secondary) wave speed. However, in many cases,
the elastic wave equations can be (exactly or approximately) reduced to an acoustic wave equation plus some other wave
equations. Both the acoustic and elastic wave equations can be written as a first-order hyperbolic system of equations:
ow
ot
þ
Xd

i¼1

oAiw
oxi

¼ f ; ð29Þ
where w is the vector of field variables including the velocity field and displacement gradient, and Ai are matrices consisting
of material parameters. Therefore, it is natural to extend the HDG method for acoustics to treat elastodynamics.

We note that the classical DG method [42] can be used to solve the first-order formulation (29) of both the acoustic and
elastic wave equations. However, the disadvantage of this DG method is that when an implicit time-stepping method is used
to discretize the time derivative it will result in a large system involving the degrees of freedom of both the velocity field and
displacement gradient. With the HDG method we also aim to solve the first-order system (29). However, the global system of
the HDG method involves only the degrees of freedom of the approximate trace of the velocity field. This will lead to a sig-
nificant saving in computational cost and memory storage for the HDG method relative to the classical DG method.

Although there are several different formulations of the elastic wave equations, we choose to develop the HDG method for
the displacement gradient–velocity–pressure formulation. This method is based on an extension of our recent work for the
Stokes system [14,36]. Similar development can be applied to other formulations such as the stress–velocity–pressure
formulation by following the method of lines presented in this paper and the HDG framework proposed in [17] for three
different formulations of the Stokes system.

3.1. Displacement gradient-velocity-pressure formulation

Let u represent the vector field of the displacement components, k and l the Lamé moduli, q the density of the elastic
isotropic material, and b a time-dependent body force. Let X be an open bounded domain in Rd and T a fixed final time.
The motion of the elastic isotropic body X is governed by
q
o2u
ot2 �r � lruþ ðlþ kÞðr � uÞI½ � ¼ b; inX� ð0; T�: ð30Þ
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We introduce the velocity field v = ou/ot, the displacement gradient tensor H =ru, and the hydrostatic pressure
p = (l + k)(r � u). We then rewrite (30) as the first-order system:
oH
ot
�rv ¼ 0; in X� ð0; T�;

q
ov
ot
�r � lHþ pIð Þ ¼ b; in X� ð0; T�;

�
op
ot
�r � v ¼ 0; in X� ð0; T�:

ð31Þ
Here � = 1/(l + k), and I is the second-order identity tensor. Associated with this system are the boundary conditions:
v ¼ gD; on oX� ð0; T�;
and initial condition:
v ¼ v0; H ¼ H0; p ¼ p0; on X� ft ¼ 0g:
For simplicity of exposition, we assume that � > 0, which in essence means that the elastic solid is either compressible or
nearly incompressible. The incompressible limit � = 0 requires the average pressure condition and can be treated by the aug-
mented Lagrangian method [36,17].

In addition to the finite element spaces defined in Sub Section 2.2, we introduce the following new finite element spaces:
Gh ¼ N 2 L2 T hð Þ
� �d�d

: NjK 2 Pk Dð Þð Þd�d
; 8K 2 T h

� �
;

Mh ¼ l 2 L2 Ehð Þ
� �d

: ljF 2 Pk Fð Þð Þd; 8F 2 Eh

� �
:

We also set:
MhðgÞ ¼ l 2 Mh : l ¼ Pg on oX

 �

;

where P denotes the L2-projection into the space {ljoX "l 2Mh}. We then define volume and boundary inner products asso-
ciated with Gh as:
ðN; LÞT h
¼
X
K2T h

ðN; LÞK ; N; Lh ioT h
¼
X
K2T h

N; Lh ioK ;
for N; L 2 ðL2ðT hÞÞd�d. Note that (N,L)D denotes the integral of tr(NTL) over D, where tr is the trace operator.

3.2. HDG method

We directly consider the Backward–Euler method for temporal discretization as higher-order methods admit a similar
procedure. We use the same notation introduced in Sub Section 2.3 for time integration. TheHDG method then finds an
approximation ðHn

h; v
n
h; p

n
h; v̂

n
hÞ 2 Gh � Vh �Wh �Mhðgn

DÞ at time level tn = nDtn such that:
1
Dtn Hn

h;N
� �

T h
þ vn

h;r �N
� �

T h

� v̂n
h;N � n

� 	
oT h
¼ 1

Dtn Hn�1
h ;N

� �
T h

;

1
Dtn qvn

h;w
� �

T h
þ lHn

h þ pn
hI;rw

� �
T h

� lĤn
h þ p̂n

hI
� �

� n;w
D E

oT h

¼ bn;wð ÞT h
þ 1

Dtn qvn�1
h ;w

� �
T h
;

1
Dtn �p

n
h; q

� �
T h
þ vn

h;rq
� �

T h

� bvn
h � n; q

� 	
oT h
¼ 1

Dtn �p
n�1
h ; q

� �
T h
;

lbHn
h þ p̂n

hI
� �

� n;l
D E

oT h

¼ 0;

ð32Þ
for all (N,w,q,l) 2 Gh � Vh �Wh �Mh(0), where
lbHn
h þ p̂n

hI ¼ lHn
h þ pn

hI� S vn
h � v̂n

h

� �
� n: ð33Þ
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Here S is a second-order tensor consisting of stabilization parameters which will be determined below. Note that the numer-
ical approximations at time level t0 = 0 are computed as the L2 projection of the initial conditions.

Once vn
h is available we can compute un

h 2 Vh by simultaneously solving the following system:
1
Dtn un

h;w
� �

T h
¼ vn

h;w
� �

T h
þ 1

Dtn un�1
h ;w

� �
T h
; 8w 2 Vh: ð34Þ
This system can be solved at the element level thanks to the discontinuous nature of the space Vh.
We obtain the following results whose proof is simlar to that of Proposition 1 and is thus omitted here for brevity.

Proposition 2. Any solution of the Eq. (32) satisfies the energy identity:

1
4

lHm
h ;H

m
h

� �
T h
þ 1

2
qvm

h ; v
m
h

� �
T h
þ 1

2
�pm

h ; p
m
h

� �
T h
þHm

h ¼
1
4

lH0
h;H

0
h

� �
T h

þ 1
2

qv0
h; v

0
h

� �
T h
þ 1

2
�p0

h;p
0
h

� �
T h
þWm

h ; ð35Þ
where
Hm
h :¼

Xm

n¼1

Dtn S vn
h � v̂n

h

� �
; vn

hv̂
n
h

� �� 	
oT h

þ 1
4

Xm

n¼1

l Hn
h �Hn�1

h

� �
; Hn

h �Hn�1
h

� �� �
T h

þ 1
2

Xm

n¼1

q vn
h � vn�1

h

� �
; vn

h � vn�1
h

� �� �
T h

þ 1
2

Xm

n¼1

� pn
h � pn�1

h

� �
; pn

h � pn�1
h

� �� �
T h

Wm
h :¼ 1

2
lH0

h;H
0
h

� �
T h

þ qv0
h; v

0
h

� �
T h
þ �p0

h; p
0
h

� �
T h
þ
Xm

n¼1

Dtn bn; vn
h

� �
T h
for all m P 1. Moreover, if c > 0,q > 0, and � > 0, and the stabilization tensor S satisfies:
pT Sp > 0; on oT h;8p 2 Rd; ð36Þ
then the HDG method (32) has a unique solution ðHn
h; v

n
h; p

n
h; û

n
hÞ for any n P 1.

It follows from the energy identity (35) that S should be chosen as:
S ¼ q
tc

I ¼ qxcI; ð37Þ
where tc is the characteristic timescale and xc = 1/tc is the characteristic frequency.

3.3. Implementation

We describe the second approach to implement the HDG method in addition to the first approach described in Sub Sec-
tion 2.6. We begin with inserting (33) into (32) to obtain that ðHn

h; v
n
h; p

n
h; v̂

n
hÞ 2 Gh � Vh �Wh �Mhðgn

DÞ satisfies:
1
Dtn Hn

h;N
� �

T h
þ vn

h;r �N
� �

T h

� bvn
h;N � n

� 	
oT h
¼ 1

Dtn Hn�1
h ;N

� �
T h

;

1
Dtn qvn

h;w
� �

T h
� r � lHn

h þ pn
hI

� �
;w

� �
T h

þ S vn
h � v̂n

h

� �
;w

� 	
oT h
¼ bn;wð ÞT h

þ 1
Dtn qvn�1

h ;w
� �

T h
;

1
Dtn �p

n
h; q

� �
T h
þ vn

h;rq
� �

T h

� bvn
h � n; q

� 	
oT h
¼ 1

Dtn �p
n�1
h ; q

� �
T h
;

lHn
h þ pn

hI
� �

� n� S vn
h � v̂n

h

� �
;l

� 	
oT h
¼ 0;

ð38Þ
for all (N,w,q,l) 2 Gh � Vh �Wh �Mh(0). Here we may follow the approach outlined in Sub Section 2.5 to implement the
HDG method. However, the HDG method can also be implemented by following the procedure described below.
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We note that the first three equations of (38) can be written at the element level as:
Table 2
Exampl

Degr

k

1

2

Table 3
Exampl

Degr

k

1

2

1
Dtn Hn

h;N
� �

K þ vn
h;r �N

� �
K ¼ v̂n

h;N � n
� 	

oK þ
1

Dtn Hn�1
h ;N

� �
K
;

1
Dtn qvn

h;w
� �

K � r � lHn
h þ pn

hI
� �

;w
� �

K

þ S vn
h

� �
;w

� 	
oK ¼ S v̂n

h

� �
;w

� 	
oK

þ bn;wð ÞK þ
1

Dtn qvn�1
h ;w

� �
K ;

1
Dtn �p

n
h; q

� �
K þ vn

h;rq
� �

K ¼ v̂n
h � n; q

� 	
oK þ

1
Dtn �p

n�1
h ; q

� �
K ;

ð39Þ
for all ðN;w; qÞ 2 ðPkðKÞÞd�d � ðPkðKÞÞd � PkðKÞ. The above system of equations thus defines a ‘‘local solver’’ L that maps
ðv̂n

h;H
n�1
h ; vn�1

h ; pn�1
h ; bnÞ to ðHn

h; v
n
h; p

n
hÞ as:
v̂n
h;H

n�1
h ; vn�1

h ; pn�1
h ; bn

� �
#
L

Hn
h; v

n
h;p

n
h

� �
: ð40Þ
Therefore, if we know v̂n
h we can solve the local problem (39) element-by-element to obtain the numerical solution. It re-

mains only to determine v̂n
h. Toward this end, for any given g 2Mh we set:
Hg
h ; v

g
h ;p

g
h

� �
:¼ L g;0; 0;0;0ð Þ;

HHn�1
h

h ; v
Hn�1

h
h ;p

Hn�1
h

h

� �
:¼ L 0;Hn�1

h ;0;0;0
� �

;

H
vn�1

h
h ; v

vn�1
h

h ;p
vn�1

h
h

� �
:¼ L 0;0; vn�1

h ;0; 0
� �

;

H
pn�1

h
h ; v

pn�1
h

h ;p
pn�1

h
h

� �
:¼ L 0; 0;0;pn�1

h ;0
� �

;

Hbn

h ; v
bn

h ;p
bn

h

� �
:¼ L 0;0; 0;0; bnð Þ:

ð41Þ
e 5: History of convergence of the numerical approximations with a fixed ratio h/Dt = 4 for k = 1.

ee Mesh ku� uhkT h
kv� vhkT h

kr� rhkT h
ku� u�hkT h

kv� v�hkT h

1/h Error Order Error Order Error Order Error Order Error Order

4 3.79e�4 – 1.94e�3 – 2.08e�3 – 1.74e�4 – 1.28e�3 –
8 1.12e�4 1.76 4.51e�4 2.11 5.07e�4 2.04 2.53e�5 2.78 1.74e�4 2.88
16 3.04e�5 1.88 1.06e�4 2.09 1.26e�4 2.01 3.27e�6 2.95 2.18e�5 2.99
32 7.90e�6 1.94 2.60e�5 2.03 3.16e�5 2.00 4.12e�7 2.99 2.96e�6 2.89
64 2.01e�6 1.97 6.45e�6 2.01 7.93e�6 2.00 5.16e�8 3.00 3.99e�7 2.89

4 5.14e�5 – 2.26e�4 – 3.27e�4 – 1.78e�5 – 2.41e�4 –
8 8.01e�6 2.68 2.90e�5 2.96 4.21e�5 2.96 1.20e�6 3.89 7.10e�6 5.08
16 1.10e�6 2.87 3.67e�6 2.98 5.25e�6 3.00 7.39e�8 4.02 4.53e�7 3.97
32 1.43e�7 2.94 4.60e�7 3.00 6.54e�7 3.01 4.52e�9 4.03 2.70e�8 4.07
64 1.82e�8 2.97 5.75e�8 3.00 8.14e�8 3.00 2.78e�10 4.02 1.68e�9 4.01

e 5: History of convergence of the numerical approximations with a fixed ratio h/Dt = 4 for k = 1000.

ee Mesh ku� uhkT h
kv� vhkT h

kr� rhkT h
ku� u�hkT h

kv� v�hkT h

1/h Error Order Error Order Error Order Error Order Error Order

4 3.75e�4 – 1.94e�3 – 2.2e�3 – 1.72e�4 – 1.26e�3 –
8 1.12e�4 1.75 4.49e�4 2.11 5.41e�4 2.02 2.57e�5 2.74 1.71e�4 2.89
16 3.04e�5 1.88 1.06e�4 2.08 1.33e�4 2.02 3.37e�6 2.93 2.13e�5 3.00
32 7.90e�6 1.94 2.60e�5 2.03 3.33e�5 2.00 4.26e�7 2.98 2.87e�6 2.89
64 2.01e�6 1.97 6.45e�6 2.01 8.33e�6 2.00 5.34e�8 2.99 3.85e�7 2.90

4 5.11e�5 – 2.24e�4 – 3.67e�4 – 1.80e�5 – 2.40e�4 –
8 7.98e�6 2.68 2.88e�5 2.96 4.82e�5 2.93 1.22e�6 3.89 6.91e�6 5.12
16 1.09e�6 2.87 3.66e�6 2.98 6.12e�6 2.98 7.44e�8 4.03 4.20e�7 4.04
32 1.43e�7 2.94 4.59e�7 2.99 7.89e�7 2.96 4.52e�9 4.04 2.48e�8 4.08
64 1.82e�8 2.97 5.75e�8 3.00 9.95e�8 2.99 2.78e�10 4.02 1.48e�9 4.07



3712 N.C. Nguyen et al. / Journal of Computational Physics 230 (2011) 3695–3718
Note that the function ðHg
h ; v

g
h ; p

g
hÞ is obtained from the local problem (39) by replacing bvn

h with g and setting other compo-
nents in the right-hand side to zero. The other functions are determined in a similar manner.

The following result is a direct consequence of the local problem (39), the decomposition (41) and the last equation of the
HDG system (38).
Fig. 9. Example 5: Comparison of the convergence of the L2-errors in u (top), v (middle), and r (bottom) for the HDG–DIRK(q,p) method and the CG-N(b =
1/4) method for k = 1. The postprocessed solution was taken as the approximation for the HDG–DIRK(q,p) method.



Fig. 10. Example 5: Comparison of the convergence of the L2-errors in u (top), v (middle), and r (bottom) for the HDG–DIRK(q,p) method and the CG-
N(b = 1/4) method for k = 1000. The postprocessed solution was taken as the approximation for the HDG–DIRK(q,p) method.
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Lemma 3.1. We have that:
Hn
h ¼ Hkn

h þH
Hn�1

h
h þH

vn�1
h

h þH
pn�1

h
h þHbn

h ;

vn
h ¼ vkn

h þ v
Hn�1

h
h þ v

vn�1
h

h þ v
pn�1

h
h þ vbn

h ;

pn
h ¼ pkn

h þ p
Hn�1

h
h þ p

vn�1
h

h þ p
pn�1

h
h þ pbn

h ;

v̂n
h ¼ kn;

ð42Þ
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where kn 2Mh(gn) is the solution of the weak formulation:
Fig. 11.
and bo
ahðkn;lÞ ¼ ‘n
hðlÞ; 8l 2 Mhð0Þ: ð43Þ
Here the bilinear form and linear functional are given by
ahðg;lÞ ¼ Hg
h þ pg

hI� Sðvg
h � gÞ;l

� 	
oT h
;

‘n
hðlÞ ¼ � HHn�1

h
h þ p

Hn�1
h

h I
� �

� n� Sv
Hn�1

h
h ;l

D E
oT h

� H
vn�1

h
h þ p

vn�1
h

h I
� �

� n� Sv
vn�1

h
h ;l

D E
oT h

� H
pn�1

h
h þ p

pn�1
h

h I
� �

� n� Sv
pn�1

h
h ;l

D E
oT h

� Hbn

h þ pbn

h I
� �

� n� Svbn

h ;l
D E

oT h

;

ð44Þ
for all g, l 2Mh.
The weak formulation (43) gives rise to a matrix system of the form:
K Kn ¼ Ln; ð45Þ
where Kn is the vector of degrees of freedom of bvn
h , K is the stiffness matrix associated with ah, and Ln is the vector associated

with ‘n
h. We refer to [36,17] for a detailed discussion on forming the matrix system (45) and computing the numerical solu-

tion ðHn
h; v

n
h; p

n
hÞ.
3.4. Local postprocessing

The local postprocessing for the elastic case is a straightforward extension of the procedure developed in Sub Section 2.7
for the acoustic case. In particular, the new approximate displacement un�

h 2 ðPkþ1ðKÞÞd satisfies, on every simplex K 2 T h:
run�
h ;rw

� �
K ¼ Hn

h;rw
� �

K ; 8w 2 Pkþ1ðKÞð Þd;
un�

h ;1
� �

K ¼ un
h;1

� �
K :

ð46Þ
Note that each component of un�
h can be solved independently of each other. Hence, in effect, it is exactly the local postpro-

cessing of Sub Section 2.7 applied to each component of the displacement field.
Using a similar technique as in the scalar case, we compute the approximate velocity gradient Ln

h 2 ðPkðKÞÞd�d by locally
solving:
Ln
h;N

� �
K ¼ � vn

h;r � N
� �

K þ v̂n
h;N � n

� 	
oK ; 8N 2 PkðKÞð Þd�: ð47Þ
We then define a new approximate velocity vn�
h 2 ðPkþ1ðKÞÞd to satisfy, on every simplex K 2 T h:
rvn�
h ;rw

� �
K ¼ Ln

h;rw
� �

K ; 8w 2 Pkþ1ðKÞð Þd;
vn�

h ;1
� �

K ¼ vn
h;1

� �
K :

ð48Þ
Again each component of Ln
h and vn�

h can be solved independently.
Since the local postprocessing can be carried out at any particular timestep and performed at the element level, the post-

processsed displacement and velocity are very inexpensive. Note however that the postprocessing is effective only when
temporal accuracy is of order k + 2.
Example 6: Geometry and mesh for the semi-infinite elasticity problem. The first-order absorbing boundary condition is applied on the left, right,
ttom sides, while an impulsive loading is applied over the strip (x,y) 2 [0.375,0.425] � {0.5} [ [0.575,0.625] � {0.5} of the top surface.



Fig. 12. Example 6: Plots of jv�hj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv�hxÞ

2 þ ðv�hyÞ
2

q
at different times for k = 5 and Dt = 0.005.
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3.5. Stress boundary conditions and first-order absorbing boundary conditions

We describe here a novel and systematic way for imposing boundary conditions for the stress and absorbing layer which
are not naturally associated with the weak formulation of the HDG method. The treatment of such incompatible boundary
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conditions is first proposed in [32]. In particular, let us consider the following boundary conditions for our elastic wave equa-
tions (30):
v ¼ gD; on oXD � ð0; T�;
l ruþruT
� �

þ k r � uð ÞI
� �

� n ¼ gN ; on oXN � ð0; T�;
vþ l ruþruT

� �
þ k r � uð ÞI

� �
� n ¼ 0; on Cext;
which in that order imposes the boundary conditions on the velocity, stress, and (first-order) absorbing layer. Here oXD and
oXN are two disjoint parts of the interior boundary of oX, and Cext is the exterior boundary of oX.

To incorporate the above boundary conditions, we redefine the space Mh(g) as:
MhðgÞ ¼ fl 2 Mh : l ¼ Pg on oXDg:
We then replace the last equation of the HDG formulation (32) with:
lbHn
h þ p̂n

hI
� �

� n;l
D E

oT hnoXN

þ v̂n
h;l

� 	
Cext
þ l bHn

h þ bHn
h

� �T
� �

þ k
lþ k

p̂n
hI

� �
� n;l

� �
oXN[Cext

¼ gn
N ;l

� 	
oXN

: ð49Þ
In essence, this equation enforces the continuity of the normal component of the total gradient for interior faces and imposes
the stress boundary condition on oXN and the absorbing boundary condition on Cext.

3.6. Numerical results

3.6.1. Convergence test
We consider the elastic wave Eq. (30) on a unit square X = (0,1) � (0,1) with l = 1 and q = 1. The exact solution is given

by
u1 ¼ �x2yð2y� 1Þðx� 1Þ2ðy� 1Þ sinðptÞ;
u2 ¼ xy2ð2x� 1Þðx� 1Þðy� 1Þ2 sinðptÞ:
The source term b is determined from the above solution. The Dirichlet boundary data are determined as the restriction of
the exact solution on the boundary. Likewise the initial data is taken as an instantiation of the exact solution at time t = 0.
The final time is T = 0.5. Our triangular meshes are constructed upon regular n � n Cartesian grids (h = 1/n). The stabilization
parameter is set to s = 1.

We present the L2 errors and orders of convergence of the numerical approximations at the final time t = 0.5 in Table 2 for
k = 1 (compressible case as the Poisson ratio m = 0.25) and in Table 3 for k = 1000 (nearly incompressible case as m 	 0.4995),
respectively. These results are obtained using the DIRK(2,3) scheme for k = 1 and the DIRK(3,4) scheme for k = 2, and a fixed
ratio h/Dt = 4. We observe that the approximate displacement uh, velocity vh, and stress rh ¼ lðHh þHT

hÞ þ k=ðkþ lÞphI
converge with the optimal order k + 1 for k = 1 and k = 2, even for the nearly incompressible case. Optimal convergence of
the stress is an important advantage of the HDG method because many quantities of engineering interest are derived from
the stress. Furthermore, we observe that both the postprocessed displacement u�h and postprocessed velocity v�h converge
with order k + 2 for k = 1 and k = 2, which are one order higher than the original approximations. Since the postprocessed
quantities are inexpensive to compute, the HDG method provides better convergence and accuracy than existing DG meth-
ods for the numerical solution of wave propagation in linear elastodynamics.

3.6.2. Comparison with the continuous Galerkin–Newmark method
We consider the previous example to assess the performance of the HDG–DIRK(q,p) method and the CG-N(b = 1/4) meth-

od. As before we take h/Dt = 4q for the CG-N(b = 1/4) method to guarantee that both the HDG–DIRK(q,p) method and the CG-
N(b = 1/4) method have exactly the same total number of linear system solves. Moreover, we compare the postprocessed
solution of the HDG–DIRK(q,p) method with the approximate solution of the CG-N(b = 1/4) method.

Fig. 9 shows the L2 errors in u, v, and r as a function of the global degrees of freedom for k = 1. It is clear that the HDG–
DIRK(q,p) method outperforms the CG-N(b = 1/4) method for both k = 1 and k = 2. In particular, when the same polynomial
degree k is used, the numerical approximations for the HDG–DIRK(q,p) method converge with one order higher than those
for the CG-N(b = 1/4) method. As a result, the HDG–DIRK(q,p) method provides better accuracy than the CG-N(b = 1/4)
method for the same number of global degrees of freedom.

Fig. 10 shows the results obtained for k = 1000. The CG-N(b = 1/4) method fails to converge for k = 1, while the conver-
gence rates remain optimal for the HDG–DIRK(q,p) method. The failure of the CG-N(b = 1/4) method for k = 1 is due to
the well-known volumetric locking phenomenon which may occur for some numerical schemes when the Poisson ratio m
is very close to 0.5. For the standard CG method, the volumetric locking can be remedied by introducing the pressure variable
and using either reduced integration or mixed finite element spaces such as the Taylor–Hood elements. Despite the fact that
equal-degree polynomials are used to represent all the approximate variables the HDG method does not suffer from the vol-
umetric locking phenomenon. Although the CG-N(b = 1/4) method converges better for k = 2, its solution is significantly less
accurate than that of the HDG–DIRK(q,p) method for the same number of global degrees of freedom.
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3.6.3. Elastic waves in a semi-infinite medium
We consider the propagation of elastic waves in half space under an impulsive loading applied at the top surface. In order

to solve this problem we consider a bounded domain X = (0,0) � (1,0.5) and apply the first-order absorbing boundary con-
dition on the left, right, and bottom sides of the domain. The impulse loading applied at the top surface is given by
gNðx; y; tÞ ¼
ð0;�30Þ if x 2 ½0:375;0:425� [ ½0:575;0:625�; y ¼ 0:5; t 6 0:005;
ð0;0Þ otherwise;

�

The medium is isotropic and homogeneous with material constants l = 1 kN/m2, k = 2 kN/m2, and q = 1 kg/m3, so that the
shear wave speed is cs ¼

ffiffiffiffiffiffiffiffiffi
l=q

p
¼ 1 m=s and the pressure wave speed is cp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2lÞ=q

p
¼ 2 m=s. Fig. 11 shows the geom-

etry and finite element mesh used for the calculation.
In Fig. 12 we present the numerical solution (the magnitude of the postprocessed velocity) of this problem at different

times. These results are obtained by using the DIRK(2,3) scheme with the timestep Dt = 0.005 for time integration and poly-
nomial degree k = 5 for spatial discretization. The stabilization tensor S is set to sI with s = 10. High-order numerical simu-
lation clearly reveals a rich structure of propagating waves. We can see two cylindrical waves (pressure wave and shear
wave) propagating with two different speeds and we can also observe the Rayleigh wave propagating along the surface with
a speed slightly less than the speed of shear waves. However, since our absorbing boundary condition is only first-order
there are waves which reflect at the absorbing boundary and propagate back into the domain. Nevertheless, this example
serves well to demonstrate the capability of HDG methods for solving seismic problems in geophysics.

4. Conclusion

We have presented HDG methods for acoustics and elastodynamics. The HDG methods possess several attractive prop-
erties in terms of the reduced degrees of freedom, higher order of convergence, and postprocessing as discussed in the Intro-
duction section and demonstrated by several numerical experiments. Unlike many other DG methods, the HDG methods are
fully implicit and yet computationally attractive in the sense that only the approximate trace of the velocity has to be solved
at every timestep. Moreover, the approximate stresses, postprocessed displacement and velocity converge faster than the
same quantities obtained by using other DG methods known in the literature. Although the HDG method has more global
degrees of freedom for the same mesh and polynomial degree, it produces more accurate approximations than the standard
CG method for the same number of global degrees of freedom.

Acknowledgements

J. Peraire and N.C. Nguyen would like to acknowledge the Singapore–MIT Alliance and the Air Force Office of Scientific
Research under the MURI project on Biologically Inspired Flight and the AFOSR Grant No. FA9550-08-1-0350 for partially
supporting this work. B. Cockburn would like to acknowledge the National Science Foundation for partially supporting this
work through Grant No. DMS-0712955.

References

[1] R. Alexander, Diagonally implicit Runge–Kutta methods for stiff ODEs, SIAM J. Numer. Anal. 14 (1977) 1006–1021.
[2] I. Babus̆ka, M. Zlámal, Nonconforming elements in the finite element method with penalty, SIAM J. Numer. Anal. 10 (5) (1973) 863–875.
[3] F. Bassi, S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-stokes equations, J.

Comput. Phys. 131 (2) (1997) 267–279.
[4] C. Baumann, J. Oden, A discontinuous hp finite element method for convection–diffusion problems, Comput. Methods Appl. Mech. Eng. 175 (1999)

311–341.
[5] E. Bécache, P. Joly, C. Tsogka, An analysis of new mixed finite elements for the approximation of wave propagation problems, SIAM J. Numer. Anal. 37

(4) (2000) 1053–1084.
[6] F. Brezzi Jr., J. Douglas, L.D. Marini, Variable degree mixed methods for second order elliptic problems, Mat. Apl. Comput. 4 (1985) 19–34.
[7] E.T. Chung, B. Engquist, Optimal discontinuous Galerkin methods for wave propagation, SIAM J. Numer. Anal. 44 (5) (2006) 2131–2158.
[8] E.T. Chung, B. Engquist, Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions, SIAM J. Numer. Anal. 47 (5)

(2009) 3820–3848.
[9] B. Cockburn, B. Dong, J. Guzmán, A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems, Math. Comput. 77 (2008)

1887–1916.
[10] B. Cockburn, B. Dong, J. Guzmán, A hybridizable and superconvergent discontinuous Galerkin method for Biharmonic problems, J. Sci. Comput. 40 (1–3)

(2009) 141–187.
[11] B. Cockburn, B. Dong, J. Guzmán, M. Restelli, R. Sacco, A hybridizable discontinuous Galerkin method for steady-state convection–diffusion–reaction

problems, SIAM J. Sci. Comput. 31 (5) (2009) 3827–3846.
[12] B. Cockburn, J. Gopalakrishnan, The derivation of hybridizable discontinuous Galerkin methods for Stokes flow, SIAM J. Numer. Anal. 47 (2009) 1092–

1125.
[13] B. Cockburn, J. Gopalakrishnan, R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order

elliptic problems, SIAM J. Numer. Anal. 47 (2009) 1319–1365.
[14] B. Cockburn, J. Gopalakrishnan, N.C. Nguyen, J. Peraire, F.-J. Sayas, Analysis of HDGmethods for Stokes flow, Math. Comput. 80 (2011) 723–760.
[15] B. Cockburn, J. Gopalakrishnan, F.-J. Sayas, A projection-based error analysis of HDG methods, Math. Comput. 79 (2010) 1351–1367.
[16] B. Cockburn, J. Guzmán, H. Wang, Superconvergent discontinuous Galerkin methods for second-order elliptic problems, Math. Comput. 78 (2009) 1–

24.
[17] B. Cockburn, N.C. Nguyen, J. Peraire, A comparison of HDG methods for Stokes flow, J. Sci. Comput. 45 (2010) 215–237.
[18] B. Cockburn, C.W. Shu, The local discontinuous Galerkin method for convection–diffusion systems, SIAM J. Numer. Anal. 35 (1998) 2440–2463.



3718 N.C. Nguyen et al. / Journal of Computational Physics 230 (2011) 3695–3718
[19] B. Cockburn, C.-W. Shu, Runge–Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput. 16 (3) (2001) 173–261.
[20] G. Cohen, P. Joly, J.E. Roberts, N. Tordjman, Higher order triangular finite elements with mass lumping for the wave equation, SIAM J. Numer. Anal. 38

(6) (2001) 2047–2078.
[21] G.J. Cooper, A. Sayfy, Semiexplicit A-stable Runge–Kutta methods, Math. Comput. 33 (1979) 541–556.
[22] M. Crouzeix, Sur l’approximation des équations différentielles opérationnelles linéaires par des méthodes de Runge-Kutta, Ph.D. Thesis, Université de

Paris VI, 1975.
[23] L. Demkowicz, J. Gopalakrishnan, A class of discontinuous Petrov–Galerkin methods. Part II: optimal test functions, Numer. Methods Part. Differ. Equat.

27 (2011) 70–105.
[24] L. Demkowicz, J. Gopalakrishnan, A class of discontinuous Petrov–Galerkin methods. Part I: the transport equation, Comput. Methods Appl. Mech. Eng.

199 (2010) 1558–1572.
[25] J. Douglas, T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, in: Computing Methods in Applied Sciences, Lecture

Notes in Physics, vol. 58, Springer, Berlin, 1976, pp. 207–216.
[26] B. Engquist, A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comput. 31 (1977) 629–651.
[27] T. Geveci, On the application of mixed finite element methods to the wave equations, RAIRO Model. Math. Anal. Numer. 22 (1988) 243–250.
[28] M.J. Grote, A. Schneebeli, D. Schötzau, Discontinuous Galerkin finite element method for the wave equation, SIAM J. Numer. Anal. 44 (6) (2006) 2408–

2431.
[29] T. Ha-Duong, P. Joly, On the stability analysis of boundary conditions for the wave equation by energy methods. Part I: the homogeneous case, Math.

Comput. 62 (1994) 539–563.
[30] J.S. Hesthaven, T. Warburton, Nodal high-order methods on unstructured grids I. Time–domain solution of Maxwell’s equations, J. Comput. Phys. 181

(1) (2002) 186–221.
[31] Thomas J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, 1987.
[32] N.C. Nguyen, J. Peraire, B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method the incompressible Navier–Stokes equations,

J. Comput. Phys. 230 (2011) 1147–1170.
[33] N.C. Nguyen, J. Peraire, B. Cockburn, Hybridizable discontinuous Galerkin methods, in: Spectral and High Order Methods for Partial Differential

Equations, Lecture Notes in Computational Science and Engineering, vol. 76, 2011, pp. 64–84.
[34] N.C. Nguyen, J. Peraire, B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method for linear convection–diffusion equations, J.

Comput. Phys. 228 (2009) 3232–3254.
[35] N.C. Nguyen, J. Peraire, B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection–diffusion equations,

J. Comput. Phys. 228 (2009) 8841–8855.
[36] N.C. Nguyen, J. Peraire, B. Cockburn, A hybridizable discontinuous Galerkin method for Stokes flow, Comput. Methods Appl. Mech. Eng. 199 (2010)

582–597.
[37] N.C. Nguyen, J. Peraire, B. Cockburn, A hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations (AIAA Paper 2010-

362), in: Proceedings of the 48th AIAA Aerospace Sciences Meeting and Exhibit, Orlando, Florida, Janury 2010.
[38] J. Peraire, N.C. Nguyen, B. Cockburn, A hybridizable discontinuous Galerkin method for the compressible Euler and Navier–Stokes equations (AIAA

Paper 2010-363), in: Proceedings of the 48th AIAA Aerospace Sciences Meeting and Exhibit, Orlando, Florida, Janury 2010.
[39] J. Peraire, P.-O. Persson, The compact discontinuous Galerkin (CDG) method for elliptic problems, SIAM J. Sci. Comput. 30 (4) (2008) 1806–1824.
[40] P.O. Persson, J. Peraire, Newton-GMRES preconditioning for discontinuous Galerkin discretizations of the Navier–Stokes equations, SIAM J. Sci. Comput.

30 (6) (2008) 2709–2733.
[41] P.A. Raviart, J.M. Thomas, A mixed finite element method for second-order elliptic problems, in: I. Galligani, E. Magenes (Eds.), Mathematical Aspects

of the Finite Element Method, Springer, New York, 1977, pp. 292–315.
[42] W.H. Reed, T.R. Hill, Triangular mesh methods for the neutron transport equation, Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory,

1973.
[43] S.-C. Soon, B. Cockburn, H.K. Stolarski, A hybridizable discontinuous Galerkin method for linear elasticity, Int. J. Numer. Methods Eng. 80 (8) (2009)

1058–1092.
[44] R. Stenberg, A family of mixed finite elements for the elasticity problem, Numer. Math. 53 (1988) 513–538.


	High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics
	Introduction
	The acoustic wave equation
	Problem statement
	Approximation spaces
	HDG method with backward difference formulas
	HDG method with DIRK schemes
	Stability and uniqueness for the backward-euler method
	Implementation
	Local postprocessing
	First-order absorbing boundary condition
	Numerical results
	Vibration of a square membrane
	Comparison with the continuous Galerkin–Newmark method
	Inhomogeneous wave speed
	Reflection of waves from a L-shaped domain
	Scattering of plane wave from an airfoil


	The elastic wave equations
	Displacement gradient-velocity-pressure formulation
	HDG method
	Implementation
	Local postprocessing
	Stress boundary conditions and first-order absorbing boundary conditions
	Numerical results
	Convergence test
	Comparison with the continuous Galerkin–Newmark method
	Elastic waves in a semi-infinite medium


	Conclusion
	Acknowledgements
	References


